
Inferring Mutant Utility from Program Context

René Just*, Bob Kurtz†, Paul Ammann†

*University of Massachusetts, Amherst
†George Mason University

July 12, 2017

Automatic
program

repair

Automatic program repair

Automatic
program

repair

Automatic program repair

Automatic
program

repair

Automatic program repair

Goal: generate mutants that improve the
functional correctness of the original program.

Mutation-
based test
generation

Mutation-based test generation

Mutation-
based test
generation

Mutation-based test generation

Mutation-
based test
generation

Mutation-based test generation

Goal: generate strong tests using hard-to-detect mutants.

Selecting a set of effective mutants
Goals:
1. Generate mutants that improve functional correctness.
2. Generate mutants that are hard to detect.

Selecting a set of effective mutants

Gopinath et al., ICSE’16, Kurtz et al., FSE’16

Goals:
1. Generate mutants that improve functional correctness.
2. Generate mutants that are hard to detect.
Problem:
● Many mutants are non compilable, trivially crashing,

or equivalent useless and costly mutants.

Existing strategies:
● Selective mutation (e.g., pattern-based mutation).
● Program-independent and no better than random.

Selecting a set of effective mutants

Gopinath et al., ICSE’16, Kurtz et al., FSE’16

Goals:
1. Generate mutants that improve functional correctness.
2. Generate mutants that are hard to detect.
Problem:
● Many mutants are non compilable, trivially crashing,

or equivalent useless and costly mutants.

Existing strategies:
● Selective mutation (e.g., pattern-based mutation).
● Program-independent and no better than random.

Hypothesis: Program context matters!

Program context

public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Original program

Program context: Parent context

lhs < rhs lhs != rhs
public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Original program Mutation operator

i != nums.length

Program context: Parent context

lhs < rhs lhs != rhs
public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Original program Mutation operator

Program context: Parent context

lhs < rhs lhs != rhs

 equivalent
non-equivalent

public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Original program Mutation operator

Program context: Parent context

lhs < rhs lhs != rhs

 equivalent
non-equivalent

public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Context: kind of lexically enclosing statement (for vs. if)

Original program Mutation operator

Program context: Children context

lhs < rhs lhs <= rhs
public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Original program Mutation operator

Program context: Children context

lhs < rhs lhs <= rhs
public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Original program Mutation operator

 trivial
equivalent

Program context: Children context

lhs < rhs lhs <= rhs
public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Context: kind of operands (identifier vs. operator vs. literal)

Original program Mutation operator

 trivial
equivalent

Operator

Literal

IdentifierIdentifier

Program context: Data type context

0 -1
public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Original program Mutation operator

Program context: Data type context

non-trivial
 trivial

0 -1
public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Original program Mutation operator

Program context: Data type context

non-trivial
 trivial

0 -1
public double getAbsAvg(double[] nums) {
 double sum = 0;

 for (int i = 0; i < nums.length; ++i) {
 if (nums[i] < 0) {
 sum -= nums[i];
 } else {
 sum += nums[i];
 }
 }
 return sum / nums.length;
}

Context: data type (double vs. int)

Original program Mutation operator

Program context: Summary

Mutation operator effectiveness differs, even within a
single method.

Different dimensions of program context
● Parent context: Kind of lexically enclosing statement(s).
● Data type context: Data types of operators and operands.
● Children context: Kind of operands.

Program context matters!

Modeling program context using the AST

Modeling program context using the AST

● Parent context

Modeling program context using the AST

● Parent context
● Data type context

boolean(int,int)

Modeling program context using the AST

● Parent context
● Data type context
● Children context

IdentifierOperator

Mutant utility

1. Equivalence: equivalent mutants have low utility.
2. Triviality: trivially crashing mutants have low utility.
3. Dominance: dominator mutants have high utility.

1. Equivalence: equivalent mutants have low utility.
2. Triviality: trivially crashing mutants have low utility.
3. Dominance: dominator mutants have high utility.

Mutant utility

Mutant utility

1. Equivalence: equivalent mutants have low utility.
2. Triviality: trivially crashing mutants have low utility.
3. Dominance: dominator mutants have high utility.

Good: dominator
mutants

Bad: trivial mutants

Ugly: equivalent
mutants

Is program context predictive of mutant utility?

Determining ground truth (equivalence, triviality, dominance)
● Approximations using extensive test suites.
● 95+% statement coverage.

Selected subjects: 97 unique classes (4 real-world projects)
● 15,000 test cases

○ 64 test cases cover each mutant, on average
○ 23 test cases detect each mutant, on average

80,000 generated mutants (129 mutation operators)

http://defects4j.org

Recall the high-level goal

Good: dominator
mutants

Bad: trivial mutants

Ugly: equivalent
mutants

Expected mutant utility: context-based vs. random

Context-based selection

Expected mutant utility: context-based vs. random

Context-based selection Random selection

Full experimental details in the paper.

Future work: what’s next?

More complex program context models
● Scope and visibility
● Control and data flow

Train effective machine learning classifiers

Integrate into downstream techniques

Automatic
program repair

Inferring mutant utility from program context

