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ABSTRACT

To realistically evaluate a software testing or debugging technique,

it must be run on defects and tests that are characteristic of those a

developer would encounter in practice. For example, to determine

the utility of a fault localization or automated program repair tech-

nique, it could be run on real defects from a bug tracking system,

using real tests that are committed to the version control repository

along with the fixes. Although such a methodology uses real tests,

it may not use tests that are characteristic of the information a

developer or tool would have in practice. The tests that a developer

commits after fixing a defect may encode more information than

was available to the developer when initially diagnosing the defect.

This paper compares, both quantitatively and qualitatively, the

developer-provided tests committed along with fixes (as found

in the version control repository) versus the user-provided tests

extracted from bug reports (as found in the issue tracker). It pro-

vides evidence that developer-provided tests are more targeted

toward the defect and encode more information than user-provided

tests. For fault localization, developer-provided tests overestimate

a technique’s ability to rank a defective statement in the list of

the top-n most suspicious statements. For automated program re-

pair, developer-provided tests overestimate a technique’s ability to

(efficiently) generate correct patchesÐuser-provided tests lead to

fewer correct patches and increased repair time. This paper also

provides suggestions for improving the design and evaluation of

fault localization and automated program repair techniques.
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1 INTRODUCTION

Researchers have created dozens of fault localization (FL) tech-

niques [36] and automated program repair (APR) techniques [25].

These techniques represent promising progress toward the long-

term goal of automatically locating and fixing defects in software

programs. Although these techniques take diverse approaches, their

inputs are generally the same: a defective program and a set of testsÐ

at least one of which is a triggering test (i.e., a test that fails on the

defective program but passes when the defect is fixed).

A FL or APR technique is valuable if it workswell when using real

defects and triggering tests. Many older empirical evaluations of FL

techniques used artificial defects and/or artificial triggering tests.

The most-used dataset is the Siemens suite [12], which contains

artificial defects for 7 small programs (136ś456 lines of code). The

corresponding test suites for these programs contain 1052ś5542

tests each and were created by researchers to satisfy unrealistically

strong adequacy criteria. More recently, researchers have begun

to perform more realistic FL and APR experiments, using datasets

of real defects and tests derived from version control history (e.g.,

Defects4J [16] or ManyBugs [9]). Defects4J, the dataset used in this

paper, contains a developer-provided triggering test for each defect,

derived from a version control system commit that is linked to a

bug report in an issue tracker.

The starting point for fixing a reported bug is the bug report,

which may or may not include a user-provided triggering test. A de-

veloper acquires a deeper understanding of a bugwhile reproducing,

localizing, and fixing it. Finally, the developer commits a bug fix and

triggering tests that encode the developer’s knowledge. Relative to

the original bug report, these developer-provided triggering tests

may be more extensive, more focused, or more likely to test the root

cause. In practice, a FL or APR tool will be run on user-provided

triggering tests that appear in bug reports. Developer-provided

triggering tests may reduce the search space for the bug, and hence

evaluating a FL or APR tool on developer-provided triggering tests

may yield inaccurate results.

Previous evaluations (cf., [25, 36]) using datasets constructed

from version control history implicitly assumed that developer-

provided triggering tests are characteristic of user-provided trigger-

ing tests from bug reports, which are available before the defect is

localized and fixed. However, it is possible that an evaluation of FL

and APR techniques on user-provided triggering tests would yield

different outcomes than previous evaluations. If so, previous rank-

ings and absolute performance results of FL and APR techniques

would need to be revised, and practitioners and researchers should

choose different techniques to use and improve. It is also possible

that an evaluation of FL and APR techniques on user-provided trig-

gering tests would yield the same outcomes, thus resolving any
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uncertainty. Either result is of significant scientific interest. As Rizzi

et al. note in their paper on Klee [32], unexamined assumptions can

result in questionable research claims and wasted research effort.

This paper seeks to quantitatively and qualitatively compare trig-

gering tests in bug reports against those that developers commit to-

gether with bug fixes. Specifically, it considers two types of trigger-

ing tests for the Defects4J dataset: (1) user-provided triggering tests

reflecting knowledge contained in the initial bug reports, and (2)

developer-provided triggering tests possibly written after the fix and

obtained from the version control system. This paper further inves-

tigates the effect of the type of triggering test on the effectiveness of

FL andAPR techniques. The experiments are based on six previously

studied FL techniques and two previously studied APR techniques.

This paper answers the following four high-level questions:

(1) Do user-provided and developer-provided triggering tests

differ in terms of size, code coverage, and assertion strength?

(2) Does the type of the triggering test affect the performance

of automated fault localization techniques?

(3) Does the type of the triggering test affect the performance

of automated program repair techniques?

(4) Does test separation (i.e., creating a new, separate triggering

test vs. augmenting an existing test) affect the performance of

automated fault localization and program repair techniques?

This paper’s main conclusions are as follows:

(1) Developers adopted only 20% of user-provided triggering

tests as submitted in bug reports; usually, developers commit

a more specific triggering test along with the bug fix. As a

result, developer-provided triggering tests differ significantly

from user-provided triggering tests in terms of size, code

coverage, and assertion strength.

(2) Developer-provided triggering tests overestimate absolute

FL performance, in particular the ability to rank a faulty

statement in the list of the top-n most suspicious statements.

Differences in FL performance between techniques are in-

significant for developer-provided and user-provided trig-

gering tests.

(3) Developer-provided triggering tests overestimate the effec-

tiveness of APR techniques: user-provided triggering tests

lead to fewer correct patches and increased repair time.

(4) Developers merged the defect-triggering functionality into

an existing test for 22% of the defects. Test separation im-

proves FL performance for these defects.

This paper’s contributions and organization are as follows:

• A publicly available set of 100 user-provided triggering tests

for the Defects4J dataset (section 3).

• A quantitative and qualitative comparison of the character-

istics of user-provided and developer-provided triggering

tests (section 4).

• An empirical study on the effect of the type of triggering

test on automated fault localization (section 5.1).

• An empirical study on the effect of the type of triggering

test on automated program repair (section 5.2).

• An empirical study on the effect of test separation on auto-

mated fault localization and program repair (section 5.3).

• A discussion of implications and an outline of possible re-

search directions (section 6).

@Test

public void userTest() throws Exception {

assertEquals("\uD83D\uDE30", StringEscapeUtils.escapeCsv("\uD83D\uDE30"));

}

(a) User-provided triggering test, extracted from the bug report.

249 @Test

250 public void testLang857() throws Exception {

251 assertEquals("\uD83D\uDE30", StringEscapeUtils.escapeCsv("\uD83D\uDE30"));

252 // Examples from https://en.wikipedia.org/wiki/UTF-16

253 assertEquals("\uD800\uDC00", StringEscapeUtils.escapeCsv("\uD800\uDC00"));

254 assertEquals("\uD834\uDD1E", StringEscapeUtils.escapeCsv("\uD834\uDD1E"));

255 assertEquals("\uDBFF\uDFFD", StringEscapeUtils.escapeCsv("\uDBFF\uDFFD"));

256 }

(b) Developer-provided triggering test.

466 public abstract class CharSequenceTranslator {

.

.

. for (int pt = 0; pt < consumed; pt++) {

476 - pos += Character.charCount(Character.codePointAt(input, pt));

477 + pos += Character.charCount(Character.codePointAt(input, pos));

478 }

479 }

480 }

(c) The committed bug fix.

Figure 1: Triggering tests and bug fix for the Lang-6 defect

in Defects4J. The developer adopted the single failing input

provided by the user on line 251, but added three additional

calls to escapeCsv.

2 MOTIVATING EXAMPLE

To illustrate the differences between user-provided and developer-

provided triggering tests, consider the Lang-61 defect from the

Defects4J dataset. A user reported the following issue:

I found that there is bad surrogate pair handling in the CharSequenceTranslator.

This is a simple test case for this problem. \uD83D\uDE30 is a surrogate pair.

The user also provided a triggering test (fig. 1a), explained that this

test produces a StringIndexOutOfBoundsException, and attached a

patch that fixes the bug. A developer addressed this issue and com-

mitted a bug fix (fig. 1c) alongwith a different triggering test (fig. 1b),

which contains four calls to escapeCsv. This test includes the one

test input provided by the user, plus three additional inputs.

In this case, the user-provided test differs from the final test that

the developer committed after fixing the bug: the user-provided test

is a single example, whereas the developer-provided test is more

comprehensive. These differences may have a significant effect on

the absolute and relative performance of FL or APR techniques.

3 SUBJECTS

Our study employs the Defects4J dataset, version 1.1.0. Defects4J

contains 395 defects, each with a developer commit that fixes it

and at least one triggering test that fails before the fix but passes

after the fix. We omitted one of Defects4J’s projects, Chart, because

it contains too few bugs with issue tracker entries to be used in

section 3.2; this left 5 projects and 369 bugs, summarized in table 1.

3.1 Linking Defects to Bug Reports

Each bug-fixing commit in Defects4J references an issue-tracker

ID, which corresponds to a closed issue that is labeled as a bug. For

each defect in Defects4J, we automatically extracted the referenced

issue-tracker ID from the commit log and built a mapping from

Defects4J’s bug ID to the corresponding issue-tracker ID and URL.

1Issue tracker entry: https://issues.apache.org/jira/browse/LANG-857

288

https://issues.apache.org/jira/browse/LANG-857


Comparing Developer-Provided to User-Provided Tests for . . . ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Table 1: Subjects from the Defects4J dataset.

The lines of code (LOC), number of JUnit tests, and number of assertions in

JUnit tests, reported for the most recent project version in Defects4J. All

LOC counts in the paper are non-comment, non-blank lines, measured with

sloccount (http://www.dwheeler.com/sloccount).

Project Code LOC Test LOC @Test assert

Closure 91K 85K 7,929 8,936

Lang 22K 38K 2,242 13,117

Math 84K 86K 3,581 9,512

Mockito 11K 20K 1,457 1,882

Time 28K 53K 4,132 17,658

Total 236K 282K 19,341 51,105

3.2 Extracting User-Provided Triggering Tests

For 100 defects in the Defects4J dataset, wemanually extracted user-

provided triggering tests from the issue trackers. In some cases the

bug report already contained an executable test case. In other cases,

we added scaffolding to code found within the bug report, such

as a method body, import statements, variable declarations, and

@Test annotations, or we transformed printf/println statements

and stated assertions about the output into assert statements. In

yet other cases, we elaborated an English description into a test

case. The result is a single, triggering JUnit test case, which fails on

the buggy version and passes on the fixed version of the defect.

For each project in Defects4J, we arbitrarily selected defects and

examined the corresponding bug reports until we had extracted 20

tests. We examined 118 bug reports and discarded 18, or 15%. In 12

cases, the user provided no test or the user-provided test did not

fail, but nonetheless the developers accepted the bug report and

committed a fix. In 6 cases, the user provided a test that failed and

the developers committed a fix, but the user-provided test continued

to failÐin other words, the developer did not fix the user’s test. An

example of the latter case is Mockito-292. The fix-commit log de-

scribes a fix (Fix for issue 229 in the describeTo phase of the Same

matcher), but the commit does not pass the user-provided test.

When a developer fixes a bug or runs a FL or APR tool, a first

step is to incorporate the user-provided test into the project’s test

suite. This enables the developer to reproduce and investigate the

bug, and to ensure that no regression bugs are introduced. We

performed this step manually, integrating the user-provided test

into the pre-fix version of the developer’s test suite at the same

location the developer modified the test suite in the bug-fixing

commit. This means that if the developer added a new triggering

test in the commit, we added the user-provided test as a separate

test; if the developer merged the defect-triggering functionality into

an existing test, we merged the user-provided test into the same

test at the same location. This enables a fair comparison between

(1) the information the developer had available before fixing the

bug, which is the previous test suite plus the user’s test, and (2)

the final developer-provided test suite, which might incorporate

knowledge the developer obtained during the bug-fixing process.

An automated step verified that each extracted user-provided

test triggers the defect on the buggy version and passes on the fixed

versionÐin isolation and integrated into the pre-fix test suite.

2Issue tracker entry: https://code.google.com/archive/p/mockito/issues/229

Table 2: Summary statistics about triggering tests.

The number of assertions is underapproximated for developer-provided

testsÐeach test harness method, which may contain multiple assert state-

ments, counts as a single assertion.

Project Developer-provided User-provided

min max mean median min max mean median

Number of tests

Closure 1 8 2.6 1 1 1 1.0 1

Lang 1 2 1.4 1 1 1 1.0 1

Math 1 28 3.0 1 1 1 1.0 1

Mockito 1 7 2.2 1.5 1 1 1.0 1

Time 1 8 2.5 1 1 1 1.0 1

Number of assertions

Closure 1 7 2.2 2 1 2 1.5 1

Lang 0 26 4.1 2 1 8 1.6 1

Math 0 4 1.5 1 0 4 1.3 1

Mockito 0 3 1.3 1 0 5 1.3 1

Time 0 17 6.2 5 0 5 1.4 1

Test LOC

Closure 3 61 16.9 11 7 25 14.9 14

Lang 3 40 14.7 10 3 27 11.1 10

Math 3 27 12.4 12 3 45 10.7 7

Mockito 3 40 11.1 8 4 30 13.7 12

Time 6 48 24.0 24.5 3 75 17.7 11.5

4 QUANTITATIVE & QUALITATIVE ANALYSIS

Our overall goal is to compare defect-triggering tests provided by a

user (submitted along with a reported issue) and defect-triggering

tests provided by a developer (committed to the version control

system along with a fix). This section reports on our quantitative

and qualitative analysis of these two types of defect-triggering tests.

4.1 Quantitative Analysis

Methodology For 100 defects, we computed the following test

characteristics for the user-provided and developer-provided tests:

Test size:Wemeasured lines of code, number of assertions (assert,

assertEquals, etc.), and number of test cases.

Code coverage: We measured statement coverage on the class(es)

changed by the bug fix (modified classes). We measured coverage on

the buggy program version, as FL and APR techniques do. Coverage

measurements on the modified classes indicate how targeted a trig-

gering test isÐhow comprehensively it covers the defective class.

Mutation score: We measured the mutation score on the patched

classes of the fixed program version, using Major [15] v1.3.2 with its

default settings. Computing the mutation score for all classes would

be computationally expensive, and the average mutation score

across many classes would wash out differences on the patched

classes. Specifically, we divided the number of mutants detected by a

triggering test by the number of mutants covered by that test, which

indicates the strength of the triggering test’s assertions [10, 18].

We performed a paired t-test (paired over the set of defects) and

computed the Cohen’s d effect size for each measure and project.

We chose parametric statistical measures for statistical power, given

a relatively small sample size of 20 defects per project, and because

we did not observe serious violations of normality.
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Statement coverage Mutation score

Closure Lang Math Mockito Time Closure Lang Math Mockito Time
0

25

50

75

100

Triggering test: Developer−provided User−provided

(a) Statement coverage ratios and mutation scores for the developer-

provided and user-provided tests.

Ratio Closure Lang Math Mockito Time

Coverage ÐÐ ÐÐ 0.43* 0.39* ÐÐ

Mutation 0.41* 0.51** 0.65*** ÐÐ 0.44*

(b) Summary of Figure 2a showing which differences are statistically and

practically significant. The numbers are Cohen’s d effect size (small: <

.5, medium: < .8, or large: >= .8), and the asterisks indicate statistical

significance (*: p < .1; **: p < .05; ***: p < .01). Entries with a dash

indicate a statistically insignificant difference.

Figure 2: Differences in code coverage ratios and mutation

scores between developer-provided and user-provided tests.

Results On average, developer-provided tests contain more lines

of code and assertions for all projects, except Mockito. Table 2

summarizes test quantity, size, and strength (assertions). All defects

have only one user-provided triggering test, and the majority of

defects have one developer-provided triggering test.

Figure 2 shows both code coverage and mutation scores. Most

user-provided tests are less targeted to the defect: they cover more

code in the defective class, even though they are generally smaller

(table 2). Most user-provided tests have weaker assertions: they

have a lower mutation score. The differences are consistent, but

not statistically significant for each individual project.

4.2 Qualitative Analysis

We performed a qualitative analysis to characterize the developer-

provided and user-provided tests, and their relationship.

Methodology We manually analyzed all triggering tests and

corresponding issue-tracker entries. We determined the following

characteristics, which are summarized in Table 3:

• Project: What project does the issue report pertain to?

• Reproducibility: Can we reproduce the submitted issue and

create a triggering test from the bug report using the method-

ology of section 3.2? We may not be able to reproduce an is-

sue because the submitter provided no test, the user-provided

test passes on the buggy version, or the user-provided test

fails on the fixed version.

• Clarity: Is the issue clearly and unambiguously described?

Possible values are łLowž (a vague verbal description of the

problem, without inputs or outputs), łMediumž (a description

of output, such as a stack trace, but no inputs), or łHighž (a

Table 3: Characteristics of the user-provided tests.

Characteristic Possible values

Project Closure, Lang, Math, Mockito, Time

Reproducibility Yes, No Test, Passes Buggy, Fails Fixed

Clarity Low, Medium, High

Executability No, Partial, Full

Adoption No, As Is, Minimized, Augmented

New Test New, Existing, Both

Submitter User, Developer

Patch No, Yes

complete test case with inputs and outputs). This indicates

the conceptual difficulty of creating a triggering test.

• Executability: Does the triggering test execute or does it

need further work to turn into a working test case? This

indicates the mechanical, non-conceptual effort of creating

a triggering test. Possible values are łNož (no source code

provided), łPartialž (source code fragment that might be

missing imports, method declarations, etc.), or łFullž (copy-

pasteable source code).

• Adoption (of instructions): This compares the instructions

(non-assert statements) in the user-provided test to the in-

structions in the developer-provided test. The developer-

provided test might be completely unrelated to the user-

provided one, it might have the same instructions, or it might

be a variant of the user-provided test. For the latter, it might

contain additional instructions, omit some, or both.

• Adoption (of assertions) This compares the assertions in the

user-provided test to the assertions in the developer-provided

test. The possible values are the same as for Adoption (of in-

structions).

• New Test: Did the developer create a new test or merge the

defect-triggering functionality into an existing test?

• Submitter: Is the issue submitter a user or a developer of the

project? We considered anyone with at least five commits to

the code base to be a developer.

• Patch: Did the report include a proposed fix for the issue?

Results Table 4 summarizes the characteristics. The majority of

the reported issues had high clarity, and 87% of the issues included

a partially or fully executable test case. For 78% of the issues, a

developer added a new triggering test, but only 20% of the user-

provided tests were adopted as is. Figures 1 and 3 give concrete

examples for each category of adoption:

• No (fig. 3a): The developer implemented a more targeted test,

which uses different inputs, and added assertions.

• As is (fig. 3b): The user-provided test throws an unexpected

exception. The developer adopted this concise test as is.

• Minimization (fig. 3c): The OpenMapRealMatrix instantiation

should cause an integer overflow exception. The developer

minimized this test by removing five out of six lines and

declaring the expected exception. There is no need for the

additional code, which should be unreachable.

• Augmentation (fig. 1): The motivating example in section 2

shows an augmented user-provided test.
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Table 4: Summary of qualitative characteristics per project and submitter type (user vs. developer).

Project Tests Clarity Executability Adoption New test Patch? Submitter

Instructions Assertions

Lo Med Hi No Part Full No As is Min Aug No As is Min Aug New Exist Both No Yes User Dev

Closure 20 0 0 20 0 11 9 4 2 5 9 3 4 0 13 13 3 4 20 0 20 0

Lang 20 0 5 15 2 14 4 2 3 1 14 2 4 1 13 14 4 2 14 6 13 7

Math 20 0 2 18 3 11 6 1 8 5 6 3 5 2 10 15 4 1 12 8 19 1

Mockito 20 5 6 9 4 14 2 5 7 3 5 7 8 2 3 18 1 1 16 4 17 3

Time 20 4 0 16 4 11 5 7 0 3 10 6 2 1 11 18 2 0 18 2 19 1

Total 100 9 13 78 13 61 26 19 20 17 44 21 23 6 50 78 14 8 80 20 88 12

Submitter Tests Clarity Executability Adoption New test Patch?

Instructions Assertions

Lo Med Hi No Part Full No As is Min Aug No As is Min Aug New Exist Both No Yes

User 88 6% 10% 84% 9% 63% 28% 19% 19% 18% 43% 22% 24% 6% 49% 78% 13% 9% 80% 20%

Dev 12 33% 33% 33% 42% 50% 8% 17% 25% 8% 50% 17% 17% 8% 58% 75% 25% 0% 83% 17%

1 - CharSequence cs1 = "1 < 2";

2 - CharSequence cs2 = CharBuffer.wrap("1 < 2".toCharArray ());

3 - System.out.println(StringEscapeUtils.ESCAPE_HTML4.translate(cs1 ));

4 - System.out.println(StringEscapeUtils.ESCAPE_HTML4.translate(cs2 ));

5 + final LookupTranslator lt = new LookupTranslator(

6 + new CharSequence [][] { { new StringBuffer("one"),

7 + new StringBuffer("two")}});

8 + final StringWriter out = new StringWriter ();

9 + final int result = lt.translate(

10 + new StringBuffer("one"), 0, out);

11 + assertEquals("Incorrect codepoint consumption", 3, result );

12 + assertEquals("Incorrect value", "two", out.toString ());

(a) No adoption (Lang-4)

1 StrBuilder sb = new StrBuilder(

2 "\n%BLAH%\nDo more stuff\neven more stuff\n%BLAH%\n");

3 sb.deleteAll("\n%BLAH%");

4 assertEquals("\nDo more stuff\neven more stuff\n", sb.toString ());

(b) Adopted as is (Lang-61)

1 - OpenMapRealMatrix m =

2 new OpenMapRealMatrix (3, Integer.MAX_VALUE );

3 - m.setEntry(0, 0, 2);

4 - m.setEntry(2, 2, 3);

5 - // Should print "2.0" , but instead it prints "3.0"

6 - System.out.println(m.getEntry(0, 0));

(c) Adopted after minimization (Math-45)

Figure 3: Examples for test adoption.
Differences between user-provided and developer-provided tests are shown

in unified diff format. Method signatures are omitted, and the given defect

IDs (e.g., Lang-4) refer to Defects4J defects.

5 EFFECT ON AUTOMATED DEBUGGING

We conducted an experiment using six fault localization and two

automated program repair techniques to investigate whether the ob-

served differences between user-provided and developer-provided

triggering tests affect their accuracy. Recall from section 3.2 that

we obtained the non-triggering tests and the developer-provided

triggering tests from the version control repository and the user-

provided triggering tests from the issue tracker.

5.1 Effect on Fault Localization

Methodology Our analysis follows the evaluation methodol-

ogy proposed by Pearson et al. [30] and reuses its experimental

infrastructure. Specifically, our anaylsis considers the following FL

techniques, debugging scenario, and effectiveness measure:

FL techniques: We selected six widely studied FL techniques:

Barinel, DStar, Jaccard, Ochiai, Op2, and Tarantula.

Debugging scenario: We consider the łbest-casež debugging sce-

nario: localizing any one defective statement is sufficient [30].

FL effectiveness: A FL technique outputs a list of statements

ranked by suspiciousness; its absolute score is the rank of the first

defective statement in that list. We measured the absolute score

for each FL technique and defect. Based on the absolute score, we

measured top-n, the best current measure of FL effectiveness, which

determines how often a technique reports the first defective state-

ment in the top-n suggested statements. According to two recent

studies, top-5 and top-10 are relevant for practitioners [20], and

top-200 is relevant for APR [23].

We ran each FL technique twiceÐonce with the developer-

provided triggering tests and once with the user-provided trig-

gering tests, each run together with all non-triggering tests. We ran

it on the defective version, which is the version before the commit

with the bug fix. Each triggering test fails.

Results FL techniques consistently perform worse for user-

provided tests. Figures 4 and 5 show differences between developer-

provided and user-provided triggering tests for each FL technique.

Figure 4 shows a density plot of the absolute scores. For each

FL technique, the scores are statistically significantly worse when

using user-provided tests, and the effect size is small (paired t-test;

p < 0.01; Cohen’s d between 0.2 and 0.5). We did not observe

project-specific differences (those plots are omitted for space).

Figure 5 shows what fraction of all defects each FL technique

can usefully localize. More specifically, it shows what fraction have

a score of ≤ 5, ≤ 10, and ≤ 200. The top-n performance of all

FL techniques is 5ś14% less for user-provided tests. We observed
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Barinel DStar Jaccard Ochiai Op2 Tarantula

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000
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Figure 4: Comparing fault localization performance when using developer-provided vs. user-provided triggering tests.
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Figure 5: Comparing fault localization performance when

using developer-provided vs. user-provided tests. Top-n is

the percentage of defects whose defective statements appear

within the top n of the technique’s suspiciousness ranking.

some differences in relative performance when comparing FL tech-

niques. For example, when considering top-5, Jaccard and Ochiai

perform best on developer-provided tests, but Barinel and Taran-

tula perform best on user-provided tests. However, none of these

differences is statistically significant. Overall, our results corrobo-

rate previous findings that most spectrum-based FL techniques are

equally effectiveÐthe choice of the scoring formula matters little.

5.2 Effect on Automated Program Repair

Methodology Our analysis considers the following APR tech-

niques and effectiveness measures for 18 defects.

APR techniques: We selected two APR techniques that were previ-

ously evaluated on Defects4J, using developer-provided triggering

tests: jGenProg/astor [24], a search-based repair technique, and

ACS [38], a synthesis-based technique. We used the implementa-

tions provided by the techniques’ authors3.

APR effectiveness: To evaluate the differences between developer-

provided and user-provided tests, we selected three measures: (1)

the ability to generate a t-adequate (test-suite-adequate) patch that

passes all tests, (2) patch correctness, and (3) repair time. To deter-

mine correctness, we applied the same criteria used by previous

evaluationsÐmanual inspection and comparisonwith the developer-

committed fix. For repair time, we averaged the measures over 10

runs, again for consistency [24]. We also inspected the tests and

generated patches to understand how the differences in the tests

affected the patch generation.

3https://github.com/SpoonLabs/astor/, https://github.com/Adobee/ACS

Defects: Of the 100 defects for which we successfully extracted

user-provided triggering tests, ACS or jGenProg generated a patch

for 74. To increase the number of repairable defects for this analysis,

we extracted an additional 11 user-provided triggering tests for the

remaining Defects4J defects that were previously repaired [24, 38].

Overall, we evaluated the APR techniques on 18 defects.

We ran each APR technique twiceÐonce with the developer-

provided triggering tests and oncewith the user-provided triggering

tests, each run together with all non-triggering tests. We adopted

the timeouts reported in the previous evaluations for comparability.

Specifically, we used a 3-hour timeout for jGenProg and for ACS.

Consistent with previous evaluations, we limited the search for a

repair to the defective package. To provide a consistent environment

for the APR experiments, we created Docker images containing

Defects4J and the APR tools, and executed them on a cluster with

controlled resources per job (4GB RAM, 2 CPUs).

Results User-provided tests result in fewer generated patches,

fewer correct patches, and a substantial increase in repair time.

Table 5 gives the results for patch production, patch correctness,

and repair time for jGenProg and ACS.

With developer-provided tests, jGenProg generated a patch for

7 defectsÐone of which is correct. With user-provided tests, jGen-

Prog generated a patch for 6 defectsÐnone of which is correct. For

Math-2, jGenProg generated the same incorrect patch regardless of

the type of triggering test. For Math-60, jGenProg generated a dif-

ferent incorrect patch. Finally, jGenProg’s repair time substantially

increased with user-provided tests. For example, it increased from

203 to 979 seconds for Math-2, while generating the same incorrect

patch. In two cases, Math-8 and Math-95, the type of triggering test

had no noticeable effect on the repair time. For Math-8, the instruc-

tions in both triggering tests were identical, but the user-provided

test had one less assertion. For Math-95, the developer-provided

test contained more instructions and assertions.

With developer-provided tests, ACS generated a patch for 12

defectsÐ11 of which are correct. With user-provided tests, ACS

generated a patch for 6 defectsÐ5 of which are correct. For Lang-24,

Math-35, Math-82, Math-85, and Math-93, ACS generated a correct

patch regardless of the type of triggering testÐin all cases, the

user-provided test was adopted as is. For Math-3, ACS generated

a correct patch with the developer-provided test but an incorrect

4For the 100 defects, prior work [24, 38] reported 9 successful repairs, but we were
unable to replicate a repair for Time-4 and Math-7, using jGenProg.
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Table 5: Evaluation of patch production (Patch?), patch cor-

rectness (Correct), and repair time in seconds (Time) for

developer-provided and user-provided tests.

Correctness is based on the methodology of previous evaluations: manual

inspection and comparison with developer fix. The tables indicates whether

a patch is correct or test suite adequate (t-adeq).

Defect Patch? Correct Time Tests

Identical?Dev User Dev User Dev User

Repaired with jGenProg/astor

Math-2 yes yes t-adeq t-adeq 203 979 no

Math-5 yes timeout correct NA 189 NA no

Math-8 yes yes t-adeq t-adeq 242 258 no

Math-49 yes yes t-adeq t-adeq 321 2288 no

Math-60 yes yes t-adeq t-adeq 25 82 no

Math-80 yes yes t-adeq t-adeq 25 * yes

Math-95 yes yes t-adeq t-adeq 18 20 no

Repaired with ACS

Lang-7 yes error correct NA 178 NA no

Lang-24 yes yes correct correct 148 * yes

Math-3 yes yes correct t-adeq 503 482 no

Math-5 yes timeout correct NA 910 NA no

Math-25 yes timeout correct NA 1751 NA no

Math-35 yes yes correct correct 1844 * yes

Math-82 yes yes correct correct 1356 * yes

Math-85 yes yes correct correct 83 * yes

Math-93 yes yes correct correct 289 * yes

Math-97 yes error t-adeq NA 313 NA no

Math-99 yes error correct NA 846 NA no

Time-15 yes timeout correct NA 224 NA no

one with the user-provided test. Overall, the precision of ACS with

user-provided tests drops from 92% to 42%.

After inspecting the tests and generated patches, we observed

that even small differences in failing inputs can have large differ-

ences in patch correctness. For example, in Math-3, the developer-

provided test contains the following assertion:
assertEquals(a[0] * b[0], MathArrays.linearCombination(a, b), 0d))

As a result, the following correct patch is generated:
if (len == 1) {return a[0] * b[0];}

In contrast, the user-provided test contains the following assertion:
assertEquals(1, MathArrays.linearCombination(a, b), 1e-10))

As a result, the following incorrect patch is generated:
if (len == 1) {return 1;}

5.3 Effect of Test Separation

In 14% of cases, developers added instructions and/or assertions to

an existing test (section 4.2). Would FL and APR tools have worked

better if developers had created new tests instead?

Methodology For each of the 14 defects (Table 4) for which

the developer extended an existing test, we extracted the defect-

triggering functionality of our merged user-provided test into a new,

separate triggering testÐkeeping the non-triggering functionality

in the existing test. In other words, we added the user-provided

triggering test as a separate test to the pre-fix version of the existing

developer test suite. This simulates what the developer could have

done instead. (This might have undermined the organization of the

test suite, but we do not consider such costs here, and a developer

could put the new test in amore logical spot after fixing the bug.)We

only considered the user-provided triggering tests for this analysis

because they are the information available before the bug fix.

We repeated the experiments described in sections 5.1 and 5.2 for

the 14 defects to compare the merged and separate user-provided

triggering tests. The overall goal is to study the benefits of creating

a new, small, more focused test vs. augmenting an existing testÐ

that is, the effect of test separation on the performance of the FL

and APR techniques.

Results All FL techniques consistently score better on separate

triggering tests. There is a particularly large increase for top-5

(from 6% to 38%), but not top-10, which suggests that many rank-

6ś10 defects are now in the top-5. Figures 6 and 7 show relative

differences between merged and separate user-provided triggering

tests for each FL technique.

Only two defects (Lang-7 and Lang-24) considered in section 5.2

had a merged user-provided test. For Lang-7, ACS failed to gen-

erate a patch, using merged or separate user-provided tests. For

Lang-24, ACS generated the same correct patch, using merged or

separate user-provided tests. The boosted FL performance of sepa-

rate triggering tests may benefit jGenProg, and search-based APR

in general; we leave a deeper investigation for future work.

6 DISCUSSION

This section discusses implications of our results and observations

from our study on fault localization and automated program re-

pair research. It further outlines research directions and discusses

limitations and threats to validity.

6.1 Implications for Automated Debugging

Fault Localization A significant amount of effort has been

devoted to finding better FL techniques, and some of these novel

techniques were reportedly effective in evaluations on artificial

faults. However, when evaluated on real faults, the best performing

FL technique changes and differences between FL techniques are

mostly negligible [19, 30]. Our results confirm prior findings and

suggest that evaluating FL techniques on real faults and user-

provided triggering tests further diminishes these already small

differences. For developer-provided tests, there is a 7% performance

difference between the best and worst FL technique, considering the

top-5 measure. For user-provided tests, this difference drops to 1%.

A concrete recommendation for improving FL techniques is to

separate triggering tests into as many distinct tests as possible.

We conjecture that merged tests yield poor FL performance for

two reasons. First, a FL technique might not be able to effectively

distinguish between defective and non-defective code when run

with a large triggering test that achieves high code coverage. Second,

once a triggering test fails, the remaining statements and assertions

of that test are not executed, and hence cannot provide information

about whether these would succeed or fail. FL techniques should

be improved by processing and separating triggering tests before

fault localization is performed. Indeed, this recommendation is

consistent with Xuan and Monperrus’ suggestion of using test case

purification to improve FL techniques [40].
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Figure 6: Comparing fault localization performance when using separate vs. merged triggering tests.
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Figure 7: Comparing fault localization performance when

using merged vs. separate triggering tests. Top-n is the per-

centage of defectswhose defective statements appearwithin

the top n of the technique’s suspiciousness ranking.

Automated Program Repair APR techniques produce fewer

(correct) patches with user-provided triggering tests, which differ

from developer-provided triggering tests in two ways. First, user-

provided tests tend to be less targetedÐthat is, they achieve higher

code coverage on the defective class. Second, user-provided tests

tend to have weaker assertions. Prior work on APR quality and

applicability (e.g., [27, 34]) primarily focused on code coverage as

an effectiveness measure for the entire test suite used to guide the

repair. Our results suggest that future studies should 1) separately

measure code coverage for triggering and non-triggering tests and

2) measure assertion strength in addition to code coverage. The

latter is particularly important because tests with poor assertions,

even with very high code coverage, are likely to miss many defects,

and hence result in incorrect patches [17, 23].

We observed timeouts and generally an increased repair time

with user-provided triggering tests. Since fault localization is an

integral part of APR techniques, FL performance may constrain

effective repair. For example, researchers often use the top-200

measure for evaluating FL performance in the context of program

repair. Our results for the top-200 measure show a 15% drop in

FL performance when using user-provided tests. This indicates

that when applying APR techniques in practice, their absolute

performance may be much lower than existing benchmarks would

suggest. Indeed, we observed a 4x increase in repair time with

user-provided triggering tests.

Passing pre-fix tests can be wrong Our analysis revealed that

the pre-fix test suite for 7% of the defects (Closure-{1, 85, 86, 89},

Math-{5, 102}, Mockito-6) contained tests that passed on the pre-fix

but failed on the post-fix version of the code. These tests encoded the

wrong specification and needed to be fixed with the code, which the

developer did. The user-provided triggering test for these defects are

all correctly failing on the pre-fix and passing on the post-fix version.

This means that realistic automated program repair is infeasible

for these defects due to contradictory tests. While some of these

defects arguably represent feature request, others are examples

for tests written to test the current implementation rather than

the specification. APR techniques should account for the fact that

non-triggering tests could be invalid and possibly identify such

tests, which contradict the triggering test(s).

6.2 Implications for Defect Benchmarks

Our findings for Defects4J are likely to affect other defect bench-

marks constructed from version control history. In some cases, the

effects may be even stronger. For example, for APR benchmarks

such as ManyBugs [9], a common assumption is as follows: łWe

use all available viable tests, even those added after the version

under consideration, under the assumption that the most recent set

of tests correspond to the most correct known specification of the

program.ž Our analysis, which replaces a single developer-provided

triggering test from a single version with the original user-provided

triggering test, suggests that adding many more viable and trigger-

ing tests from the latest version points to the possibility of even

greater inaccuracy in estimating APR performance.

6.3 Observed Differences in Communities

By inspecting the bug reports associated with the defects in De-

fects4J, we had the opportunity to observe different practices and

behaviors associated with different communities.

Closure The users always submitted (partially) executable trig-

gering tests with high clarity due to the requirements set for bug

reporting. Closure is a compiler that optimizes JavaScript code, and

its tests usually map input source code to expected output source

code or compiler errors/warnings. As a consequence, themajority of

bug reports did not have a long conversation, but rather łClosure’s

output is unexpected for the following input source codež, followed

by łFixed in revision X‘ž. All bug reports contained executable code,

but in some cases a user could not provide an expected output, as

there are many ways to generate correct code. The majority of user-

provided tests were adopted after augmentationÐvery few as-is.
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Lang The users often submitted a minimal triggering test to-

gether with an analysis of the defect or a suggested patch. Com-

pared to other projects, most users seemed to be very knowledge-

able about the internals of the Lang library and put more research

into why each defect was a defectÐmany bug reports exhibited

long conversations after the initial bug report. As a result, many

user-provided triggering tests were adopted after augmentation.

For example, the bug report for Lang-13 included a patch and fully

executable triggering test, which was still augmented to cover a

void.class case. Developers were very active in submitting bug

reports themselves (35%). However, somewhat surprisingly, devel-

opers were less likely to provide triggering tests in the bug report

and were more likely to file bug reports with poor clarity.

Math The users often submitted a very targeted triggering test

together with a suggested patch, yielding the largest number of

provided patches across all studied projects. In other words, the

users exhibited a strong domain expertise and presumably already

had knowledge about the root cause of the defect. As a result, de-

velopers adopted many user-provided triggering tests as-is or with

minor modifications, yielding the largest number of as-is adoptions

across all studied projects.

Mockito The users often submitted convoluted triggering tests,

because Mockito is a mocking framework and many of its tests

require extensive scaffolding. For example, a test needs to define

a mocked class or interface, attributes and methods of interest,

and mocked behavior in terms of attribute values and method-call

sequences. Given this complexity, the user-provided tests were

often adopted as-is. In other cases, the developer separated the user-

provided triggering test into multiple triggering tests or changed it

to reuse existing scaffolding originally created for other tests.

Time The users often submitted a complete triggering test that

was neither minimized nor targeted toward the defective code. In

other words, the users mostly reported a defect without knowledge

about its root cause. As a result, developers often committed (en-

tirely) different triggering tests, yielding the smallest number of

as-is adoptions across all studied projects. In these cases, it seems

plausible that the developer first localized (and maybe even fixed)

the defect before providing a more specific triggering test. In cases

where the developer partially adopted the user-provided test, s(he)

augmented it with many more assertions.

6.4 Research Directions
Test variants in empirical studies When evaluating FL or APR

techniques against a benchmark, we may be lured by fragile victo-

ries in experimental settings [31] that fail to generalize to realistic

settings. Our results show that even small changes to a trigger-

ing test’s construction (failing input, assertion strength, and test

separation) can largely affect automated debugging effectiveness.

Moving forward, researchers can increase the robustness and

reliability of their evaluations by using variants of triggering tests

with different levels of assertion strength and different instances of

failing inputs. These test variants can be created automatically or

drawn from bug reports. To support this effort, we have augmented

the Defects4J dataset with the ability to run FL and APR technique

evaluations with 100 user-provided triggering tests. Using these

test variants in evaluations will strengthen future implementations

and provide a more realistic view on FL and APR performance.

Automated extraction of triggering tests Despite the valu-

able and structured information contained in a bug report [6], the

process of extracting a test from the report and reproducing the bug

remains a manual one. Moreover, only 26% of the user-provided

triggering tests, found in the inspected bug reports, where fully exe-

cutable. However, an additional 61%were partially executable, mean-

ing that with slight addition of scaffolding (e.g., method body, test

annotations, or import statements), they became fully executable.

A tangible and achievable research goal would be to focus on au-

tomating the process of extracting fully executable tests from partially

executable ones, found in bug reports. Why? Bug reports are often

the first step in the process of fixing a defect, and many benefits can

emerge from automating the extraction of executable triggering

tests. For example, a newly extracted triggering test could initiate

the process of fault localization and program repairÐautomatically

generating a pull request if a candidate patch was found. The bug

submitter also has the opportunity to gain feedback and improve

the quality of the bug report, e.g., if the bug can not be reproduced.

Furthermore, our analysis showed that for six defects, a user pro-

vided a triggering test and a developer committed a fix, but the

user-provided test continued to fail. In other words, the developer

did not fix the issue reported by the user (e.g., Mockito-29). Au-

tomating the process of test extraction can prevent overlooking a

user-provided triggering test.

What about the remaining 13% of defects for which the bug

report contained only natural text or examples? One promising

direction is to combine neural machine translation with program

synthesis to create a technique that, given a bug report, can synthe-

size an executable triggering test. Neural machine translation has

been successfully used to translate code changes (diffs) to natural

text commit summaries [13]. Similarly, neural machine translation

also has been applied to synthesize simple programs given a natural

language query [22].

6.5 Limitations and Threats to Validity

Construct validity The most important threat to construct va-

lidity relates to the test extraction process. It is possible that we

interpreted something that was not the user’s intention, which

could have been due to poor clarity in the report, or a lack of deep

expertise by the paper authors who interpreted the report. To miti-

gate this threat, we recorded the clarity and executability of every

user-provided test in order to track our perceived understanding of

the bug report (table 4). Most tests (78%) had high clarity. Further-

more, at least two authors of this paper reviewed each qualitative

measurement; whenever they disagreed, the authors examined the

bug report more closely.

For the 13/100 bug reports with łno executabilityž (table 4),

we read the user bug report and created a triggering test. We

might have misinterpreted the bug report. To mitigate this threat,

three evaluators (not authors of this paper) examined all 100

bug reports and extracted user-provided triggering tests. In 99

cases, their majority vote was that the extracted user-provided

test corresponds to the bug report. The only exception was

for Lang-15, whose bug report was closed with a developer-

provided fix and later re-opened to handle a different bug.

5Issue tracker entry: https://issues.apache.org/jira/browse/LANG-747
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The triggering test and commit in Defects4J relate to the lat-

ter. This cannot be determined by reading the bug report text

alone; we determined it by examining the commits as well.

In our empirical evaluations, we selected several measures for FL

and APR effectiveness. These measures may not be good proxies for

actual effectiveness and applicability. However, we have selected

the most accepted measures to date. For example, we report on

top-n rather than EXAM scores for FL performance.

Internal validity Threats to internal validity relate to the ques-

tion whether our experiments properly isolate the studied effect

of the type of triggering test. To control for possible confounding

factors, we integrated each user-provided triggering test into the

pre-fix version of the project’s test suite at the exact same location

that the developer modified in the bug-fixing commit. This means,

that all non-triggering tests and the test suite structure remained

identical. Additionally, we investigated the effect of test separation.

External validity A general threat to external validity is the

representativeness of the selected subjects. Our study used open-

source projects from Defects4J, which may not be representative of

other software projects, development processes, or issue reporting

behavior. Most of the studied projects are libraries or developer

tools. The nature of these projects may have encouraged users

to disproportionately submit triggering tests along with the bug

report. We selected 6 widely studied spectrum-based FL techniques,

but other kinds of FL techniques, such as IR-based FL techniques

may perform differently. We selected 2 APR techniques, one search-

based technique and one synthesis-based technique that focuses

on precise repair of program conditions. As a result, our findings

may not apply to other types of APR techniques.

Further, our evaluation makes a conservative assumption: at the

time a developer runs a FL or APR tool, the developer only relies on

the user-provided triggering test. It is possible that this assumption

is wrong: a developer may first write additional triggering tests

before attempting to automatically localize and fix the bug. Our

results may not carry over to such a use case.

7 RELATED WORK

Rizzi et al. note in their paper on Klee [32] that unexamined as-

sumptions can result in questionable research claims and wasted

research effort. When examined, assumptions about use cases and

developers have been successful in establishing new research di-

rections for the automated debugging community [2, 29]. Similarly,

several researchers have highlighted the importance of consider-

ing contextual factors in empirical studies in software engineering,

such as organization factors [3], sensitivity factors [35], and hu-

man aspects of testing and debugging [7, 29]. This paper examines

implicit assumptions about fault localization and automated pro-

gram repair, focusing on the difference between user-provided and

developer-provided tests.

Fault localization research has a long history of techniques and

evaluations. The most common techniques are spectrum-based [1,

4, 11, 14], but slice-based [39], model-based [37], and mutation-

based [26, 28] techniques have also been proposed and evaluated.

To our knowledge, this study is the first to compare differences in

triggering tests and explain the impact on fault localization and

automated program repair.

Several benchmarks containing seeded or real faults with trigger-

ing tests exists [8, 9, 12, 16]. Some benchmarks are constructed by

hand-seeding or from mutation. Other benchmarks use real bugs

from open source repositories. Defects4J [16] provides 395 real

bugs for 6 real-world programs ranging between 22K and 91K LOC.

Moreover, all 6 programs feature developer-provided tests and each

bug is reproducible with an exposing test case. Other benchmarks,

such as ManyBugs [9], have a more aggressive stance for obtaining

test cases. ManyBugs provides 185 real bugs for 9 real-world pro-

grams ranging between 97K and 1,099K LOC. The programs also

have a comprehensive test suite, with a total of 10,468 test cases.

In the benchmark, all łviable testsž, even those added many years

later, are used when evaluating a defect. Finally, DBGBench [7],

provides a dataset containing 27 real errors and a full debugging

history of professional developers solving defects. Unfortunately,

none of these fault databases provides user-provided tests.

Many studies have investigated how developers file bug reports

and what information they contain. Bug reports contain more than

natural text; they also contain stack traces, tests, source code, and

patches that can be automatically extracted [6]. Including these

elements increases the chances that a bug will be resolved [5].

Rather than using triggering tests, researchers have explored using

information retrieval (IR) techniques to search code by using terms

from bug reports in order to perform fault localization [33] or even

combining IR techniques with spectrum-based techniques [21].

8 CONCLUSION

For decades, researchers have envisioned how automated debug-

ging tools could help developers localize and repair defects in code.

This paper used triggering tests extracted from bug reports to eval-

uate the effectiveness and practicality of these approaches and

observed noticeable differences with previous evaluations. In par-

ticular, the triggering tests developers provide after fixing a bug

are often not representative of the ones users provide before the

bug is found and fixed. As a result, fault localization and automated

program repair tools perform worse on user-provided tests. Incor-

porating user-provided triggering tests into empirical evaluations

is one step toward realistic evaluations, which are important to

enable automated debugging reach its full potential.

This paper draws on several observations, in particular from

manual analysis of more than 100 bug reports and triggering tests,

and discusses several implications that may help define future re-

search directions. For example, researchers building automated

debugging tools should consider additional factors, such as resolv-

ing conflicting tests prior to an attempted repair, accounting for

triggering tests that expose a defect but only weakly assert on the

correct behavior, and automatically separating triggering tests.

Programmers have been waiting a long time for usable auto-

mated debugging tools. We believe that, to further advance the

state-of-the-art in this area, we must steer research toward more

promising directions that take into account triggering tests that are

likely to be encountered in real settings.
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