
Evaluating & improving fault localization techniques
Technical report UW-CSE-16-08-03
August 2016; revised February 2017

Spencer Pearson∗, José Campos∗∗, René Just†, Gordon Fraser∗∗, Rui Abreu‡, Michael D. Ernst∗, Deric Pang∗, Benjamin Keller∗

*U. of Washington, USA **U. of Sheffield, UK †U. of Massachusetts, USA
‡Palo Alto Research Center, USA
U. of Porto/HASLab, Portugal

suspense@cs.washington.edu, jose.campos@sheffield.ac.uk, rjust@cs.umass.edu, gordon.fraser@sheffield.ac.uk,
rui@computer.org, mernst@cs.washington.edu, dericp@cs.washington.edu, bjkeller@cs.washington.edu

Abstract—Most fault localization techniques take as input
a faulty program, and produce as output a ranked list of
suspicious code locations at which the program may be defective.
When researchers propose a new fault localization technique,
they typically evaluate it on programs with known faults. The
technique is scored based on where in its output list the defective
code appears. This enables the comparison of multiple fault
localization techniques to determine which one is better.

Previous research has evaluated fault localization techniques
using artificial faults, generated either by mutation tools or man-
ually. In other words, previous research has determined which
fault localization techniques are best at finding artificial faults.
However, it is not known which fault localization techniques are
best at finding real faults. It is not obvious that the answer is
the same, given previous work showing that artificial faults have
both similarities to and differences from real faults.

We performed a replication study to evaluate 10 claims in
the literature that compared fault localization techniques (from
the spectrum-based and mutation-based families). We used 3242
artificial faults in 6 real-world programs. Our results support 7 of
the previous claims as statistically significant, but only 3 as having
non-negligible effect sizes. Then, we evaluated the same 10 claims,
using 323 real faults from the 6 programs. Every previous result
was refuted or was statistically and practically insignificant. Our
experiments show that artificial faults are not useful for predict-
ing which fault localization techniques perform best on real faults.

In light of these results, we identified a design space that
includes many previously-studied fault localization techniques
as well as hundreds of new techniques. We experimentally
determined which factors in the design space are most important,
using an overall set of 395 real faults. Then, we extended this
design space with new techniques. Several of our novel techniques
outperform all existing techniques, notably in terms of ranking
defective code in the top-5 or top-10 reports.

I. INTRODUCTION
A fault localization technique (for short, FL technique)

directs a programmer’s attention to specific parts of a program.
Given one or more failing test cases and zero or more passing
test cases, a FL technique outputs a (typically, sorted) list of
suspicious program locations, such as lines, statements, or dec-
larations. The FL technique uses heuristics to determine which
program locations are most suspicious—that is, most likely to
be erroneous and associated with the fault. A programmer can
save time during debugging by focusing attention on the most
suspicious locations [17]. Another use is to focus a defect repair
tool on the parts of the code that are most likely to be buggy.

Dozens of fault localization techniques have been proposed
[52]. It is desirable to evaluate and compare these techniques,
both so that practitioners can choose the ones that help them
solve their debugging problems, and so that researchers can
better build new fault localization techniques.

A fault localization technique is valuable if it works on
real faults. Although some real faults (mostly 35 faults in the
single small numerical program space [48]) have been used in
previous comparisons [52] of fault localization techniques, the
vast majority of faults used in such comparisons are fake faults,
mostly mutants. The artificial faults were mutants automatically
created by a tool [30], [31], [57], or mutant-like manually-
seeded faults created by students [51], [53] or researchers [18].

Artificial faults such as mutants differ from real faults
in many respects, including their size, their distribution in
code, and their difficulty of being detected by tests [24].
It is possible that an evaluation of FL techniques on real
faults would yield different outcomes than previous evaluations
on mutants. If so, previous recommendations would need to
be revised, and practitioners and researchers should choose
different techniques to use and improve. It is also possible
that an evaluation of FL techniques on real faults would yield
the same recommendations, thus resolving a cloud of doubt
that currently hangs over the field. Either result would be of
significant scientific interest. The results also have implications
beyond fault localization itself. For instance, it would help to
indicate which fault localization approaches, if any, should be
used to guide automated program repair techniques [43].

This paper compares fault localization techniques on real vs.
artificial faults. Techniques that localize artificial faults best
do not perform best on real faults. Our experiments are based
on 7 previously-studied fault localization techniques from the
spectrum-based and mutation-based families.

The contributions of this paper include:
• A replication study that repeats and extends previous exper-

iments, comparing 7 fault localization techniques on 3242
artificial faults. We mitigated threats to internal validity by
re-implementing all the techniques in a single infrastructure
and using the same experimental scripts, faults, and other ex-
perimental variables. Our results confirm 70% of previously-
reported comparisons (such as “Ochiai is better than

1

Tarantula” [30], [31], [37], [51], [57]) and refute 30%.
• A new study that compares the 7 fault localization tech-

niques on 323 real faults. The ranking does not agree
with any previous results from artificial faults! 40% of the
previous results are reversed; for example, Metallaxis is
better than Ochiai on artificial faults [39], but Ochiai is
better than Metallaxis on real faults. The other 60% of the
results are statistically insignificant; for example, DStar is
better than Tarantula on artificial faults [21], [30], [51], but
on real faults there is no significant difference between the
two techniques. These results indicate that artificial faults
(e.g., mutants) are not an adequate substitute for real faults,
for the task of evaluating a fault localization technique.

• An explication of the design space of fault localization
techniques. Previous work made different, sometimes undoc-
umented, choices for factors other than the formula. We ex-
haustively evaluated all these factors. We found that formula,
which most papers have exclusively focused on, is one of
the least important factors. We also added new factors to the
design space, thereby creating new hybrid fault localization
techniques that combine the best of previous techniques.

• An evaluation of all the FL techniques generated by the
design space, with respect to how well they localize real
faults. We found new techniques that are statistically
significantly better than any previous technique, though
with small effect sizes. More importantly, they do much
better in terms of including the correct answer (the actual
faulty statement) within the top-5 or top-10 statements of
their output. Our results indicate how to make the most
of current approaches, and they indicate that significant
advances in fault localization will come from focusing on
different issues than in the past.

• Our methodology addresses multi-line faults, faults of
omission, and other real-world issues, both in the design
of FL techniques and in the experimental protocol for
evaluating them.

The rest of the paper is structured as follows. Section II
describes the traditional approaches that have been commonly
used to evaluate fault localization techniques and our extensions
to make them applicable to real faults. Section III describes the
subjects of investigation, including the studied fault localization
techniques and the used programs, real faults, and test suites.
Sections IV to VII describe our four empirical studies in detail.
More specifically, section IV reports on our replication study
using artificial faults, section V reports on our replication study
using real faults, section VI defines and explores a design space
for fault localization techniques, and section VII proposes and
evaluates new fault localization techniques. Section VIII dis-
cusses threats to validity regarding all four studies. Section IX
describes related work, section X highlights lessons learned,
and section XI concludes. An appendix contains tables and
figures that support claims made in the body of the paper.

This paper is an extended version of a conference paper [41].
It adds more examples, data, and analyses.

II. EVALUATING FAULT LOCALIZATION

Many studies have evaluated and compared FL techniques
[3]–[6], [20], [21], [30], [31], [36], [37], [39], [45], [51], [57].
Table I summarizes these studies in terms of the programs
used, the number of real and artificial faults considered, and the
resulting ranking of techniques. The majority of studies revolve
around the same set of programs and use largely artificial faults.
This section explains how a fault localization technique’s output
can be evaluated.

A. Evaluation metrics

A fault localization technique T takes as input a program P
and a test suite with at least one failing test, and it produces
as output a sorted list of suspicious program locations, such as
lines, statements, or declarations. For concreteness, this paper
uses statements as the locations, but the ideas also apply to
other levels of granularity.

Given a fault localization technique T and a program P of
size N with a single known defective statement d, a numerical
measure of the quality of the fault localization technique can
be computed as follows [42], [47]: (1) run the FL technique
to compute the sorted list of suspicious statements; (2) let n
be the rank of d in the list; (3) use a metric proposed in the
literature to evaluate the effectiveness of a FL technique, e.g.,
LIL [36], T-score [32], Expense [20], or EXAM score [50].1

For concreteness this paper uses EXAM score, which is the
most popular metric, but our results generalize to the others.

LIL [36] measures the effectiveness of a fault localization
technique for automated program repair. T-score [32] computes
the percentage of components that a developer would not
have to inspect before finding the first faulty one. By contrast,
Expense [20] and EXAM score [50] compute the percentage
of components that a developer would have to inspect until
finding the first faulty one—that is, the cost of going through
the ranked list to find the faulty component. Both Expense and
EXAM score compute n/N in which N is the total number of
executed statements for Expense, and N is the total number of
statements in the program for EXAM score. The score ranges
between 0 and 1, and smaller numbers are better.

B. Extensions to fault localization evaluation

The standard technique for evaluating fault localization,
described in section II-A, handles defects that consist of a
change to one executable statement in the program, as is the
case for mutants. To evaluate fault localization on real faults,
we had to extend the methodology to account for ties in the
suspiciousness score, multi-line statements, multi-statement
faults, faults of omission, and defective non-executable code
such as declarations.

1These scores are different than the “suspiciousness score” that the fault
localization technique may use for constructing the sorted list of suspicious
program statements.

2

TABLE I
SELECTED FAULT-LOCALIZATION STUDIES. OUR RESULTS (BOTTOM) UPHOLD PREVIOUS RESULTS ON ARTIFICIAL FAULTS BUT NOT ON REAL FAULTS.

Ref. Lang. Ranking (from best to worst) Programs Artif. Real
kLOC faults faults

[20] C Tarantula Siemens 3 122 x -
[4] C Ochiai, Tarantula Siemens 3 120 x -
[3] C Ochiai, Tarantula Siemens, space 12 128 x 34
[5] C Barinel, Ochiai, Tarantula Siemens, space, gzip, sed 31 141 x 38
[6] C Tarantula Concordance 2 200� 13
[37] C Op2, Ochiai, Tarantula Siemens, space 12 132 x 32
[39] C Metallaxis, Ochiai Siemens, space, flex, grep, gzip 45 859 x,� 12
[31] C Ochiai, Tarantula Siemens, space, NanoXML, XML-Security 41 164 x 35
[51] C DStar, Ochiai, Tarantula Siemens, space, ant, flex, grep, gzip, make, sed, Unix 155 436 x 34
[36] C MUSE, Op2, Ochiai space, flex, grep, gzip, sed 54 11 x 3
[57] Java Ochiai, Tarantula JExel, JParsec, Jaxen, Commons Codec, Commons Lang, Joda-Time 108 1800� -
[21] C &

Java
DStar, Tarantula printtokens, printtokens2, schedule, schedule2, totinfo, Jtcas, Sorting,

NanoXML, XML-Security
32 104 x -

[30] C DStar, Ochiai, Tarantula Siemens, space, NanoXML, XML-Security 41 165 x 35

this Java Metallaxis, Op2, DStar, Ochiai, Barinel,
Tarantula, MUSE

JFreeChart, Closure, Commons Lang, Commons Math, Joda-Time 321 3242� -

this Java {DStar ≈ Ochiai ≈ Barinel ≈ Tarantula},
Op2, Metallaxis, MUSE

JFreeChart, Closure, Commons Lang, Commons Math, Joda-Time 321 - 323

x represents manually-seeded artificial faults, and � represents mutation-based artificial faults. The Siemens set is printtokens, printtokens2, replace, schedule,
schedule2, tcas, and totinfo. The Unix set is Cal, Checkeq, Col, Comm, Crypt, Look, Sort, Spline, Tr, and Uniq.

1) Ties in the suspiciousness score: Most fault localization
techniques first compute a suspiciousness score for each
program statement, and then sort statements according to
suspiciousness score in order to produce a ranked list of
program statements, which is the FL technique’s output. When
two statements have the identical suspiciousness score, then
an arbitrary sorting choice could affect the EXAM score.

We compute the expected EXAM score, assuming that the
sorting function breaks ties arbitrarily. That is, when multiple
statements have the same suspiciousness score, then all of them
are treated as being the nth element in the output, where n is
their average rank [47], [52].

2) Multi-line program statements: A single statement may
span multiple lines in a program. Some FL techniques give
reports in terms of lines and some in terms of statements. To
permit consistent comparison, our methodology converts them
all to report in terms of program statements. Any FL tool report
that is within a statement is automatically converted to being a
report about the first line of the smallest enclosing statement.
In our experiments, there were never duplicate reports for a
single statement, but it would be possible to remove all but
the first one.

3) Multi-statement faults: Existing evaluation metrics, such
as the EXAM score, are limited as they assume that a single
program statement is defective. This assumption holds for
mutants and often other artificial faults. However, 76% of real-
world bug fixes span multiple statements [23]. To evaluate
a fault localization technique on a multi-statement fault, we
need to define when the fault is considered to be localized:
is it sufficient for the technique to propose any defective
statement, or must it propose all defective statements? Rather
than making assumptions about a particular debugging scenario
(e.g., experienced developer vs. novice developer vs. automated
repair tool), our study evaluates the fault localization techniques
for three debugging scenarios:

1) Best-case: Any one defective statement needs to be local-
ized to understand and repair the defect.

2) Worst-case: All defective statements need to be localized
to understand and repair the defect.

3) Average-case: 50% of the defective statements need to be
localized to understand and repair the defect.

Note that these debugging scenarios are equivalent for single-
statement faults. All of our the experimental results are
generally consistent for the three scenarios.

4) Faults of omission: In 30% of cases [23], a bug fix
consists of adding new code rather than changing existing code.
The defective program contains no defective statement: every
expression, statement, and declaration in the program is correct
but some are missing. Previous studies on the effectiveness of
fault localization have not reported whether and how this issue
was addressed. Wong et al. [15] suggested that analyzing the
code around statements with a high suspiciousness score, and
noticing unexpected executions of some statements, could be a
first step to identify a fault of omission. In the following, we
describe our methodology to deal with this issue.

A FL technique communicates with the programmer in terms
of the program’s representation: statements of source code. A
FL technique is most useful if it identifies the statement in the
source code the programmer needs to change.Therefore, when
a bug fix involves inserting code, the technique should report
the textually immediately following statement. Ideally, this is
the next statement, which is exactly where the programmer
should insert the code. However, many FL techniques have a
serious limitation: they do not rank or report lines consisting of
scoping braces, such as the final } of a method definition, even
though that would be the best program location to report when
the insertion is at the end of a method. To avoid disadvantaging
such techniques, we also count the current last statement as a
correct report. Figure 1 shows examples.

A more serious complication is that the developer inserted

3

1 public boolean updateState(State s) {
2+ if (!flag)
3+ return false;
4 setState(s); // goal report
5 return true;
6 }

1 public boolean updateState(State s) {
2+ if (flag)
3 setState(s); // goal report
4 return true;
5 }

1 public boolean updateState(State s) {
2+ if (flag) {
3 setState(s); // goal report for "if (flag)"
4 otherStatement();
5 return true; // goal report for "return false"
6+ }
7+ return false;
8 }

Fig. 1. Faults of omission and goal statements for reporting them. For the
third example, line 8 (the final }) would be a better goal report for return
false;, but current FL techniques do not report it and so we count the
preceding return true; statement as also a correct report.

the new code at some statement, but other statements might be
equally valid choices for a bug fix. Consider the following ex-
ample, drawn from the patch for Closure-15 in Defects4J [23]:

1 if (n.isCall() && ...)
2 return true;
3 if (n.isNew() && ...)
4 return true;
5+ if (n.isDelProp())
6+ return true;
7 for (Node c = n.getFirstChild(); ...) {
8 ...

The programmer could have inserted the missing conditional
before line 1, between lines 2 and 3, or where it actually was
inserted. A FL technique that reports any of those statements is
just as useful as one that reports the statement the programmer
happened to choose.

For every real fault of omission, we manually determined
the set of candidate locations at which a code block could
be inserted to fix the defect (lines 1, 3, and 5 in the example
above). We consider a fault localization technique to identify
an omitted statement as soon as any candidate location appears
in the FL technique’s output. (A multi-statement fault may
require localizing multiple omitted or fixed statements.)

5) Faults in non-ranked statements: Some fault localization
techniques have limitations in that they fail to report some
statements in the program. Here are examples:
Non-executable code (declarations) All the fault localization

techniques that we evaluate have a weakness in that they
only output a list of suspicious statements; they never report
a declaration in their list of suspicious locations.
However, a non-executable declaration can be faulty,
such as a supertype declaration (in Java, an extends or
implements clause in a class declaration) or the data
type in a field or variable declaration. In the Defects4J
database of real-world faults [23], 4% of real faults involve
some non-executable code locations and 3% involve only
non-executable code locations.

Non-mutatable statements: the mutation-based FL tech-
niques that we evaluate have a weakness in that they
only output a list of mutatable statements. Some faulty,
executable statements are not mutatable due to compiler
restrictions. For example, deleting or incorrectly moving a
break or return statement might cause compilation errors
due to the violation of control-flow properties enforced
by the compiler. In the Defects4J database of real-world
faults [23], 10% of real faults involve a non-mutatable yet
executable statement.

Previous studies on the effectiveness of fault localization
have not considered faults in non-ranked statements. We ensure
that the ranked list of statements produced by a FL technique
always contains every statement in the program, by adding any
missing statement at the end of the ranking. If a faulty statement
is missing from the list of suspicious statements, we assign
it a rank equal to the average rank of all program statements
that do not appear in the list of suspicious statements.

For example, consider a 1000-statement program. If a FL
technique ranks 900 statements, but misses the faulty statement,
that statement is assigned a rank of 950, which is the expected
rank of that statement, if the remaining 100 statements were
appended to the ranking in arbitrary order.

6) Multiple defects: Large real-world programs, like those
in Defects4J, almost always contain multiple defects coexisting
with each other. However, no action is needed to correct for this
when performing fault localization, as long as the failing tests
only reveal one of these defects (as is the case in Defects4J).

III. SUBJECTS OF INVESTIGATION

A. Fault localization techniques

This paper evaluates 2 families of fault localization tech-
niques: spectrum-based fault localization (SBFL techniques
for short) [4], [20], [37], [51], which is the most studied and
evaluated FL technique; and mutation-based fault localization
(MBFL techniques for short), which is reported to significantly
outperform SBFL techniques [36], [39]. A survey paper lists
other types of fault localization techniques [52].

Most fault localization techniques, including all that we
examine in this paper, yield a ranked list of program statements
sorted by the suspiciousness score S(s) of the statement s. A
high suspiciousness score means the statement is more likely
to be defective—that is, to be the root cause of the failures.

1) Spectrum-based FL techniques: Spectrum-based fault
localization techniques [4], [20], [37], [51] depend on statement
execution frequencies. The more often a statement is executed
by failing tests, and the less often it is executed by passing
tests, the more suspicious the statement is considered.

This paper considers 5 of the best-studied SBFL techniques
[52]. In the following, let totalpassed be the number of passed
test cases and passed(s) be the number of those that executed
statement s (similarly for totalfailed and failed(s)).

4

Tarantula [20]: S(s) = failed(s)/totalfailed
failed(s)/totalfailed+passed(s)/totalpassed

Ochiai [3]: S(s) = failed(s)√
totalfailed·(failed(s)+passed(s))

Op2 [37]: S(s) = failed(s)− passed(s)
totalpassed+1

Barinel [5]: S(s) = 1− passed(s)
passed(s)+failed(s)

DStar† [51]: S(s) = failed(s)∗

passed(s)+(totalfailed−failed(s))
†variable ∗ > 0. We chose ∗ = 2, as that value is most thoroughly explored
by Wong et al. [51].

2) Mutation-based FL techniques: Mutation-based fault
localization techniques [36], [39] extend SBFL techniques
by considering not just whether a statement is executed, but
whether that statement’s execution is important to the test’s
success or failure—that is, whether a change to that statement
changes the test outcome. The more often a statement s affects
failing tests, and the less often it affects passing tests, the more
suspicious the statement is considered.

The key idea of MBFL is to assign suspiciousnesses to
injected mutants, based on the assumption that test cases
that kill mutants carry diagnostic power. A test case kills a
mutant if executing the test on the mutant yields a different test
outcome than executing it on the original program. Our study
considered two well-known MBFL techniques: MUSE [36] and
Metallaxis [39]. Each one generates a set of mutants mut(s) for
each statement s, assigns each mutant a suspiciousness M(m),
and aggregates the M(m) to yield a statement suspiciousness
score S(s).

MUSE’s ranking [36] can be obtained by setting M(m) =
failed(m)− f2p

p2f · passed(m) where failed(m) is the number of
failing tests that passed with m inserted, and f2p is the number
of cases in the whole program where a mutant caused any
failing test to pass. passed(m) and p2f are defined similarly.
MUSE sets S(s) = avgm∈mut(s) M(m). The MUSE approach
is based on the assumption that mutating faulty statements is
more likely than mutating correct statements to cause failing
tests to pass, and mutating correct statements is more likely
than mutating faulty statements to cause passing tests to fail.

Metallaxis [39] uses the same suspiciousness formula as
Ochiai: Ochiaif (the superscript f denoting a reference to the
formula rather than the SBFL technique) for the suspiciousness
of each mutant:

M(m) =
failed(m)√

totalfailed · (failed(m) + passed(m))

where failed(m) is the number of failing tests whose outcomes
are changed at all by the insertion of m (e.g., by failing
at a different point or with a different error message) and
totalfailed is the number of tests that fail on the original test
suite (passed(m) and totalpassed are defined similarly). Note
that this definition of killing a mutant is less restrictive than
MUSE’s: whereas MUSE only considers a failing test to kill
a mutant if the mutant causes the test to pass, Metallaxis
detects any change in the test’s behavior. The suspiciousness

of statement s is S(s) = maxm∈mut(s) M(m).
Since MBFL requires running the test suite once per possible

mutant, it is much more expensive than SBFL: even with
the optimizations described in section X-C that reduced the
runtime by more than an order of magnitude, running every
test necessary to compute every MBFL technique’s score on
all 3637 faults took over 100,000 CPU-hours.

3) Implementation: We re-implemented all the fault local-
ization techniques using shared infrastructure. This ensures
that our results reflect differences in the techniques, rather than
differences in their implementations. We collected coverage
data using an improved version of GZoltar [9]. We collected mu-
tation analysis data from a tool built upon the Major mutation
framework [22] (v1.2.1), using all mutation operators it offers:
interchanging arithmetic/comparison operators, removing parts
of compound Boolean expressions, replace expressions with
constants (e.g., 0 or null), deleting statements.

B. Programs

We used the programs in the Defects4J [23] dataset (v1.1.0),
which consists of 395 real faults from 6 open source projects:
JFreeChart (26 faults), Google Closure compiler (133 faults),
Apache Commons Lang (65 faults), Apache Commons Math
(106 faults), Mockito (38 faults), and Joda-Time(27 faults).
For each fault, Defects4J provides faulty and fixed program
versions with a minimized change that represents the isolated
bug fix. This change indicates which lines in a program are
defective.

1) Patch minimization: Each fault in Defects4J consists of a
faulty and a fixed version of a program; the difference between
these two versions is the patch that a programmer wrote to
fix the defect. We used both automated analysis, such as delta
debugging [58], and manual analysis to minimize the patch. The
result was the smallest change or patch that corrects the fault
in the way the programmer intended. Examples of changes that
this process removed from the patches are refactorings such as
renamings, and new features that the programmer added in the
same commit as a bug fix. In some cases our manual analysis
made a patch larger than the minimum achievable. For example,
if a patch had added a function and a call to the function, then
our automated analysis would find a smaller change that just
added the call to the function, treating adding the function
(without calling it) as a meaning-preserving refactoring. Three
authors of this paper independently minimized the patches, and
agreed on a patch that preserved the spirit of the programmer’s
fix.

Given a minimized patch, we used an automated anal-
ysis to obtain all removed, inserted, and changed lines,
but ignoring changes to declarations without an initial-
izer, addition and removal of compound statement delim-
iters (curly braces {}), annotations, and import statements.
These statements do not affect the program’s algorithm
or are trivial to add, and therefore a FL tool should not
report them. Any other statement modified by the patch
is a defective statement that a FL tool should report.

5

TABLE II
AVERAGE NUMBER OF TEST CASES PER PROGRAM AND PER TYPE OF FAULT.

Artificial Faults Real Faults
Project Total Pass Fail Total Pass Fail

Chart 122 118 4 185 181 4
Closure 3187 3087 100 3351 3348 3
Lang 118 115 3 94 92 2
Math 295 286 9 172 170 2
Mockito 770 738 32 671 668 3
Time 2826 2815 11 2525 2522 3

2) Fault-relevant classes: To reduce CPU costs, we applied
each fault localization technique only to the fault-relevant
classes. A fault-relevant class for a defect is any class that
is loaded by any fault-triggering test for that defect. This
optimization is sound, and a programmer could use it with
little or no effort when debugging a failure. We did not use
slicing, impact analysis, or other approaches to further localize
or isolate the defective code.

For each fault that we localized, we obtained the set of
fault-relevant classes as follows. First, we used Defects4J’s
infrastructure to independently execute each fault-triggering test
and monitor the class loader. This yielded a set of all loaded
classes of which we retained only the project-related classes
(ignoring classes from libraries and the runtime environment).
This set of fault-relevant classes is a sound approximation of
the set of classes that contain a defect.

C. Test suites

All investigated fault localization techniques require, as an
input, at least one test case that can expose the fault. For
each real fault, Defects4J provides a developer-written test
suite containing at least one such fault-triggering test case. To
verify that each artificial fault has at least one fault-triggering
test case as well, we executed the corresponding developer-
written test suite and discarded the 23% of artificial faults that
were not exposed by any test case. This is on the same order
as the results of a study [46] finding that 16% of mutants
were undetectable, 45% of which do not change the program
semantics.

Table II shows, per program, the average number of test
cases that load any class containing a defective statement, and
how many of them pass or fail with that defect. Artificial and
real faults have similar numbers of passing and failing tests,
confirming that our results are not confounded by different
effective test suite sizes for real and artificial faults.

Table II shows, per program, the average number of test
cases that load any class containing a defective statement, and
how many of them pass or fail with that defect. Artificial and
real faults have similar numbers of passing and failing tests,
confirming that our results are not confounded by different
effective test suite sizes for real and artificial faults.

IV. REPLICATION: ARTIFICIAL FAULTS

One goal of our work is to repeat previous evaluations of
fault localization techniques on artificial faults, using shared
infrastructure between all of the techniques to reflect differences

TABLE III
HOW WE SELECTED FAULTS FOR OUR REPLICATION STUDIES.

faults
Action Real Artif.

Consider all faults from Defects4J 395 5417
Every real fault must correspond to some artificial fault

Discard faults with deletion-only fix 386 5417
Discard undetectable artificial faults 358 3723

Impose 100,000+ hour timeout 323 3242

Final 323 3242

in the techniques, not in their implementations. This section
describes the techniques and faults we studied, our methodology
for assessing them, and the results of the comparison.

A. Methodology

1) Research questions:

RQ 1: Which FL techniques are significantly better than which
others, on artificial faults?

RQ 2: Do the answers to RQ1 agree with previous results?
(For example, “Ochiai outperforms Tarantula” [4],
“Metallaxis outperforms Ochiai” [39].)

2) Data: artificial faults: We used the Major tool [27] to
generate artificial faults, by mutating the fixed program versions
in Defects4J.

In order to compare real to artificial faults, we need to
determine, for each real fault, which artificial faults can be
sensibly compared to it. We could have generated an artificial
fault for every possible mutation of every statement in the
program, but many of these artificial faults would be in parts
of the program completely unrelated to the corresponding
real fault, where fault localization might be easier or harder;
in addition, the cost ofr unning our experiments would be
unacceptably high. Therefore, we only generated artificial faults
for formerly-defective statements of the fixed program version—
that is, those that would need to be modified or deleted to
reintroduce the real fault.

In more detail: each real fault in Defects4J is associated
with a faulty and a fixed program version. For each of these
pairs of program versions, Defects4J provides a patch which,
when applied to the fixed version, would reintroduce the real
fault. We call the statements modified or deleted by this patch
the fixed statements of the real fault. We generated artificial
faults by mutating the fixed statements.

Our methodology of comparing real faults to artificial faults
requires that for every real fault, there is at least one artificial
fault for comparison. Overall, we discarded 37 real faults
that did not fit this criterion, as shown in table III. First, we
discarded 9 real faults whose fixes only deleted erroneous code,
so there were no fixed statements and no artificial faults can
be generated. Then, we discarded artificial faults that are not
detected by any tests; we also discarded artificial faults that
do not compile (e.g., because a variable is no longer definitely
assigned) or cause the test suite to time out (e.g., because they
introduce infinite loops). This discarded all artificial faults for

6

28 real faults, so we removed those 28 real faults from the
study.

Some faults that do not introduce an infinite loop nonetheless
take a very long time during mutation testing. We ran our
experiments for about 100,000 hours, and discarded faults
whose MBFL analysis had not yet completed.

The output of this process was a set of 3242 artificial faults,
corresponding to 323 different real faults, each artificial fault
existing in a fixed statement of the corresponding real fault
and detectable by the same developer-written test suite. We
computed the EXAM score for each artificial fault and FL
technique.

3) Experimental design: We answered our research ques-
tions through the following analyses:
RQ 1: Which FL techniques are significantly better than

which others, on artificial faults? We used three independent,
complementary evaluation metrics to rank FL techniques
from best to worst:

1) mean EXAM score across all artificial faults.
2) tournament ranking: comparing the sets of EXAM scores

of each pair of techniques, awarding 1 point to the winner
if it is statistically significantly better, and ranking by
number of points.

3) mean FLT rank: using each fault to rank the techniques
from 1 to 7, and averaging across all artificial faults.
“FLT” stands for “fault localization technique”.

RQ 2: Do the answers to RQ1 agree with previous results? For
each pair of techniques compared by prior work (table I),
we determined whether the two techniques’ distributions
of EXAM scores are significantly different.

For all statistical comparisons between any two techniques in
this paper, we performed a paired t-test for two reasons. First,
our experiments have a matched pairs design—fault localization
results are grouped per defect. Second, while the exam scores
are not normally distributed, the differences between the exam
scores of any two techniques are close to being normally
distributed. Given that we have a large sample size and no
serious violation of the normality assumption, we chose the
t-test for its statistical power.

B. Results

1) Best FL technique on artificial faults: The left-hand
columns in table IV show the FL technique rankings produced
by our three metrics. According to our tournament ranking,
Metallaxis is the best technique on artificial faults, being
statistically significantly better than all other techniques.

All three metrics we used are perfectly consistent with each
other, except that MUSE does best by mean FLT rank and
worst by the other two metrics. This is because its distribution
of scores is bimodal: as fig. 2 shows, although it usually
does better than other techniques, it often does much worse.
Whether it is better or worse is tightly correlated with whether
a fault is caused by a “reversible” mutant (a mutant that can
be canceled by a second mutant, such as a&&b → a||b, but
not a&&b → true). Recall that MUSE assumes that mutating

TABLE IV
FAULT LOCALIZATION TECHNIQUES SORTED BY AVERAGE PERFORMANCE.

Artificial Faults Real Faults
Technique EXAM # Worse Technique EXAM # Worse

Metallaxis 0.0449 6 DStar 0.0404 4
Op2 0.0533 5 Ochiai 0.0405 4
DStar 0.0544 4 Barinel 0.0416 3
Ochiai 0.0548 3 Tarantula 0.0429 2
Barinel 0.0596 2 Op2 0.0476 2
Tarantula 0.0602 1 Metallaxis 0.0753 1
MUSE 0.0787 0 MUSE 0.2061 0

(a) Techniques sorted by mean EXAM score or tournament ranking.

Artificial Faults Real Faults
Technique FLT rank Technique FLT rank

MUSE 3.05 Metallaxis 3.57
Metallaxis 3.08 Op2 3.73
Op2 3.68 DStar 3.73
DStar 3.91 Ochiai 3.78
Ochiai 4.04 Barinel 4.14
Barinel 5.12 Tarantula 4.16
Tarantula 5.12 MUSE 4.89

(b) Techniques sorted by mean FLT rank

a faulty statement will sometimes cause a failing test to pass.
This is why it does well on artificial faults caused by reversible
mutants: there exists a mutant which will repair the fault,
thus causing all failing tests to pass. This mutant will be
located in the faulty statement, and it will achieve the maximum
possible suspiciousness, putting that statement near the top
of the ranking and explaining MUSE’s excellent performance
on the majority of artificial faults. Irreversible mutants are
responsible for the cluster of large scores in fig. 2, explaining
why MUSE is best by mean FLT rank but worst by mean
EXAM score.

MUSE’s success is so tightly connected to the fault’s
reversibility because of its very restrictive definition for whether
a failing test kills a mutant (the mutant must cause the test
to pass). This criterion is very rarely met, except for when a
mutant reverses an artificial fault. If MUSE used a different
interaction (kill)-definition, it would lose its pinpoint accuracy
on reversible faults, but it would also have fewer large outlier
scores on irreversible faults, as shown in fig. 4.

As shown by the peaks for the dotted lines in fig. 2, MBFL
techniques very often rank the artificially-faulty statement in
the top 5. One reason for this is that many artificial faults
we generate are caused by “reversible” mutants: mutants
that can be exactly canceled by applying a second mutant
(e.g., a+b→a-b→a+b). Reversible artificial faults guarantee
that MBFL will consider some mutant in the faulty statement
that fixes every failing test and that receives a very high
suspiciousness score.

2) Agreement with previous results: For each of the 10 pairs
of techniques that the prior work in table I has compared, we
performed a two-tailed t-test comparing the two techniques’
scores for artificial faults. The left column of table V shows
the results of prior comparisons, and the middle columns show
our results. Notable features include:

Small effect sizes. All 10 pairs of techniques have statis-
tically significant differences: the “agree?” column of table V

7

is unparenthesized. However, the practical differences (that
is, effect sizes) are all small or negligible: the “d” column is
parenthesized. All spectrum-based techniques (except Tarantula)
are nearly indistinguishable in fig. 2. We only see statistical
significance because of our large number of artificial faults.

Consistency with prior SBFL-SBFL comparisons. Our
results agree with all previous comparisons between SBFL
techniques, except the claim that Barinel outperforms Ochiai,
which our results contradict. The difference may be due
to our different set of faults, or differences between our
implementation and that in [5].

Disagreement with prior SBFL-MUSE comparisons.
Prior comparisons found MUSE superior to SBFL techniques.
Our results do not support that finding: although MUSE is
better on many artificial faults, it does much worse on others.
Overall, the differences are practically insignificant.

V. REPLICATION: REAL FAULTS

A. Subjects

We evaluated the same techniques, programs, and test suites
as described in section III, except that instead of evaluating each
technique on the 3242 artificial faults described in section IV,
we evaluate them on the corresponding 323 real faults.

B. Methodology

Our methodology is exactly like that described in sec-
tion IV-A, except evaluated on real faults, to answer:
RQ 3: Which FL techniques are significantly better than which

others, on real faults?
RQ 4: Do the answers to RQ3 agree with previous results?

C. Results

1) Best FL techniques on real faults: The right-hand
columns in the top part of table IV show the FL technique
rankings for real faults produced by either the mean EXAM
score metric or the tournament ranking metric. The mean
FLT rank (bottom part of table IV) gives almost the same
ranking, except that Metallaxis ranks first instead of nearly last.
Metallaxis usually has slightly higher scores than any other
technique (as shown in fig. 2), giving it a good FLT rank, but it
also has more extreme outliers than SBFL techniques, greatly
damaging its mean EXAM score.

2) Agreement with previous results: The right-hand columns
of table V compare our results on real faults to the results of
the studies we replicated. Notably:

Insignificant differences between SBFL techniques. All
effect sizes are negligible: column “d” is italicized.

Practical significance: MUSE performs poorly. The only
practically significant differences show that MUSE performs
poorly on real faults (see fig. 2). This is due to almost no real
faults being reversible by a single mutant (see section IV-B1).

Independence of debugging scenario. Our conclusions
hold in all debugging scenarios, as shown in table XVII in the
appendix.

D. Comparison to artificial faults

The most important feature of tables IV and V is that there
is no significant relationship between the results for real
and artificial faults. This suggests that artificial faults are not
useful for the purpose of determining which FL technique is
best at localizing mistakes that programmers actually make.

Another notable feature is that while Metallaxis performs
best on artificial faults, it does worse than spectrum-based
techniques on real faults. One reason for this may be that
10% of real-world faults involve non-mutatable statements,
which appear last in mutation-based techniques’ suspiciousness
rankings. These outlier scores greatly degrade the technique’s
mean score. On real faults, Metallaxis has the best mean FLT
rank but one of the worst mean EXAM scores.

These findings are again independent of the debugging
scenario as shown in table XVII in the appendix.

Perhaps the results are different for specific types of faults,
such as single-line faults or faults of omission. Tables VI to VIII
repeat the analysis of RQ1, restricted to different categories
of real faults. Again, there are no statistically significant
relationships between rankings on real and artificial faults,
even for single-line faults—which one would expect to be the
most similar to mutants—or faults of omission, on which some
FL techniques might perform poorly.

E. Controlling for number of samples

Table V shows statistically significant results for artificial
faults, but mostly insignificant results on real faults. It is
possible that the results are insignificant because there are
so few data points—there are many more artificial than real
faults. To investigate this, we averaged FL techniques’ scores
over the artificial faults that correspond to each single real
fault, so there are only 323 datapoints for artificial faults.
The results for artificial faults remained statistically significant
(table XVIII), showing that having 323 data points does not
prevent statistically significant results. Furthermore, the effect
sizes for real faults are negligible for SBFL comparisons, and
the confidence intervals are tight (table V). Artificial faults
are not a good proxy for any single technique: the correlation
between each technique’s performance on artificial faults and
real faults is at most moderate—mostly weak or negligible
table XX.

VI. EXPLORING A DESIGN SPACE

To better understand these differences in performance and
their causes, we developed a design space that encompasses
all of these techniques, and evaluated the techniques in that
space on our overall set of 395 real faults.

A. Subjects

All 7 of the techniques described in section III-A have the
same basic structure:
1) For each program element (i.e., statements or mutants),

count the number of passing/failing tests that interact with
(i.e., execute or kill) that element.

8

TABLE V
PREVIOUSLY-REPORTED COMPARISONS, AND OUR RESULTS FOR THOSE COMPARISONS, IN THE BEST-CASE DEBUGGING SCENARIO.

The conclusions are the same for all debugging scenarios (table XVII). Emphasis on whether our study agrees indicates p-value: p<0.01, p<0.05, (p≥0.05).
Emphasis on Cohen’s d indicates effect size: large, medium, (small), (negligible). The column “95% CI” gives the confidence interval for the difference in
means. The column “(b – eq – w)” gives the counts for: per defect, was the winner better, equal to, or worse compared to the loser, ignoring the magnitude of

the difference.
Previous comparisons Our study on artificial faults Our study on real faults

Winner > loser agree? d (eff. size) 95% CI (b – eq – w) agree? d (eff. size) 95% CI (b – eq – w)

Ochiai > Tarantula [30], [31], [37], [51], [57] yes (-0.24) [-0.006, -0.005] (1443–1796–3) (insig.) (-0.1) [-0.004, 0.000] (75–236–12)
Barinel > Ochiai [5] no (0.26) [0.004, 0.005] (3–1799–1440) (insig.) (0.1) [-0.000, 0.003] (12–237–74)
Barinel > Tarantula [5] yes (-0.05) [-0.001, -0.000] (9–3233–0) (insig.) (-0.06) [-0.003, 0.001] (1–322–0)
Op2 > Ochiai [37] yes (-0.1) [-0.002, -0.001] (597–2627–18) no (0.14) [0.002, 0.013] (65–226–32)
Op2 > Tarantula [36], [37] yes (-0.24) [-0.008, -0.006] (1522–1702–18) (insig.) (0.09) [-0.001, 0.011] (81–208–34)
DStar > Ochiai [30], [51] yes (-0.11) [-0.001, -0.000] (342–2898–2) (insig.) (-0.02) [-0.001, 0.001] (29–283–11)
DStar > Tarantula [21], [30], [51] yes (-0.24) [-0.007, -0.005] (1454–1785–3) (insig.) (-0.1) [-0.005, 0.000] (75–233–15)

Metallaxis > Ochiai [39] yes (-0.05) [-0.017, -0.002] (2072–240–930) no (0.2) [0.013, 0.043] (173–19–131)
MUSE > Op2 [36] no (0.11) [0.017, 0.033] (2030–132–1080) no 0.78 [0.131, 0.173] (119–3–201)
MUSE > Tarantula [36] no (0.08) [0.011, 0.026] (2254–81–907) no 0.84 [0.137, 0.178] (116–2–205)

Artificial faults Real faults

0.0

0.2

0.4

0.6

1.00000.10000.01000.00100.0001 1.00000.10000.01000.00100.0001
EXAM score (log scale)

D
en

si
ty

FL technique: Barinel DStar Metallaxis MUSE Ochiai Op2 Tarantula Family: MBFL SBFL

Artificial faults Real faults

0.0

0.2

0.4

0.6

0.8

1 10 100 1000 10000 1 10 100 1000 10000
Absolute score (log scale)

D
en

si
ty

FL technique: Barinel DStar Metallaxis MUSE Ochiai Op2 Tarantula Family: MBFL SBFL

Fig. 2. Distributions of EXAM and absolute scores for all FL techniques, considering the best-case debugging scenario and artificial vs. real faults. The
absolute score is the first location of any defective statement in the suspiciousness ranking of program statements, computed by a fault localization technique.

2) Calculate a suspiciousness for each element, by applying a
formula to the numbers of passing/failing tests that interact.

3) If necessary, group those elements by statement, and
aggregate across the elements’ suspiciousnesses to compute
the statement’s suspiciousness.

4) Rank statements by their suspiciousness.

We developed a taxonomy for describing any of these
techniques in terms of 4 different parameters:

Formula: the formula used to compute elements’ suspicious-
ness values (e.g., Ochiaif)

Total Definition: the method for weighting passing/failing test
interactions in the formula

Interaction Definition: what it means for a test to interact
with an element (i.e., coverage for SBFL, killing for MBFL)

Aggregation Definition: for MBFL, the way of aggregating
elements’ suspiciousness by statement (e.g., max, average)

These parameters are described in more detail below. For

SBFL techniques, the “elements” are simply statements. A test
interacts with a statement by executing it, and no aggregation
of elements by statement is necessary, so the only two relevant
parameters are formula and total definition.

The following subsections detail the possible values for each
of these parameters. By taking all sensible combinations of
them, we arrive at a design space containing 156 techniques.

1) Formula: We consider the formulas for the SBFL
techniques Tarantula, Ochiai, DStar, Barinel, and Op2, as well
as the formula used by MUSE, which can be cast as

S(s) = failed(s)− totalfailed
totalpassed · passed(s) .

When combined with the appropriate values of the other
parameters, this formula produces MUSE’s statement-ranking.

2) Total definition: Almost all of the prior FL techniques
make use of totalpassed and totalfailed in their suspiciousness
formulas, representing the numbers of passing/failing tests.
MUSE, though (recall from section III-A2), instead refers to
p2f and f2p, representing the number of mutants killed by

9

TABLE VI
TECHNIQUES SORTED BY VARIOUS METRICS CONSIDERING ONLY

SINGLE-LINE FAULTS THAT WERE NOT FAULTS OF OMISSION, AND ON
THEIR CORRESPONDING ARTIFICIAL FAULTS.

Artificial Faults Real Faults
Technique EXAM Score Technique EXAM Score

Metallaxis 0.0521 DStar 0.0518
Op2 0.0909 Ochiai 0.0519
DStar 0.0927 Barinel 0.0532
Ochiai 0.0936 Op2 0.0542
Barinel 0.1005 Tarantula 0.0589
Tarantula 0.1005 Metallaxis 0.1149
MUSE 0.1040 MUSE 0.2387

(a) Techniques sorted by mean EXAM score

Artificial Faults Real Faults
Technique # Worse Technique # Worse

Metallaxis 6 Ochiai 2
DStar 3 Barinel 2
Op2 3 DStar 2
Ochiai 2 Op2 2
Barinel 0 Tarantula 2
MUSE 0 Metallaxis 1
Tarantula 0 MUSE 0

(b) Techniques sorted by tournament ranking over mean EXAM scores.
These rankings are uncorrelated because p = 0.92.

Artificial Faults Real Faults
Technique FLT rank Technique FLT rank

Metallaxis 2.73 Metallaxis 3.64
MUSE 3.06 Op2 3.78
Op2 3.70 DStar 3.81
DStar 4.02 Ochiai 3.88
Ochiai 4.20 Barinel 4.07
Barinel 5.15 Tarantula 4.16
Tarantula 5.15 MUSE 4.66

(c) Techniques sorted by mean rank among FL techniques

passing/failing tests. Motivated by the resemblance between
these quantities, we introduced a parameter that determines
whether totalpassed, in the FL technique’s formula, refers to
the number of tests or the number of elements interacted with
by the tests (and similarly for totalfailed).

3) Interaction definition: For SBFL there is one clear
definition for whether a test interacts with a statement: coverage,
or executing the statement. For MBFL, the definition of whether
a test “kills” a mutant is not firmly established. MUSE requires
that the mutant change whether the test passes or fails, while
Metallaxis merely requires that the mutant cause any change
to the test’s output (for example, change the message of an
exception thrown by a failing test). We used the following
framework to describe the spectrum of possible definitions.

A test kills a mutant if it changes the test outcome—more
specifically, if it changes the outcome’s equivalence class. We
give 6 ways to define the equivalence classes. All of them
define one class for “pass”, one class for “timeout”, one class
for “JVM crash”, and several classes for “exception” (including
AssertionError). The 6 definitions differ in how they partition
exceptions:

1) exact: exceptions with the exactame stack trace are equiv-
alent;

TABLE VII
TECHNIQUES SORTED BY VARIOUS METRICS CONSIDERING ONLY

MULTI-LINE FAULTS THAT INCLUDED FAULTS OF OMISSION, AND ON THEIR
CORRESPONDING ARTIFICIAL FAULTS.

Artificial Faults Real Faults
Technique EXAM Score Technique EXAM Score

Metallaxis 0.0444 Ochiai 0.0310
Op2 0.0496 Barinel 0.0312
DStar 0.0505 Tarantula 0.0312
Ochiai 0.0508 DStar 0.0316
Barinel 0.0549 Op2 0.0433
Tarantula 0.0549 Metallaxis 0.0496
MUSE 0.0778 MUSE 0.1885

(a) Techniques sorted by mean EXAM score

Artificial Faults Real Faults
Technique # Worse Technique # Worse

Op2 5 Ochiai 3
DStar 4 Barinel 3
Ochiai 3 DStar 3
Metallaxis 3 Tarantula 3
Barinel 1 Op2 1
Tarantula 1 Metallaxis 1
MUSE 0 MUSE 0

(b) Techniques sorted by tournament ranking over mean EXAM scores.
These rankings are uncorrelated because p = 0.79.

Artificial Faults Real Faults
Technique FLT rank Technique FLT rank

MUSE 3.15 Metallaxis 3.49
Metallaxis 3.25 DStar 3.69
Op2 3.70 Ochiai 3.71
DStar 3.86 Op2 3.72
Ochiai 3.97 Barinel 4.17
Barinel 5.04 Tarantula 4.17
Tarantula 5.04 MUSE 5.06

(c) Techniques sorted by mean rank among FL techniques

2) type+fields+location: exceptions with the same type, mes-
sage, and location are equivalent;

3) type+fields: exceptions with the same type and same
message are equivalent;

4) type: exceptions with the same type are equivalent;
5) all: all exceptions are equivalent;
6) passfail: all exceptions are equivalent to one another and

to the “time out” and “crash” classes (so there are only
two possible equivalence classes: “pass” and “fail”).

Metallaxis uses the “exact” definition. MUSE uses the
“passfail” definition.

4) Aggregation definition: MBFL computes an aggregate
statement suspiciousness S(s) from the suspiciousnesses of
individual mutants by taking either the average (like Metallaxis)
or the maximum (like MUSE). Unmutatable statements are not
assigned any suspiciousness, and therefore do not appear in the
technique’s ranking. (Approximately 10% of Defects4J’s faults
contain at least one unmutatable faulty statement. This causes
MBFL to do quite poorly in the worst-case debugging scenario,
when its goal is to find the position of all faulty statements.)

B. Methodology

RQ 5: Which technique in this design space performs best on
real faults? For each of our evaluation metrics (EXAM score,

10

TABLE VIII
TECHNIQUES SORTED BY VARIOUS METRICS CONSIDERING ONLY

MULTI-LINE FAULTS THAT DID NOT INCLUDE FAULTS OF OMISSION, AND ON
THEIR CORRESPONDING ARTIFICIAL FAULTS.

Artificial Faults Real Faults
Technique EXAM Score Technique EXAM Score

Op2 0.0280 DStar 0.0281
DStar 0.0291 Ochiai 0.0304
Ochiai 0.0297 Op2 0.0336
Barinel 0.0368 Barinel 0.0340
Metallaxis 0.0391 Tarantula 0.0340
Tarantula 0.0420 Metallaxis 0.0742
MUSE 0.0633 MUSE 0.1768

(a) Techniques sorted by mean EXAM score

Artificial Faults Real Faults
Technique # Worse Technique # Worse

Op2 5 DStar 2
DStar 4 Ochiai 1
Ochiai 3 Barinel 1
Barinel 2 Op2 1
Tarantula 1 Tarantula 1
Metallaxis 1 Metallaxis 1
MUSE 0 MUSE 0

(b) Techniques sorted by tournament ranking over mean EXAM scores.
These rankings are uncorrelated because p = 0.10.

Artificial Faults Real Faults
Technique FLT rank Technique FLT rank

Metallaxis 2.53 DStar 3.63
MUSE 2.83 Ochiai 3.75
Op2 3.50 Op2 3.75
DStar 3.90 Metallaxis 3.95
Ochiai 4.15 Barinel 4.14
Barinel 5.52 Tarantula 4.14
Tarantula 5.57 MUSE 4.63

(c) Techniques sorted by mean FLT rank

FLT rank) and debugging scenarios (best-case, average-case,
worst-case), we identified the technique that performed
best, averaged across all 395 real faults. To quantify how
often these techniques significantly outperform others, we
performed pairwise comparisons between them and each
of the other 155 techniques, using a paired t-test.

RQ 6: What are the most significant design decisions for a
FL technique? We performed an analysis of variance to
determine the influence of the 4 design space parameters,
the debugging scenario, and the defect on the EXAM score.
In other words, we computed how much variance in the
EXAM score is explained by each factor.

C. Results

1) What is the best fault localization technique?: First, here
are the results when judging by the mean EXAM score. (1)
For the best-case debugging scenario, the DStar technique is
best, and its score is almost twice as good as the best MBFL
technique, which closely resembles Metallaxis (see table IX).
(2) For the worst-case debugging scenario, Barinel performs
best, when instantiated with the “number of statements
covered” definition of totalpassed and totalfailed. (3) For
the average-case debugging scenario, Ochiai performs best,

TABLE IX
BEST FL TECHNIQUES PER FAMILY ACCORDING TO MEAN EXAM SCORE.

THE FIRST COLUMN IS RANK AMONG THE 156 TECHNIQUES.

Family Formula Total def. Interact. def. Agg. def EXAM score

best-case debugging scenario (localize any defective statement)
1 SBFL DStarf tests – – 0.040

13 MBFL Ochiaif elements exact max 0.078

worst-case debugging scenario (localize all defective statements)
1 SBFL Barinelf elements – – 0.191

13 MBFL Ochiaif elements exact max 0.245

average-case debugging scenario (localize 50% of defective statements)
1 SBFL Ochiaif elements – – 0.088

13 MBFL DStarf tests exact max 0.129

TABLE X
BEST FL TECHNIQUES PER FAMILY ACCORDING TO THE MEAN FLT RANK.

Family Formula Total def. Interact. def. Agg. def. Rank

best-case debugging scenario (localize any defective statement)
1 MBFL DStarf tests type avg 72.2
29 SBFL DStarf tests – – 77.9

worst-case debugging scenario (localize all defective statements)
1 MBFL MUSEf elements exact max 71.1

67 SBFL DStarf tests – – 82.9

average-case debugging scenario (localize 50% of defective statements)
1 MBFL MUSEf elements exact max 68.0
10 SBFL DStarf tests – – 74.2

instantiated the same way. As table XI shows, in every
debugging scenario, all 12 SBFL techniques are better than the
best MBFL technique, which is itself statistically significantly
better than about 80% of the design space.

However, judged by mean FLT rank (shown in table X), this
reverses, and many MBFL techniques are better than any SBFL
technique. As seen in table XI, the best MBFL technique by
FLT rank for two debugging scenarios uses MUSE’s formula
and total-definition, but Metallaxis’s aggregation and interaction
(kill)-definition. (Recall from section IV-B that MUSE’s kill-
definition tied its performance to fault reversibility. Using a
different kill-definition damages its performance on reversible
faults, but as shown in fig. 4, makes it much better on real
faults.)

As discussed elsewhere, we consider the EXAM score and
the best-case debugging scenario to be the best approximation
to real use cases.

DStar is the best fault localization technique in the design
space. However, it is statistically indistinguishable from four
other SBFL techniques, including Ochiai and Barinel.

2) Which parameters matter in the design of a FL tech-
nique?: We analyzed the influence of the 4 different parameters
on the EXAM score. Table XII shows the results, indicating that
all factors (including all FL technique parameters, as well as the
defect and debugging scenario) have a statistically significant
effect on the EXAM score.

It is unsurprising that most of the variance in scores (“sum
of squares” column) is accounted for by which defect is being
localized: some faults are easy to localize and some are difficult.

11

TABLE XI
PAIRWISE COMPARISON OF THE BEST TECHNIQUE PER EVALUATION METRIC
WITH ALL OTHER TECHNIQUES IN THE DESIGN SPACE. “# BETTER THAN”

GIVES THE NUMBER OF COMPARISONS FOR WHICH THE BEST TECHNIQUE IS
SIGNIFICANTLY BETTER, AND “d̄” GIVES THE AVERAGE EFFECT SIZE.

Evaluation
metric

Best FL technique # Better
than

d̄

Family Formula Total Inter. Agg.
def. def. def.

best-case debugging scenario (localize any defective statement)
Mean EXAM score SBFL DStarf tests – – 151/155 −0.47
Mean FLT rank MBFL DStarf tests type avg 128/155 −0.18

worst-case debugging scenario (localize all defective statements)
Mean EXAM score SBFL Barinelf elements – – 149/155 −0.42
Mean FLT rank MBFL MUSEf elements exact max 135/155 −0.22

average-case debugging scenario (localize 50% of defective statements)
Mean EXAM score SBFL Ochiaif elements – – 149/155 −0.47
Mean FLT rank MBFL MUSEf elements exact max 146/155 −0.25

TABLE XII
ANOVA ANALYSIS OF THE EFFECT OF ALL FACTORS ON THE EXAM SCORE

FOR REAL FAULTS. R2 GIVES THE COEFFICIENT OF DETERMINATION.

Factor Deg. of freedom Sum of squares F-value p

sbfl (R2 = 0.65)
Defect 394 387 58 <0.05
Debugging scenario 2 57.9 1703 <0.05

Formula 5 0.374 4 <0.05
Total definition 1 0.00623 0 (insig.)

mbfl (R2 = 0.67)
Defect 394 5508 725 <0.05
Debugging scenario 2 718 18614 <0.05

Interaction definition 5 324 3357 <0.05
Formula 5 20.4 211 <0.05
Aggregation definition 1 1.33 69 <0.05
Total definition 1 0.145 8 <0.05

sbfl + mbfl (R2 = 0.64)
Defect 394 5595 686 <0.05
Debugging scenario 2 776 18734 <0.05

Family 12 426 1716 <0.05
Formula 5 20.3 196 <0.05
Total definition 1 0.15 7 <0.05

Interestingly, although prior studies have mostly focused
on the formula and neglected other factors, we find that the
formula has relatively little effect on how well a FL technique
performs. The choice of the formula accounts for no more
than 2% of the non-defect variation in the EXAM scores (see
sum-of-squares column). Furthermore, a post-hoc Tukey test
(table XIII) showed that the differences between most formulas
are insignificant for SBFL techniques, and often for MBFL
techniques as well.

All studied parameters have a statistically significant effect
on the EXAM score, but the only FL technique parameters
with a practically significant effect are family (SBFL vs.
MBFL) and interaction (kill) definition (for MBFL only).

VII. NEW TECHNIQUES

Beyond the quantitative results discussed so far, our studies
exposed three limitations of MBFL techniques. (i) MBFL

TABLE XIII
PAIRWISE COMPARISON (TUKEY POST-HOC TEST) OF ALL Formulas. FOR

EACH PAIR, THE P VALUE INDICATES WHETHER THE CHOICE OF THE
FORMULA SIGNIFICANTLY AFFECTS THE EXAM SCORE FOR REAL FAULTS.

Formula 1 Formula 2 p (sbfl) p (mbfl) p (sbfl+mbfl)

DStarf Barinelf (insig.) <0.01 <0.01
MUSEf Barinelf <0.05 <0.01 <0.01
Ochiaif Barinelf (insig.) (insig.) (insig.)
Op2f Barinelf <0.05 <0.01 <0.01
Tarantulaf Barinelf (insig.) (insig.) (insig.)
MUSEf DStarf (insig.) <0.01 <0.01
Ochiaif DStarf (insig.) <0.01 <0.01
Op2f DStarf (insig.) <0.01 <0.01
Tarantulaf DStarf (insig.) (insig.) (insig.)
Ochiaif MUSEf <0.05 <0.01 <0.01
Op2f MUSEf (insig.) (insig.) (insig.)
Tarantulaf MUSEf <0.05 <0.01 <0.01
Op2f Ochiaif <0.05 <0.01 <0.01
Tarantulaf Ochiaif (insig.) (insig.) (insig.)
Tarantulaf Op2f (insig.) <0.01 <0.01

techniques perform poorly on defects that involve unmutatable
statements. (ii) MBFL techniques perform poorly when some
mutants are covered but not killed. (iii) The run time of MBFL
techniques is several orders of magnitude larger than for SBFL
techniques, because mutation analysis requires running the
entire test suite many times (once per mutant).

This section describes three approaches we explored with
the aim to address these limitations and to design better fault
localization techniques:
1) MCBFL: To address the limitation of covered yet not killed

mutants, we explore an improved MBFL technique that
uses mutation coverage information in addition to mutation
kill information.

2) MCBFL-hybrid: To address the limitation of unmutatable
statements, we explore a family of hybrid techniques that
combine MCBFL with SBFL to further improve MCBFL.

3) MRSBFL: To address the scalability issue of MBFL
techniques, we explore a faster MBFL technique that uses
only mutation coverage information.

A. MCBFL

One contributor to the poor performance of MBFL tech-
niques on real faults is that they consider only which tests
kill which mutants, and disregard coverage information. For
example, on Defects4J’s bug Chart-1, one mutant changes the
faulty statement from if (this.dataset != null) ... to if

(true) ...—this mutant is covered (executed) by the sole
failing test, but not killed by it. Intuitively, a mutant covered
by a failing test should be more suspicious than a mutant that
is not even executed.

To study this intuition, we introduced a new family of
techniques, which operate in exactly the same way as MBFL
techniques, except that the suspiciousness of each mutant is
increased if it is covered by failing tests. We identified three
ways to accomplish this:
1) numerator (small increase): if a mutant is covered by any

12

failing test, increase its suspiciousness slightly by incre-
menting (or decrementing) the numerator of the fraction
in the suspiciousness formula. This typically makes such
mutants very slightly more suspicious, thus differentiating
between mutants that are completely irrelevant to failing
tests and mutants that are covered but not killed by failing
tests.

2) constant (large increase): if a mutant is covered by any
failing test, increase its suspiciousness by 1. For the
formulas we consider, 1 is a fairly substantial increase in
suspiciousness: this will typically ensure that every mutant
covered by a failing test is more suspicious than any mutant
not covered by a failing test.

3) mirror (variable increase): recall that in MBFL, each
mutant’s suspiciousness is computed by applying one of the
formulas in section III-A1 to the numbers of passing/failing
tests that kill it. The mirror technique applies the same
formula also to the numbers of passing/failing tests that
cover the mutant, and calculates the overall suspiciousness
as the sum of the formula applied to kill and coverage
information.

We applied each of these three modifications to the MBFL
technique with the best mean FLT rank, to generate three
variants of a new technique that we call “mutant-and-coverage-
based fault localization” (MCBFL) technique.

1) Results: We evaluated the three MCBFL techniques on
Defects4J’s real defects, using the same methodology as in
section VI. The mirror technique always outperformed the
other two MCBFL techniques.

Tables XIV and XV show the relative performances of the
best technique in each family (SBFL, MBFL, MCBFL, and the
other techniques introduced in section VII). The best MCBFL
technique significantly outperforms the MBFL techniques.
Moreover, the best MCBFL technique is better than SBFL
judging by mean FLT rank, but slightly worse in terms of
mean EXAM score. This suggests that MCBFL techniques are
better than spectrum-based ones at localizing most defects, but
that they also have more outlier scores, causing them to do
worse on average. If there was a way to improve the MCBFL
techniques on those outliers, the resultant technique would
likely outperform all other techniques in our design space.

B. MCBFL-hybrid

This section describes three hybrid approaches that aim to
mitigate outlier scores, which drag down the effectiveness of
mutation-based fault localization techniques.

One cause of outliers for MCBFL techniques is unmutatable
statements. Since MCBFL, like MBFL, assigns suspicious-
ness values to statements by aggregating the suspiciousness
values of their mutants, it assigns no suspiciousness score
to unmutatable statements, so those statements appear at
the end of the technique’s statement-ranking as described in
section II-B. Therefore, when only unmutatable statements are
faulty, MCBFL techniques perform exceptionally badly. Note
that unmutatable statements appear at the end, not because
the MCBFL technique ranks them as very unsuspicious, but

because the technique simply has no opinion about them. By
using a different technique to assign suspiciousness values to
those statements, we aim to make better guesses at how they
should be ranked.

1) Failover: A failover technique assigns a suspiciousness
to every statement, using:

1) If possible (i.e., if the statement is mutatable): the technique
with the best mean FLT rank (i.e., MCBFL);

2) otherwise: the technique with the best mean EXAM score
(i.e., DStar).

2) Suspiciousness-averaging and maxing: Another approach
to improving MCBFL’s scores for outliers is to, for each
statement, combine the suspiciousness assigned by MCBFL
with that assigned by SBFL. Assuming that both component
techniques usually assign high suspiciousness to faulty state-
ments, and outliers occur when they accidentally assign very
low suspiciousness to those statements, combining the two
suspiciousness values should mitigate the damage done by
those mistakes. (Missing suspiciousness scores, such as for
MCBFL on unmutatable statements, are taken to be 0.)

We experimented with two methods of combining the
suspiciousness scores: averaging and taking the maximum.

3) Results: As evidenced by tables XIV and XV, the
MCBFL-hybrid-failover technique does somewhat better than
the best MCBFL technique, as measured by mean EXAM score.
It does somewhat worse as measured by mean FLT rank, which
is not surprising: it is based on the MCBFL technique with
the best mean FLT rank, and adding SBFL was intended to
improve the mean EXAM score, without regard for the FLT
rank. The mean rank most likely gets worse because, even
though the failover SBFL technique raises faulty unmutatable
statements in the ranking produced by the MCBFL technique, it
raises non-faulty unmutatable statements as well: the enormous
improvement for a few bugs comes at the cost of very slightly
worse scores on many more.

The other two hybrid techniques are displayed as MCBFL-
hybrid-avg and MCBFL-hybrid-max in tables XIV and XV.
MCBFL-hybrid-avg is better by every metric than the best
SBFL technique.

C. MRSBFL

Mutation analysis is computationally expensive (see also
discussion in section X-C). We therefore created less expensive
mutant-based techniques by substituting mutant coverage
information for the mutant kill information used by MBFL tech-
niques: these “mutant-resolution spectrum-based” techniques
(MRSBFL techniques) require only one run of the test suite,
and therefore are comparable in execution time to the SBFL
techniques.

1) Results: We evaluated MRSBFL versions of the best
MBFL technique the other three experimental techniques. As
table XIV shows, these techniques achieve nearly the same
scores as their MCBFL-based equivalents, and at substantially
lower computational cost.

13

TABLE XIV
BEST FL TECHNIQUES PER FAMILY ACCORDING TO MEAN EXAM SCORE.

Family Formula Total def. Interact. def. Agg. def. EXAM score

best-case debugging scenario (localize any defective statement)
1 MCBFL-hybrid-avg – – – – 0.034 273
2 MCBFL-hybrid-max – – – – 0.034 652
3 MRSBFL-hybrid-max – – – – 0.035 594
4 MRSBFL-hybrid-avg – – – – 0.036 099
5 MCBFL-hybrid-failover – – – – 0.039 445
6 SBFL DStarf tests – – 0.040 031

11 MRSBFL-hybrid-failover – – – – 0.041 284
19 MCBFL – – – – 0.057 708
20 MRSBFL – – – – 0.059 736
21 MBFL Ochiaif elements exact max 0.077 750

worst-case debugging scenario (localize all defective statements)
1 MRSBFL-hybrid-max – – – – 0.182 354
2 MCBFL-hybrid-max – – – – 0.182 442
3 MCBFL-hybrid-avg – – – – 0.182 685
4 MRSBFL-hybrid-avg – – – – 0.183 279
5 MRSBFL-hybrid-failover – – – – 0.184 189
6 MCBFL-hybrid-failover – – – – 0.184 376
7 SBFL Barinelf elements – – 0.190 808

19 MCBFL – – – – 0.213 465
20 MRSBFL – – – – 0.213 583
21 MBFL Ochiaif elements exact max 0.244 846

average-case debugging scenario (localize 50% of defective statements)
1 MCBFL-hybrid-avg – – – – 0.082 335
2 MCBFL-hybrid-max – – – – 0.082 912
3 MRSBFL-hybrid-max – – – – 0.083 747
4 MRSBFL-hybrid-avg – – – – 0.084 281
5 MCBFL-hybrid-failover – – – – 0.084 719
6 MRSBFL-hybrid-failover – – – – 0.086 221
7 SBFL Ochiaif elements – – 0.087 853

19 MCBFL – – – – 0.104 059
20 MRSBFL – – – – 0.106 036
21 MBFL DStarf tests exact max 0.128 669

TABLE XV
BEST FL TECHNIQUES PER FAMILY ACCORDING TO MEAN FLT RANK.

Family Formula Total def. Interact. def. Agg. def. Rank

best-case debugging scenario (localize any defective statement)
1 MCBFL – – – – 64.9
2 MCBFL-hybrid-avg – – – – 66.3
3 MRSBFL – – – – 71.3
4 MRSBFL-hybrid-avg – – – – 71.6
5 MCBFL-hybrid-failover – – – – 71.8
6 MBFL DStarf tests type avg 72.2

32 MCBFL-hybrid-max – – – – 77.0
35 SBFL DStarf tests – – 77.9
36 MRSBFL-hybrid-max – – – – 78.0
37 MRSBFL-hybrid-failover – – – – 78.2

worst-case debugging scenario (localize all defective statements)
1 MCBFL – – – – 69.8
2 MBFL MUSEf elements exact max 71.1
6 MRSBFL – – – – 71.7
35 MCBFL-hybrid-avg – – – – 78.7
48 MRSBFL-hybrid-avg – – – – 80.6
60 MCBFL-hybrid-failover – – – – 82.1
72 SBFL DStarf tests – – 82.9
90 MRSBFL-hybrid-failover – – – – 83.9

106 MCBFL-hybrid-max – – – – 84.4
107 MRSBFL-hybrid-max – – – – 84.5

average-case debugging scenario (localize 50% of defective statements)
1 MCBFL – – – – 64.1
2 MCBFL-hybrid-avg – – – – 66.3
3 MBFL MUSEf elements exact max 68.0
4 MRSBFL – – – – 68.5

10 MRSBFL-hybrid-avg – – – – 70.5
11 MCBFL-hybrid-failover – – – – 71.3
14 MCBFL-hybrid-max – – – – 74.0
16 SBFL DStarf tests – – 74.2
25 MRSBFL-hybrid-failover – – – – 75.3
28 MRSBFL-hybrid-max – – – – 75.4

TABLE XVI
PERCENTAGE OF DEFECTS WHOSE DEFECTIVE STATEMENTS APPEAR

WITHIN THE TOP-5, TOP-10, AND TOP-200 OF THE TECHNIQUES’
SUSPICIOUSNESS RANKING.

Debugging scenario
Best-case dbg. scen. Worst-case dbg. scen. Avg-case dbg. scen.

Technique Top-5 Top-10 Top-200 Top-5 Top-10 Top-200 Top-5 Top-10 Top-200

MCBFL-hybrid-avg 36% 45% 85% 19% 26% 58% 23% 31% 71%
Metallaxis 29% 39% 77% 16% 22% 47% 18% 27% 63%
DStar 30% 39% 82% 17% 23% 57% 18% 26% 69%

D. The best new technique

We evaluated these novel techniques on our overall set of
395 real faults, considering all debugging scenarios. Overall,
MCBFL-hybrid-avg is better than any other technique in all
debugging scenarios, but the difference in EXAM score and
FLT rank is not practically significant. This can be seen in
fig. 3, which compares the distributions of EXAM and absolute
scores of the new MCBFL and MRSBFL techniques with the
best, existing MBFL and SBFL techniques.

Table XVI compares our new MCBFL-hybrid-avg technique
to the best SBFL and MBFL techniques in terms of how
often they report defective statements in the top 5, 10, or 200
statements. This is relevant because a recent study [28] showed
that 98% of practitioners consider a fault localization technique
to be useful only if it reports the defective statement(s) within
the top-10 of the suspiciousness ranking. Another analysis [33]
shows that automatic program repair systems perform best
when they consider only the top-200 suspicious statements.

While the SBFL and MBFL techniques perform equally well
under this light, they complement each other. This leads our
new MCBFL-hybrid-avg technique to report more defective
statements near the top of the suspiciousness ranking than any
previous technique.

VIII. THREATS TO VALIDITY

Generalization. Defects4J’s data set spans 6 programs, writ-
ten by different developers and targeting different application
domains. Our set of 395 real faults is much larger than all
previous studies combined (less than 60 faults). Nonetheless,
future research should verify whether our results generalize to
other programs and test suites.

Based on the consistency of our results so far (table IV),
we believe that artificial faults are not good proxies for real
faults, for evaluating any SBFL or MBFL techniques. However,
slice-based or model-based techniques (see section IX) are
sufficiently different that our results may not carry over to them.

Applicability. The EXAM score may not be the best metric
for comparing usefulness of FL techniques by humans: in
one study, expert programmers diagnosed faults more quickly
with FL tools than without, but better EXAM scores did not
always result in significantly faster debugging [40]. Our study
revolves around the comparison of FL techniques rather than
their absolute performances. Furthermore, our “mean FLT rank”
metric is agnostic to whether absolute or relative scores are
being compared. Other metrics may be better correlated with
programmer performance, such as defective statements in the

14

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

B
est−

case
W

orst−
case

Average−
case

0.0001 0.0010 0.0100 0.1000 1.0000
EXAM score (log scale)

D
en

si
ty

FL technique: MCBFL MCBFL−hybrid−avg MRSBFL−hybrid−avg
Metallaxis DStar

 Family: MBFL MCBFL MRSBFL SBFL

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

B
est−

case
W

orst−
case

Average−
case

1 10 100 1000 10000
Absolute score (log scale)

D
en

si
ty

FL technique: MCBFL MCBFL−hybrid−avg MRSBFL−hybrid−avg
Metallaxis DStar

 Family: MBFL MCBFL MRSBFL SBFL

Fig. 3. Distributions of EXAM and absolute scores for the new MCBFL and
MRSBFL FL techniques. The absolute score is the location of a defective
statement in the suspiciousness ranking of program statements, computed by
a fault localization technique. The best existing SBFL and MBFL techniques
are included as a baseline.

top-10 (section VII-D). It is unknown which metrics are best
for other uses of fault localization, such as automated program
repair. Even for the use case of human debugging, our study
yields insights into the construction and evaluation of FL
techniques, and what user studies should be done in the future.

Verifiability. All of our results can be reproduced by an
interested reader. Our data and scripts are publicly avail-
able at https://bitbucket.org/rjust/fault-localization-data. Our
methodology builds upon other tools, which are also publicly
available. Notable examples are the Defects4J database of

real faults (https://github.com/rjust/defects4j), the GZoltar fault
localization tool (http://www.gzoltar.com/), and the Major
mutation framework (http://mutation-testing.org/).

IX. RELATED WORK

According to a recent survey [52], the most studied and
evaluated fault localization techniques are spectrum-based [4],
[20], [29], [51], slice-based [49], [56], model-based [2], [54],
and mutation-based [36], [39].

Slice-based techniques [56] use data- and control-flow of a
failing execution to identify components that are not responsible
for triggering a failure and exclude them from a slice. Rather
than setting a suspiciousness score to each component as SBFL
or MBFL techniques, the aim of slice-based techniques is
reduce the number of components that a developer would have
to inspect.

Model-based techniques [2], [34] for fault localization
observe executions to infer a model of the software under test;
they infer which components could be responsible for faulty
behavior using, for example, the oracles provided by test cases.
By first applying a spectrum-based technique to remove the
components that are likely not related to the observed failure,
and then applying a model-based technique on the remaining
components, Abreu et al. [1] achieved a better diagnosis when
compared to SBFL techniques alone. However, model-based
techniques are computationally intractable [35] and do not
scale to large software programs.

A. Evaluation of fault localization techniques

a) Evaluation Studies: Comparisons of SBFL techniques
have been conducted by Jones and Harrold [20], Abreu et
al. [4], Le et al. [31], Wong et al. [51], and Santelices et
al. [45]. Jones and Harrold compared five spectrum- and slice-
based techniques, using the Siemens set of tiny programs to
evaluate each. They found their Tarantula formula to be the
best, doing significantly better than Nearest-Neighbor [44]
(which looks for statements covered by a failing test but not by
the most-similar passing test), Set-Union and Set-Intersection
(which look for statements executed only by failing tests, or
only by passing tests), and Cause Transitions (which looks for
statements that change memory in a way that causes failures
when transplanted into passing tests during execution). The
techniques we studied all resemble Tarantula much more than
these other formulas, leading to a more narrowly scoped but
more thorough investigation that focuses on the most promising
approaches. We found that on artificial faults, Tarantula does
significantly worse than any other SBFL technique, and worse
than Metallaxis. However, on real faults there is no statistically
significant difference between Tarantula and the best SBFL
technique.

Abreu et al. [4] considered several different spectrum-based
techniques, all identical to Tarantula except in their formulas.
They found that Ochiai outperformed all others on the Siemens
programs, regardless of the number of passing/failing tests.
We compared Tarantula and Ochiai to more formulas and
extended them to mutant-based FL as well. Ochiai has also

15

https://bitbucket.org/rjust/fault-localization-data
https://github.com/rjust/defects4j
http://www.gzoltar.com/
http://mutation-testing.org/

been evaluated in the context of an embedded TV software
stack containing 450KLOC [59]. We confirmed that Ochiai
does relatively well on artificial faults, although outperformed
by Op2 and DStar.

Le et al. [31] also compared several formulas over the
Siemens set, as well on NanoXML, XML-security, and Space;
they too find that Ochiai is the best, though not always
statistically significantly. It even outperforms three theoretically
optimal formulas derived by Xie et al. [55], because the
optimality assumptions (e.g., 100% code coverage) are unmet
in the studied programs. We do not consider the same set of
FL techniques, but we do find Ochiai to be among the best
techniques on real faults.

Wong et al. [51] compared over twenty formulas’ perfor-
mances on the Siemens set, grep, make, gzip, and several other
real-world programs. They introduce the D∗ formula, which
typically outperforms all other formulas on all programs they
study. They most thoroughly explore D2, so we selected it for
use here, finding that it outperformed all other techniques in
our design space, usually statistically significantly.

Santelices et al. [45] also explored variations on spectrum-
based FL, but instead of comparing formulas they compared
types of coverage data: statements, branches, and data depen-
dencies. There is no clear winner, but a hybrid of all three
modestly outperformed any one individually, evaluated on the
Siemens set, NanoXML, and XML-security.

There have been fewer comparisons between spectrum- and
mutant-based FL techniques. Papadakis and Le Traon [39],
when introducing their mutant-based FL technique Metallaxis,
compared it to the spectrum-based equivalent (the “Ochiai”
technique in this paper), using the Siemens set. They found
that their Metallaxis was consistently superior across several
different test suites. We confirmed this finding on artificial
faults, but refuted it on real faults.

Moon et al. [36] also performed a cross-family comparison,
between their mutation-based technique MUSE and three
spectrum-based techniques (Jaccard, Ochiai, and Op2) on flex,
grep, gzip, sed, and space. The authors concluded that their
MUSE technique typically performs better than the other three.
Our results disagree with this finding, due to the fact that
mutants rarely fix failing tests on either real faults or many
artificial faults.

B. Using developers to evaluate fault localization techniques

Metrics such as T-score, Expense, or EXAM score (see
section II-A for more information) were inspired by perfect
fault understanding: a developer examines statements one-by-
one and detects the faulty component when encountering it.
Researchers do not believe that programmers actually work this
way! Rather, researchers use it as a proxy; they hypothesize that
this approach ranks techniques in terms of their true quality.2 To
understand the perfect fault understanding assumption, Parnin
and Orso conducted a preliminary user study on debugging

2This is exactly like researchers do not believe that all real bugs are mutants.
Rather, researchers use mutants as a proxy; they hypothesize that ranking
based on mutants gives the same results as ranking based on real faults.

effectiveness, involving 34 graduate students [40]. They divided
the study participants into two groups, one that used the
Tarantula fault localization technique [20] and one that did not.
While the results indicate that a fault localization technique
helps experienced developers debugging small programs, they
do not support the hypothesis that a better ranking significantly
affects debugging effectiveness.

More recently, Gouveia et al. [17] also performed a user
study to evaluate whether graphical visualizations of the ranking
(rather than text [40]) could help developers on debugging. One
group used the authors’ tool GZoltar [9] and the other group
did not. The group that used GZoltar’s graphical visualizations
of the ranking found the faulty component more often than the
control group, and spent less time on debugging.

A recent study [28] surveyed 386 practitioners to access
their expectations of automated fault localization techniques.
Statement granularity is in the top-3 granularity preferences of
practitioners. All fault localization techniques used in this paper
(published ones, sections III-A1 and III-A2, and new ones,
section VII) are statement-based, i.e., in line with practitioners’
opinion. 98% of practitioners say they are not willing to inspect
more than 10 statements before finding the true faulty one. For
48% of the total faults, MCBFL-hybrid-avg ranked the faulty
line in the top-10. That is, for almost half of the faults used
in our study, the 10 first positions of a ranking produced by
MCBFL-hybrid-avg included the faulty line.

C. Artificial vs. real faults

It has been very common to evaluate and compare fault
localization techniques using manually-seeded artificial faults
(e.g., Siemens set [4], [20], [39], [45]) or mutations (e.g., [13],
[45], [51]) as a proxy to real faults. However, it remains an
open question whether results on small artificial faults (whether
hand-seeded or automatically-generated) are characteristic of
results on real faults.

To the best of our knowledge, previous evaluations of FL
techniques on real faults only used one small numerical subject
program with simple control flow: space [48], in which 35 real
faults were detected during development. Those faults were
characterized as: logic omitted or incorrect (e.g., missing condi-
tion), computation problems (e.g., incorrect equations), incom-
plete or incorrect interfaces, and data handling problems (e.g.,
incorrectly access/store data). In previous studies, space’s real
faults have been considered alongside artificially inserted faults,
but no comparison between the two kinds was done. In contrast,
we used larger programs (22–96 KLOC), and we independently
evaluated the performance of each FL technique on a larger
number of real faults and artificial faults (see section V-A).

The use of mutants as a replacement for real faults has
been investigated in other domains. In the context of test
prioritization, Do et al. [14] concluded from experiments on
six Java programs that mutants are better suited than manually
seeded faults for studies of prioritization techniques, as small
numbers of hand-selected faults may lead to inappropriate
assessments of those techniques. Cifuentes et al. [10] found

16

that 5 static bug detection tools achieved an average accuracy
of 20% on real bugs but 46% on synthetic bugs.

The more general question of whether mutants are represen-
tative of real faults has been subject to thorough investigation.
While Gopinath et al. [16] found that mutants and real faults
are not syntactically similar, several independent studies have
provided evidence that mutants and real faults are coupled.
DeMillo et al. [12] studied 296 errors in TeX and found simple
mutants to be coupled to complex faults. Daran et al. [11] found
that the errors caused by 24 mutants on an industrial software
program are similar to those of 12 real faults. Andrews et al. [7]
compared manually-seeded faults with mutants and concluded
that mutants are a good representation of real faults for testing
experiments, in contrast to manually-seeded faults. Andrews
et al. [8] further evaluated the relation of real faults from the
space program and 736 mutants using four mutation operators,
and again found that mutants are representative of real faults.
Just et al. [24] studied the real faults of the Defects4J [23] data
set, and identified a positive correlation of mutant detection
with real fault detection. However, they also found that 27% of
the real faults in Defects4J [23] are not coupled with commonly
used mutation operators [19], suggesting a need for stronger
mutation operators.

However, Namin et al. [38] studied the same set of programs
as previous studies [7], and cautioned of the substantial
external threats to validity when using mutants for experiments.
Therefore, it is important to study the impact of the use of
mutants for specific types of software engineering experiments,
such as fault localization, as conducted in this paper.

X. LESSONS LEARNED

A. Complexity of real faults

Real faults vary in their characteristics far more than artificial
faults do, which requires considerable revisions to existing
methodology for evaluating FL techniques. For example, with
multi-line faults it is nontrivial to identify which statements in
the buggy code should be considered defective: declarations
and scoping braces are not ranked by most FL techniques, but
localizing a closely related statement may be good enough.

B. Debugging scenarios

There may be no single, proper cost model for fault
localization effort. A debugging scenario is very likely to be
different for humans and automated techniques. For example,
a developer might be able to repair a defect after encountering
the first defective statement or after encountering 50% of
the defective statements on average. An automated repair
technique, however, might need to go through all defective
statements before being able to generate a patch. Our evaluation
acknowledges this challenge and studies the effectiveness of
fault localization techniques for multiple debugging scenarios.

C. Efficiency of fault localization techniques

Our analysis does not consider the time it takes to execute
each FL technique. MBFL is computationally very costly: our
mutation analysis completed in under 32 hours for only 265/395

faults, and in under 168 hours for only 355/395 faults. Note
that our implementation avoids unnecessary mutant executions
by exploiting several sound optimizations such as mutation
coverage information [25] and non-redundant mutation oper-
ators [26]. Moreover, for Metallaxis, our implementation is
able to determine that the suspiciousness of a mutant is 0
without running all tests on that mutant if no fault-triggering
test in the test suite kills that mutant. This optimization reduces
Metallaxis’s runtime by a factor of 10. (This can not be done
for MUSE, since a mutant’s suspiciousness can be affected by
passing tests regardless of whether failing tests kill it.)

The best techniques we found mostly require a mutation
analysis of the target program, and for most users, the slight
improvement in output quality (compared to SBFL) will not
be worth this computational expense. The MRSBFL-hybrid-
avg technique we developed is consistently on par with (or
slightly superior to) SBFL techniques, but that is the full extent
to which we find mutants are useful without incurring these
computational costs.

Recall that one of MBFL’s limitations is its inability to rank
unmutatable statements. In theory, this could be addressed by
using a large enough set of mutation operators, including higher-
order mutation operators, such that all statements are mutatable.
This is, however, a very costly solution and might render MBFL
as being prohibitively expensive, even for mid-sized programs.
Given that an optimized implementation of MBFL did not
finish within 168 CPU hours for 10% of real faults, adding
many more mutants will only amplify this scalability issue.
Furthermore, the benefit of mutating more statements would
still be limited to the 10% of real faults that involve statements
not mutatable by Major’s mutation operators.

XI. CONCLUSION

Fault localization techniques’ performance has mostly been
evaluated using artificial faults (e.g., mutants). Artificial faults
differ from real faults, so previous studies do not establish
which techniques are best at finding real faults.

This paper evaluates the performance of 7 previously-studied
fault localization techniques. We replicated previous studies in
a systematic way on a larger number of artificial faults and
on larger subject programs; this confirmed 70% of previous
results and falsified 30%. We also evaluated the FL techniques
on hundreds of real faults, and we found that artificial faults
are not useful for predicting which fault localization techniques
perform best on real faults. Of the previously-reported results
on artificial faults, 60% were statistically insignificant on real
faults and the other 40% were falsified; most notably, MBFL
techniques are relatively less useful for real faults.

We analyzed the similarities and differences among the FL
techniques to synthesize a design space that encompasses them.
We evaluated 156 techniques to determine what aspects of a
FL technique are most important.

We created new hybrid techniques that outperform previous
techniques on the important metric of reporting defects in
the top-10 slots of the ranking. The hybrids combine existing

17

techniques in a way that preserves the complementary strengths
of each while mitigating their weaknesses.

ACKNOWLEDGMENTS

This material is based on research sponsored by Air Force
Research Laboratory and DARPA under agreement numbers
FA8750-12-2-0107, FA8750-15-C-0010, and FA8750-16-2-
0032. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. This material is based upon
work supported by the ERDF’s COMPETE 2020 Programme
under project No. POCI-01-0145-FEDER-006961 and FCT
under project No. UID/EEA/50014/2013.

REFERENCES

[1] R. Abreu, W. Mayer, M. Stumptner, and A. J. C. van Gemund. Refining
spectrum-based fault localization rankings. In Proceedings of the 2009
ACM Symposium on Applied Computing, SAC ’09, pages 409–414, New
York, NY, USA, 2009. ACM.

[2] R. Abreu and A. J. van Gemund. A low-cost approximate minimal
hitting set algorithm and its application to model-based diagnosis. In
Symposium on Abstraction, Reformulation, and Approximation (SARA),
volume 9, pages 2–9, 2009.

[3] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund. A practical
evaluation of spectrum-based fault localization. Journal of Systems and
Software, 82(11):1780–1792, 2009.

[4] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Indus-
trial Conference Practice and Research Techniques-MUTATION, 2007.
TAICPART-MUTATION 2007, pages 89–98. IEEE, 2007.

[5] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. Spectrum-based multiple
fault localization. In Automated Software Engineering, 2009. ASE’09.
24th IEEE/ACM International Conference on, pages 88–99. IEEE, 2009.

[6] S. Ali, J. H. Andrews, T. Dhandapani, and W. Wang. Evaluating the
accuracy of fault localization techniques. In ASE, pages 76–87, Nov.
2009.

[7] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In ICSE, pages 402–411, May 2005.

[8] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using
Mutation Analysis for Assessing and Comparing Testing Coverage
Criteria. IEEE Trans. Softw. Eng., 32(8):608–624, Aug. 2006.

[9] J. Campos, A. Riboira, A. Perez, and R. Abreu. GZoltar: An Eclipse
plug-in for testing and debugging. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2012,
pages 378–381, New York, NY, USA, 2012. ACM.

[10] C. Cifuentes, C. Hoermann, N. Keynes, L. Li, S. Long, E. Mealy,
M. Mounteney, and B. Scholz. BegBunch: Benchmarking for C bug
detection tools. In DEFECTS, pages 16–20, July 2009.

[11] M. Daran and P. Thévenod-Fosse. Software Error Analysis: A Real
Case Study Involving Real Faults and Mutations. In Proceedings of the
1996 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA ’96, pages 158–171, New York, NY, USA, 1996. ACM.

[12] R. A. DeMillo and A. P. Mathur. On the Use of Software Artifacts to
Evaluate the Effectiveness of Mutation Analysis in Detecting Errors
in Production Software. Technical Report SERC-TR-92-P, Purdue
University, West Lafayette, Indiana, 1992.

[13] N. DiGiuseppe and J. A. Jones. Fault density, fault types, and spectra-
based fault localization. Empirical Softw. Engg., 20(4):928–967, Aug.
2015.

[14] H. Do and G. Rothermel. On the Use of Mutation Faults in Empirical
Assessments of Test Case Prioritization Techniques. IEEE Trans. Softw.
Eng., 32(9):733–752, Sep. 2006.

[15] W. Eric Wong, V. Debroy, and B. Choi. A Family of Code Coverage-
based Heuristics for Effective Fault Localization. Journal of Systems
and Software, 83(2):188–208, Feb. 2010.

[16] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close are they
to real faults? In Software Reliability Engineering (ISSRE), 2014 IEEE
25th International Symposium on, pages 189–200. IEEE, 2014.

[17] C. Gouveia, J. Campos, and R. Abreu. Using HTML5 visualizations in
software fault localization. In Proceedings of the 29th IEEE International
Conference on Software Maintenance, ICSM 2013, Washington, DC,
USA, 2013. IEEE Computer Society.

[18] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of
the Effectiveness of Dataflow-and Controlflow-Based Test Adequacy
Criteria. In Proceedings of the 16th international conference on Software
engineering, pages 191–200. IEEE Computer Society Press, 1994.

[19] Y. Jia and M. Harman. An analysis and survey of the development of
mutation testing. IEEE Trans. Softw. Eng., 37(5):649–678, Sep. 2011.

[20] J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In ASE, pages 273–282, Nov.
2005.

[21] X. Ju, S. Jiang, X. Chen, X. Wang, Y. Zhang, and H. Cao. HSFal:
Effective Fault Localization Using Hybrid Spectrum of Full Slices and
Execution Slices. Journal of Systems and Software, 90:3–17, Apr. 2014.

[22] R. Just. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In ISSTA, pages 433–436, July 2014.

[23] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A Database of existing
faults to enable controlled testing studies for Java programs. In ISSTA,
pages 437–440, July 2014. Tool demo.

[24] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser.
Are mutants a valid substitute for real faults in software testing? In FSE,
pages 654–665, Nov. 2014.

[25] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using non-redundant
mutation operators and test suite prioritization to achieve efficient and
scalable mutation analysis. In Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE), pages 11–20, 2012.

[26] R. Just and F. Schweiggert. Higher accuracy and lower run time: efficient
mutation analysis using non-redundant mutation operators. Software
Testing, Verification and Reliability, 25(5-7):490–507, 2015.

[27] R. Just, F. Schweiggert, and G. M. Kapfhammer. MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler. In
Proceedings of the International Conference on Automated Software
Engineering (ASE), pages 612–615, November 9–11 2011.

[28] P. S. Kochhar, X. Xia, D. Lo, and S. Li. Practitioners’ Expectations on
Automated Fault Localization. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 165–
176, New York, NY, USA, 2016. ACM.

[29] G. Laghari, A. Murgia, and S. Demeyer. Improving spectrum based
fault localisation techniques. In In Proceedings of the 14th Belgian-
Netherlands Software Evolution Seminar (BENEVOL’2015), December
2015.

[30] T.-D. B. Le, D. Lo, and F. Thung. Should i follow this fault localization
tool’s output? Empirical Softw. Engg., 20(5):1237–1274, Oct. 2015.

[31] T.-D. B. Le, F. Thung, and D. Lo. Theory and practice, do they match?
A case with spectrum-based fault localization. In ICSM, pages 380–383,
Sep. 2013.

[32] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff. Statistical debugging:
A hypothesis testing-based approach. Software Engineering, IEEE
Transactions on, 32(10):831–848, 2006.

[33] F. Long and M. Rinard. An analysis of the search spaces for generate
and validate patch generation systems. In Proceedings of the 38th
International Conference on Software Engineering, pages 702–713. ACM,
2016.

[34] W. Mayer and M. Stumptner. Modeling programs with unstructured
control flow for debugging. In Proceedings of the 15th Australian Joint
Conference on Artificial Intelligence: Advances in Artificial Intelligence,
AI ’02, pages 107–118, London, UK, UK, 2002. Springer-Verlag.

[35] W. Mayer and M. Stumptner. Evaluating models for model-based
debugging. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE ’08, pages 128–
137, Washington, DC, USA, 2008. IEEE Computer Society.

[36] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the mutants: Mutating faulty
programs for fault localization. In ICST, pages 153–162, Apr. 2014.

[37] L. Naish, H. J. Lee, and K. Ramamohanarao. A model for spectra-based
software diagnosis. ACM Transactions on software engineering and
methodology (TOSEM), 20(3):11, 2011.

[38] A. S. Namin and S. Kakarla. The use of mutation in testing experiments
and its sensitivity to external threats. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, ISSTA ’11,
pages 342–352, New York, NY, USA, 2011. ACM.

[39] M. Papadakis and Y. Le Traon. Metallaxis-FL: Mutation-based fault
localization. STVR, 25(5-7):605–628, Aug.–Nov. 2015.

18

[40] C. Parnin and A. Orso. Are automated debugging techniques actually
helping programmers? In ISSTA, pages 199–209, July 2011.

[41] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang,
and B. Keller. Evaluating & improving fault localization techniques.
Technical Report UW-CSE-16-08-03, U. Wash. Dept. of Comp. Sci. &
Eng., Seattle, WA, USA, Sep. 2016. Revised Feb. 2017.

[42] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated fault
localization using potential invariants. In AADEBUG, pages 273–276,
Sep. 2003.

[43] Y. Qi, X. Mao, Y. Lei, and C. Wang. Using automated program repair
for evaluating the effectiveness of fault localization techniques. In
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, ISSTA 2013, pages 191–201, New York, NY, USA, 2013.
ACM.

[44] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor
queries. In ASE, pages 30–39, Oct. 2003.

[45] R. Santelices, J. Jones, Y. Yu, and M. J. Harrold. Lightweight fault-
localization using multiple coverage types. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 56–66,
2009.

[46] D. Schuler and A. Zeller. Covering and uncovering equivalent mutants.
Software Testing, Verification and Reliability, 23(5):353–374, 2013.

[47] F. Steimann, M. Frenkel, and R. Abreu. Threats to the validity and value
of empirical assessments of the accuracy of coverage-based fault locators.
In ISSTA, pages 314–324, July 2013.

[48] F. I. Vokolos and P. G. Frankl. Empirical evaluation of the textual
differencing regression testing technique. In Proceedings of the
International Conference on Software Maintenance, ICSM ’98, pages
44–, Washington, DC, USA, 1998. IEEE Computer Society.

[49] M. Weiser. Program slices: formal, psychological, and practical
investigations of an automatic program abstraction method. PhD thesis,
University of Michigan, Ann Arbor, 1979.

[50] E. Wong, T. Wei, Y. Qi, and L. Zhao. A Crosstab-based Statistical Method
for Effective Fault Localization. In Proceedings of the 2008 International
Conference on Software Testing, Verification, and Validation, ICST ’08,
pages 42–51, Washington, DC, USA, 2008. IEEE Computer Society.

[51] W. E. Wong, V. Debroy, R. Gao, and Y. Li. The DStar method for
effective software fault localization. IEEE Trans. Reliab., 63(1):290–308,
Mar. 2014.

[52] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey of
software fault localization. IEEE Transactions on Software Engineering
(TSE), 2016.

[53] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of Test
Set Minimization on Fault Detection Effectiveness. In Proceedings of
the 17th International Conference on Software Engineering, ICSE ’95,
pages 41–50, New York, NY, USA, 1995. ACM.

[54] F. Wotawa, M. Stumptner, and W. Mayer. Model-based debugging or
how to diagnose programs automatically. In Proceedings of the 15th
International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems: Developments in Applied
Artificial Intelligence, IEA/AIE ’02, pages 746–757, London, UK, UK,
2002. Springer-Verlag.

[55] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. A theoretical analysis
of the risk evaluation formulas for spectrum-based fault localization.
ACM Transactions on Software Engineering and Methodology (TOSEM),
22(4):31:1–31:40, Oct. 2013.

[56] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of
program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, Mar. 2005.

[57] J. Xuan and M. Monperrus. Test case purification for improving fault
localization. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages
52–63, New York, NY, USA, 2014. ACM.

[58] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE TSE, 28(3):183–200, Feb. 2002.

[59] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. C. van Gemund. Diagnosis
of embedded software using program spectra. In ECBS, pages 213–220,
Mar. 2007.

APPENDIX

Figure 4 shows how the Interaction definition affects MUSE’s
scores for artificial and real faults.

Table XVII provides the results of the replication studies for
all debugging scenarios, and figs. 5 and 6 show the distributions
of EXAM and absolute scores per program.

Table XVIII provides the results of the replication studies for
all debugging scenarios, using aggregated results as described
in section V-E. Figure 7 shows the distribution of EXAM and
absolute scores, using aggregated results, and table XIX shows
the correlation for these scores between artificial and real faults.

Tables XX and XXI show the top-25 fault localization
techniques for real faults, considering all evaluation metrics
and all debugging scenarios.

19

TABLE XVII
EXPANDED VERSION OF TABLE V, WITH DATA FOR ALL DEBUGGING SCENARIOS. THE TABLE CONTAINS PREVIOUSLY-REPORTED COMPARISONS (AS LISTED
IN TABLE I), AND OUR RESULTS FOR THOSE COMPARISONS. THE COLUMN “95% CI” GIVES THE CONFIDENCE INTERVAL FOR THE DIFFERENCE IN MEANS
AND d GIVES THE EFFECT SIZE (COHEN’S D). THE COLUMN “(B – EQ – W)” GIVES THE COUNTS FOR: PER DEFECT, WAS THE WINNER BETTER, EQUAL TO,

OR WORSE COMPARED TO THE LOSER, IGNORING THE MAGNITUDE OF THE DIFFERENCE.

Previous comparisons Our study on artificial faults Our study on real faults
Winner > loser agree? d (eff. size) 95% CI (b – eq – w) agree? d (eff. size) 95% CI (b – eq – w)

best-case debugging scenario (localize any defective statement)
Ochiai > Tarantula [30], [31], [37], [51], [57] yes (-0.24) [-0.006, -0.005] (1443–1796–3) (insig.) (-0.1) [-0.004, 0.000] (75–236–12)
Barinel > Ochiai [5] no (0.26) [0.004, 0.005] (3–1799–1440) (insig.) (0.1) [-0.000, 0.003] (12–237–74)
Barinel > Tarantula [5] yes (-0.05) [-0.001, -0.000] (9–3233–0) (insig.) (-0.06) [-0.003, 0.001] (1–322–0)
Op2 > Ochiai [37] yes (-0.1) [-0.002, -0.001] (597–2627–18) no (0.14) [0.002, 0.013] (65–226–32)
Op2 > Tarantula [36], [37] yes (-0.24) [-0.008, -0.006] (1522–1702–18) (insig.) (0.09) [-0.001, 0.011] (81–208–34)
DStar > Ochiai [30], [51] yes (-0.11) [-0.001, -0.000] (342–2898–2) (insig.) (-0.02) [-0.001, 0.001] (29–283–11)
DStar > Tarantula [21], [30], [51] yes (-0.24) [-0.007, -0.005] (1454–1785–3) (insig.) (-0.1) [-0.005, 0.000] (75–233–15)

Metallaxis > Ochiai [39] yes (-0.05) [-0.017, -0.002] (2072–240–930) no (0.2) [0.013, 0.043] (171–18–134)
MUSE > Op2 [36] no (0.11) [0.017, 0.033] (2030–132–1080) no 0.79 [0.133, 0.176] (119–2–202)
MUSE > Tarantula [36] no (0.08) [0.011, 0.026] (2254–81–907) no 0.85 [0.139, 0.181] (115–1–207)

worst-case debugging scenario (localize all defective statements)
Ochiai > Tarantula [30], [31], [37], [51], [57] yes (-0.24) [-0.006, -0.005] (1443–1796–3) (insig.) (-0.01) [-0.003, 0.002] (46–263–14)
Barinel > Ochiai [5] no (0.26) [0.004, 0.005] (3–1799–1440) (insig.) (-0.03) [-0.003, 0.002] (14–264–45)
Barinel > Tarantula [5] yes (-0.05) [-0.001, -0.000] (9–3233–0) (insig.) (-0.06) [-0.003, 0.001] (1–322–0)
Op2 > Ochiai [37] yes (-0.1) [-0.002, -0.001] (597–2627–18) no (0.26) [0.010, 0.024] (52–212–59)
Op2 > Tarantula [36], [37] yes (-0.24) [-0.008, -0.006] (1522–1702–18) no (0.23) [0.009, 0.024] (60–201–62)
DStar > Ochiai [30], [51] yes (-0.11) [-0.001, -0.000] (342–2898–2) (insig.) (-0.03) [-0.000, 0.000] (17–298–8)
DStar > Tarantula [21], [30], [51] yes (-0.24) [-0.007, -0.005] (1454–1785–3) (insig.) (-0.02) [-0.003, 0.002] (47–261–15)

Metallaxis > Ochiai [39] yes (-0.05) [-0.017, -0.002] (2072–240–930) no (0.25) [0.026, 0.067] (193–14–116)
MUSE > Op2 [36] no (0.11) [0.017, 0.033] (2030–132–1080) no 0.59 [0.116, 0.169] (132–3–188)
MUSE > Tarantula [36] no (0.08) [0.011, 0.026] (2254–81–907) no 0.7 [0.134, 0.184] (125–1–197)

average-case debugging scenario (localize 50% of defective statements)
Ochiai > Tarantula [30], [31], [37], [51], [57] yes (-0.24) [-0.006, -0.005] (1443–1796–3) (insig.) (-0.05) [-0.004, 0.001] (68–233–22)
Barinel > Ochiai [5] no (0.26) [0.004, 0.005] (3–1799–1440) (insig.) (0.01) [-0.001, 0.002] (22–234–67)
Barinel > Tarantula [5] yes (-0.05) [-0.001, -0.000] (9–3233–0) (insig.) (-0.06) [-0.003, 0.001] (1–322–0)
Op2 > Ochiai [37] yes (-0.1) [-0.002, -0.001] (597–2627–18) no (0.26) [0.008, 0.021] (66–194–63)
Op2 > Tarantula [36], [37] yes (-0.24) [-0.008, -0.006] (1522–1702–18) no (0.21) [0.007, 0.021] (80–178–65)
DStar > Ochiai [30], [51] yes (-0.11) [-0.001, -0.000] (342–2898–2) (insig.) (0.07) [-0.000, 0.001] (26–279–18)
DStar > Tarantula [21], [30], [51] yes (-0.24) [-0.007, -0.005] (1454–1785–3) (insig.) (-0.03) [-0.004, 0.002] (67–230–26)

Metallaxis > Ochiai [39] yes (-0.05) [-0.017, -0.002] (2072–240–930) no (0.21) [0.015, 0.048] (187–13–123)
MUSE > Op2 [36] no (0.11) [0.017, 0.033] (2030–132–1080) no 0.7 [0.133, 0.183] (105–2–216)
MUSE > Tarantula [36] no (0.08) [0.011, 0.026] (2254–81–907) no 0.82 [0.149, 0.195] (97–1–225)
Emphasis on whether our study agrees indicates p-value: p<0.01, p<0.05, (p≥0.05).
Emphasis on Cohen’s d indicates effect size: large, medium, (small), (negligible).

20

Artificial faults Real faults

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

B
est−

case
W

orst−
case

Average−
case

0.0001 0.0010 0.0100 0.1000 1.0000 0.0001 0.0010 0.0100 0.1000 1.0000
EXAM score (log scale)

D
en

si
ty

Kill definition: exact type+fields+location type+fields type all passfail

Artificial faults Real faults

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

B
est−

case
W

orst−
case

Average−
case

1 10 100 1000 10000 1 10 100 1000 10000
Absolute score (log scale)

D
en

si
ty

Kill definition: exact type+fields+location type+fields type all passfail

Fig. 4. The effect of the choice of the “Interaction (kill) definition” on MUSE’s EXAM and absolute scores for artificial vs. real faults.
21

Artificial faults Real faults

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

C
h

a
rt

C
lo

su
re

L
a
n

g
M

a
th

M
o
ck

ito
T

im
e

1.00000.10000.01000.00100.0001 1.00000.10000.01000.00100.0001
EXAM score (log scale)

D
en

si
ty

FL technique: Barinel DStar Metallaxis MUSE Ochiai Op2 Tarantula Family: MBFL SBFL

Fig. 5. Distribution of the EXAM scores per program for all fault localization techniques and artificial vs. real faults.

22

Artificial faults Real faults

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

0.0

0.3

0.6

0.9

1.2

C
h

a
rt

C
lo

su
re

L
a
n

g
M

a
th

M
o
ck

ito
T

im
e

1 10 100 1000 10000 1 10 100 1000 10000
Absolute score (log scale)

D
en

si
ty

FL technique: Barinel DStar Metallaxis MUSE Ochiai Op2 Tarantula Family: MBFL SBFL

Fig. 6. Distribution of the absolute scores per program for all fault localization techniques and artificial vs. real faults. The absolute score is the location of
the defective statement in the suspiciousness ranking of program statements, computed by a fault localization technique.

23

TABLE XVIII
ALTERNATIVE, EXPANDED VERSION OF TABLE V, AVERAGING EACH FL TECHNIQUE’S SCORES OVER THE ARTIFICIAL FAULTS CORRESPONDING TO EACH
REAL FAULT AS DESCRIBED IN SECTION V-E. THE TABLE CONTAINS PREVIOUSLY-REPORTED COMPARISONS (AS LISTED IN TABLE I), AND OUR RESULTS
FOR THOSE COMPARISONS. THE COLUMN “95% CI” GIVES THE CONFIDENCE INTERVAL FOR THE DIFFERENCE IN MEANS AND d GIVES THE EFFECT SIZE
(COHEN’S D). THE COLUMN “(B – EQ – W)” GIVES THE COUNTS FOR: PER DEFECT, WAS THE WINNER BETTER, EQUAL TO, OR WORSE COMPARED TO THE

LOSER, IGNORING THE MAGNITUDE OF THE DIFFERENCE.

Previous comparisons Our study on artificial faults Our study on real faults
Winner > loser agree? d (eff. size) 95% CI (b – eq – w) agree? d (eff. size) 95% CI (b – eq – w)

best-case debugging scenario (localize any defective statement)
Ochiai > Tarantula [30], [31], [37], [51], [57] yes (-0.33) [-0.007, -0.004] (224–97–2) (insig.) (-0.1) [-0.004, 0.000] (75–236–12)
Barinel > Ochiai [5] no (0.36) [0.003, 0.006] (2–97–224) (insig.) (0.1) [-0.000, 0.003] (12–237–74)
Barinel > Tarantula [5] (insig.) (-0.08) [-0.001, 0.000] (2–321–0) (insig.) (-0.06) [-0.003, 0.001] (1–322–0)
Op2 > Ochiai [37] (insig.) (-0.11) [-0.004, 0.000] (145–167–11) no (0.14) [0.002, 0.013] (65–226–32)
Op2 > Tarantula [36], [37] yes (-0.29) [-0.010, -0.004] (226–86–11) (insig.) (0.09) [-0.001, 0.011] (81–208–34)
DStar > Ochiai [30], [51] yes (-0.13) [-0.000, -0.000] (105–216–2) (insig.) (-0.02) [-0.001, 0.001] (29–283–11)
DStar > Tarantula [21], [30], [51] yes (-0.32) [-0.008, -0.004] (226–95–2) (insig.) (-0.1) [-0.005, 0.000] (75–233–15)

Metallaxis > Ochiai [39] (insig.) (0.04) [-0.017, 0.036] (196–6–121) no (0.2) [0.013, 0.043] (171–18–134)
MUSE > Op2 [36] no (0.17) [0.015, 0.070] (147–3–173) no 0.79 [0.133, 0.176] (119–2–202)
MUSE > Tarantula [36] no (0.14) [0.008, 0.063] (161–1–161) no 0.85 [0.139, 0.181] (115–1–207)

worst-case debugging scenario (localize all defective statements)
Ochiai > Tarantula [30], [31], [37], [51], [57] yes (-0.33) [-0.007, -0.004] (224–97–2) (insig.) (-0.01) [-0.003, 0.002] (46–263–14)
Barinel > Ochiai [5] no (0.36) [0.003, 0.006] (2–97–224) (insig.) (-0.03) [-0.003, 0.002] (14–264–45)
Barinel > Tarantula [5] (insig.) (-0.08) [-0.001, 0.000] (2–321–0) (insig.) (-0.06) [-0.003, 0.001] (1–322–0)
Op2 > Ochiai [37] (insig.) (-0.11) [-0.004, 0.000] (145–167–11) no (0.26) [0.010, 0.024] (52–212–59)
Op2 > Tarantula [36], [37] yes (-0.29) [-0.010, -0.004] (226–86–11) no (0.23) [0.009, 0.024] (60–201–62)
DStar > Ochiai [30], [51] yes (-0.13) [-0.000, -0.000] (105–216–2) (insig.) (-0.03) [-0.000, 0.000] (17–298–8)
DStar > Tarantula [21], [30], [51] yes (-0.32) [-0.008, -0.004] (226–95–2) (insig.) (-0.02) [-0.003, 0.002] (47–261–15)

Metallaxis > Ochiai [39] (insig.) (0.04) [-0.017, 0.036] (196–6–121) no (0.25) [0.026, 0.067] (193–14–116)
MUSE > Op2 [36] no (0.17) [0.015, 0.070] (147–3–173) no 0.59 [0.116, 0.169] (132–3–188)
MUSE > Tarantula [36] no (0.14) [0.008, 0.063] (161–1–161) no 0.7 [0.134, 0.184] (125–1–197)

average-case debugging scenario (localize 50% of defective statements)
Ochiai > Tarantula [30], [31], [37], [51], [57] yes (-0.33) [-0.007, -0.004] (224–97–2) (insig.) (-0.05) [-0.004, 0.001] (68–233–22)
Barinel > Ochiai [5] no (0.36) [0.003, 0.006] (2–97–224) (insig.) (0.01) [-0.001, 0.002] (22–234–67)
Barinel > Tarantula [5] (insig.) (-0.08) [-0.001, 0.000] (2–321–0) (insig.) (-0.06) [-0.003, 0.001] (1–322–0)
Op2 > Ochiai [37] (insig.) (-0.11) [-0.004, 0.000] (145–167–11) no (0.26) [0.008, 0.021] (66–194–63)
Op2 > Tarantula [36], [37] yes (-0.29) [-0.010, -0.004] (226–86–11) no (0.21) [0.007, 0.021] (80–178–65)
DStar > Ochiai [30], [51] yes (-0.13) [-0.000, -0.000] (105–216–2) (insig.) (0.07) [-0.000, 0.001] (26–279–18)
DStar > Tarantula [21], [30], [51] yes (-0.32) [-0.008, -0.004] (226–95–2) (insig.) (-0.03) [-0.004, 0.002] (67–230–26)

Metallaxis > Ochiai [39] (insig.) (0.04) [-0.017, 0.036] (196–6–121) no (0.21) [0.015, 0.048] (187–13–123)
MUSE > Op2 [36] no (0.17) [0.015, 0.070] (147–3–173) no 0.7 [0.133, 0.183] (105–2–216)
MUSE > Tarantula [36] no (0.14) [0.008, 0.063] (161–1–161) no 0.82 [0.149, 0.195] (97–1–225)
Emphasis on whether our study agrees indicates p-value: p<0.01, p<0.05, (p≥0.05).
Emphasis on Cohen’s d indicates effect size: large, medium, (small), (negligible).

24

Artificial faults Real faults

0.0

0.2

0.4

0.6

1.00000.10000.01000.00100.0001 1.00000.10000.01000.00100.0001
EXAM score (log scale)

D
en

si
ty

FL technique: Barinel DStar Metallaxis MUSE Ochiai Op2 Tarantula Family: MBFL SBFL

Artificial faults Real faults

0.0

0.1

0.2

0.3

0.4

1 10 100 1000 10000 1 10 100 1000 10000
Absolute score (log scale)

D
en

si
ty

FL technique: Barinel DStar Metallaxis MUSE Ochiai Op2 Tarantula Family: MBFL SBFL

Fig. 7. Distributions of EXAM and absolute scores for all FL techniques, considering the best-case debugging scenario and averaging each FL technique’s
scores across the artificial faults corresponding to each real fault as described in section V-E. The absolute score is the first location of any defective statement
in the suspiciousness ranking of program statements, computed by a fault localization technique.

25

TABLE XIX
PEARSON’S r AND SPEARMAN’S ρ CORRELATION COEFFICIENTS FOR THE

AGGREGATED EXAM SCORE AND FLT RANK BETWEEN ARTIFICIAL AND
REAL FAULTS.

Technique EXAM Score FLT rank

r ρ r ρ

best-case debugging scenario
Ochiai 0.2 0.43 0.32 0.33
Tarantula 0.22 0.45 0.41 0.41
Barinel 0.22 0.45 0.43 0.43
Op2 0.16 0.3 0.34 0.35
DStar 0.2 0.42 0.29 0.3
Metallaxis 0.04 0.32 0.28 0.26
MUSE 0.14 0.16 0.29 0.27

worst-case debugging scenario
Ochiai 0.02 0.29 0.17 0.2
Tarantula 0.03 0.34 0.27 0.26
Barinel 0.03 0.34 0.28 0.27
Op2 0.02 0.2 0.16 0.13
DStar 0.02 0.28 0.15 0.17
Metallaxis 0.13 0.3 0.12 0.14
MUSE 0.16 0.2 0.22 0.23

average-case debugging scenario
Ochiai 0.03 0.31 0.2 0.23
Tarantula 0.05 0.37 0.32 0.31
Barinel 0.05 0.37 0.34 0.33
Op2 0.02 0.21 0.27 0.28
DStar 0.03 0.3 0.2 0.22
Metallaxis 0.1 0.36 0.19 0.21
MUSE 0.15 0.2 0.28 0.26

TABLE XX
TOP-25 FL TECHNIQUES ACCORDING TO MEAN EXAM SCORE.

Family Formula Total def. Kill def. Agg. def. EXAM score

best-case debugging scenario (localize any defective statement)
1 MCBFL-hybrid-avg – – – – 0.034 273
2 MCBFL-hybrid-max – – – – 0.034 652
3 MRSBFL-hybrid-max – – – – 0.035 594
4 MRSBFL-hybrid-avg – – – – 0.036 099
5 MCBFL-hybrid-failover – – – – 0.039 445
6 SBFL DStarf tests – – 0.040 031
7 SBFL Ochiaif elements – – 0.040 171
8 SBFL Ochiaif tests – – 0.040 171
9 SBFL Barinelf elements – – 0.041 179
10 SBFL Barinelf tests – – 0.041 179
11 MRSBFL-hybrid-failover – – – – 0.041 284
12 SBFL Tarantulaf elements – – 0.042 541
13 SBFL Tarantulaf tests – – 0.042 541
14 SBFL MUSEf tests – – 0.045 754
15 SBFL DStarf elements – – 0.046 333
16 SBFL Op2f elements – – 0.047 095
17 SBFL Op2f tests – – 0.047 095
18 SBFL MUSEf elements – – 0.049 692
19 MCBFL – – – – 0.057 708
20 MRSBFL – – – – 0.059 736
21 MBFL Ochiaif elements exact max 0.077 750
22 MBFL Ochiaif tests exact max 0.077 750
23 MBFL DStarf tests exact max 0.077 887
24 MBFL Barinelf elements exact max 0.078 239
25 MBFL Barinelf tests exact max 0.078 239

worst-case debugging scenario (localize all defective statements)
1 MRSBFL-hybrid-max – – – – 0.182 354
2 MCBFL-hybrid-max – – – – 0.182 442
3 MCBFL-hybrid-avg – – – – 0.182 685
4 MRSBFL-hybrid-avg – – – – 0.183 279
5 MRSBFL-hybrid-failover – – – – 0.184 189
6 MCBFL-hybrid-failover – – – – 0.184 376
7 SBFL Barinelf elements – – 0.190 808
8 SBFL Barinelf tests – – 0.190 808
9 SBFL DStarf tests – – 0.191 249
10 SBFL Ochiaif elements – – 0.191 270
11 SBFL Ochiaif tests – – 0.191 270
12 SBFL Tarantulaf elements – – 0.192 170
13 SBFL Tarantulaf tests – – 0.192 170
14 SBFL DStarf elements – – 0.196 445
15 SBFL Op2f elements – – 0.205 877
16 SBFL Op2f tests – – 0.205 877
17 SBFL MUSEf tests – – 0.207 051
18 SBFL MUSEf elements – – 0.207 254
19 MCBFL – – – – 0.213 465
20 MRSBFL – – – – 0.213 583
21 MBFL Ochiaif elements exact max 0.244 846
22 MBFL Ochiaif tests exact max 0.244 846
23 MBFL Barinelf elements exact max 0.245 028
24 MBFL Barinelf tests exact max 0.245 028
25 MBFL Barinelf elements exact avg 0.245 619

average-case debugging scenario (localize 50% of defective statements)
1 MCBFL-hybrid-avg – – – – 0.082 335
2 MCBFL-hybrid-max – – – – 0.082 912
3 MRSBFL-hybrid-max – – – – 0.083 747
4 MRSBFL-hybrid-avg – – – – 0.084 281
5 MCBFL-hybrid-failover – – – – 0.084 719
6 MRSBFL-hybrid-failover – – – – 0.086 221
7 SBFL Ochiaif elements – – 0.087 853
8 SBFL Ochiaif tests – – 0.087 853
9 SBFL Barinelf elements – – 0.088 084
10 SBFL Barinelf tests – – 0.088 084
11 SBFL DStarf tests – – 0.088 122
12 SBFL Tarantulaf elements – – 0.089 446
13 SBFL Tarantulaf tests – – 0.089 446
14 SBFL DStarf elements – – 0.095 001
15 SBFL Op2f elements – – 0.100 237
16 SBFL Op2f tests – – 0.100 237
17 SBFL MUSEf tests – – 0.101 176
18 SBFL MUSEf elements – – 0.102 478
19 MCBFL – – – – 0.104 059
20 MRSBFL – – – – 0.106 036
21 MBFL DStarf tests exact max 0.128 669
22 MBFL Ochiaif elements exact max 0.128 695
23 MBFL Ochiaif tests exact max 0.128 695
24 MBFL Barinelf elements exact max 0.128 732
25 MBFL Barinelf tests exact max 0.128 732

26

TABLE XXI
TOP-25 FL TECHNIQUES ACCORDING TO MEAN FLT RANK.

Family Formula Total def. Kill def. Agg. def. FLT rank

best-case debugging scenario (localize any defective statement)
1 MCBFL – – – – 64.9
2 MCBFL-hybrid-avg – – – – 66.3
3 MRSBFL – – – – 71.3
4 MRSBFL-hybrid-avg – – – – 71.6
5 MCBFL-hybrid-failover – – – – 71.8
6 MBFL DStarf tests type avg 72.2
7 MBFL MUSEf elements exact avg 72.5
8 MBFL MUSEf elements type+fields avg 72.8
9 MBFL MUSEf elements type+fields+location avg 72.8

10 MBFL DStarf tests type+fields avg 74.3
11 MBFL DStarf tests type+fields+location avg 74.3
12 MBFL MUSEf elements type max 74.3
13 MBFL DStarf tests exact avg 75.3
14 MBFL MUSEf tests type+fields avg 75.4
15 MBFL MUSEf tests type+fields+location avg 75.4
16 MBFL Ochiaif elements type+fields avg 75.8
17 MBFL Ochiaif elements type+fields+location avg 75.8
18 MBFL Barinelf elements type avg 75.8
19 MBFL Barinelf tests type avg 75.8
20 MBFL MUSEf tests exact avg 75.9
21 MBFL Ochiaif tests type+fields avg 76.0
22 MBFL Ochiaif tests type+fields+location avg 76.0
23 MBFL DStarf tests type max 76.0
24 MBFL Ochiaif elements type max 76.3
25 MBFL Ochiaif tests type max 76.3

worst-case debugging scenario (localize all defective statements)
1 MCBFL – – – – 69.8
2 MBFL MUSEf elements exact max 71.1
3 MBFL MUSEf elements exact avg 71.1
4 MBFL MUSEf elements type+fields max 71.6
5 MBFL MUSEf elements type+fields+location max 71.6
6 MRSBFL – – – – 71.7
7 MBFL MUSEf elements type+fields avg 71.9
8 MBFL MUSEf elements type+fields+location avg 71.9
9 MBFL MUSEf elements type max 72.1

10 MBFL Ochiaif elements passfail max 72.7
11 MBFL Ochiaif tests passfail max 72.7
12 MBFL DStarf tests passfail max 72.7
13 MBFL Barinelf elements passfail max 73.1
14 MBFL Barinelf tests passfail max 73.1
15 MBFL DStarf tests passfail avg 73.2
16 MBFL Tarantulaf tests passfail max 73.4
17 MBFL Barinelf elements passfail avg 73.5
18 MBFL Barinelf tests passfail avg 73.5
19 MBFL Tarantulaf elements passfail max 73.6
20 MBFL Ochiaif tests passfail avg 74.4
21 MBFL Ochiaif elements passfail avg 74.4
22 MBFL Tarantulaf tests passfail avg 76.0
23 MBFL MUSEf tests type max 76.3
24 MBFL Tarantulaf elements passfail avg 76.8
25 MBFL DStarf tests type max 76.9

average-case debugging scenario (localize 50% of defective statements)
1 MCBFL – – – – 64.1
2 MCBFL-hybrid-avg – – – – 66.3
3 MBFL MUSEf elements exact max 68.0
4 MRSBFL – – – – 68.5
5 MBFL MUSEf elements exact avg 68.9
6 MBFL MUSEf elements type+fields max 69.3
7 MBFL MUSEf elements type+fields+location max 69.3
8 MBFL MUSEf elements type+fields avg 70.1
9 MBFL MUSEf elements type+fields+location avg 70.1

10 MRSBFL-hybrid-avg – – – – 70.5
11 MCBFL-hybrid-failover – – – – 71.3
12 MBFL MUSEf elements type max 73.0
13 MBFL MUSEf tests exact max 73.3
14 MCBFL-hybrid-max – – – – 74.0
15 MBFL MUSEf tests exact avg 74.2
16 SBFL DStarf tests – – 74.2
17 SBFL Ochiaif elements – – 74.3
18 SBFL Ochiaif tests – – 74.3
19 SBFL MUSEf elements – – 74.6
20 MBFL MUSEf tests type+fields avg 74.6
21 MBFL MUSEf tests type+fields+location avg 74.6
22 MBFL MUSEf tests type+fields max 74.8
23 MBFL MUSEf tests type+fields+location max 74.8
24 SBFL MUSEf tests – – 75.1
25 MRSBFL-hybrid-failover – – – – 75.3

27

