
FRAFOL: FRAmework FOr Learning mutation testing

Pedro Tavares
Faculty of Engineering, University of Porto

Porto, Portugal
up201406991@edu.fe.up.pt

Ana Paiva
INESC TEC, Faculty of Engineering, University of Porto

Porto, Portugal
apaiva@fe.up.pt

Domenico Amal�tano
University of Naples "Federico II"

Naples, Italy
domenico.amal�tano@unina.it

René Just
University of Washington

Seattle, USA
rjust@cs.washington.edu

Abstract

Mutation testing has evolved beyond academic research, is deployed

in industrial and open-source settings, and is increasingly part of

universities’ software engineering curricula. While many mutation

testing tools exist, each with di�erent strengths and weaknesses,

integrating them into educational activities and exercises remains

challenging due to the tools’ complexity and the need to integrate

them into a development environment. Additionally, it may be de-

sirable to use di�erent tools so that students can explore di�erences,

e.g., in the types or numbers of generated mutants. Asking students

to install and learn multiple tools would only compound technical

complexity and likely result in unwanted di�erences in how and

what students learn.

This paper presents FRAFOL, a framework for learning muta-

tion testing. FRAFOL provides a common environment for using

di�erent mutation testing tools in an educational setting.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging; • Social and professional topics→ Software engineering

education.

Keywords

Software Testing, Mutation Testing, Teaching Mutation Testing,

Teaching Tool

ACM Reference Format:

Pedro Tavares, Ana Paiva, Domenico Amal�tano, and René Just. 2024.

FRAFOL: FRAmework FOr Learning mutation testing. In Proceedings of

the 33rd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3650212.3685306

1 Introduction

Mutation testing has evolved beyond academic research and is

now used in various open-source and industrial settings (e.g., [3,

16]). The increasing complexity of software systems and the need

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3685306

for robust testing methodologies have made mutation testing an

essential skill for software engineers [1].

Mutation analysis involves creating faulty program variants

(mutants) usingwell-de�ned rules (mutation operators) on syntactic

descriptions to systematically alter syntax or related objects [14].

This technique has been e�ectively employed in research to evaluate

test e�cacy and aid in testing and debugging. Given an original

program and a corresponding test suite, mutation analysis creates

a set of mutants for the original program, and the mutant-detection

ratio of the test suite indicates its e�ectiveness. Empirical studies

support using mutants as proxies for real faults [2, 4, 13]. Another

application of mutation analysis is automated debugging, where

mutants help locate faults or iteratively modify a program until it

meets a speci�cation, such as passing all tests in a test suite [9, 10].

Mutation testing builds on top of mutation analysis and uses

undetected mutants as test goals to enhance a test suite. Mutation

testing was once considered impractical due to the large number of

mutants that can be generated, even for small programs. However,

it is increasingly adopted in the industry thanks to new approaches

like incremental, commit-level mutation, suppression of unpro-

ductive mutants, and focusing on individual mutants rather than

overall mutant detection ratios [3, 15, 17].

Teaching mutation testing is crucial to prepare the next gener-

ation of software engineers to e�ectively employ this technique

and improve software quality. As mutation testing becomes more

and more prevalent in industry, there is a need to educate software

engineers about this technique, and applications of program muta-

tions more generally. However, teaching mutation testing presents

several challenges [8]. Software testing can often be very complex

and requires a deep understanding of the codebase and its princi-

ples. In practice, mutation testing can be resource-intensive and

require a considerable amount of e�ort to setup, con�gure, and

integrate it into an existing development work�ow. Integrating mu-

tation testing into an existing software engineering curriculum is

challenging, as it requires balancing learning goals and theoretical

concepts with technical complexity and realistic applications.

In software engineering education, the scienti�c community has

grown interested in developing tools that strike the right balance

between usability and realism and enable students to learn software

testing techniques e�ectively. Two examples for innovative tools are

CodeDefenders [7] and Web-CAT [5]. CodeDefenders introduced a

game-based learning approach. Students play as “Attackers”, insert-

ing defects into a class under test, or “Defenders”, writing tests to

detect and guard against these defects. This interactive setup boosts

This work is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License.

1846

https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0009-0007-8442-7579
https://orcid.org/0000-0003-3431-8060
https://orcid.org/0000-0002-4761-4443
https://orcid.org/0000-0002-5982-275X
https://doi.org/10.1145/3650212.3685306
https://doi.org/10.1145/3650212.3685306


ISSTA ’24, September 16–20, 2024, Vienna, Austria Tavares et al.

engagement and sharpens test-writing skills, improving student

performance. Web-CAT (Web-based Center for Automated Testing)

automates grading and emphasizes quality in student-written test

cases. It promotes an understanding of expected code behaviour

through test-driven development principles. Web-CAT’s detailed

feedback enhances learning outcomes and reduces grading work-

load, making it a valuable tool in software testing education. Cod-

eDefenders and Web-CAT aim to provide students with practical,

engaging, and e�ective learning experiences.

Many software testing tools are readily available, but they often

lack comprehensive features and consistency in integration into

curricula, necessitating multiple setup procedures and extensive

prior knowledge. In the context of mutation testing for Java, nu-

merous tools have been proposed in the literature, each with its

unique features and capabilities, but the primary focus of these

tools is applications in practice or research [1]. There is a shortage

of tools that enable students to quickly gain hands-on experience

with various mutation testing tools and start writing tests.

This paper proposes FRAFOL, a “FRAmework FOr Learning mu-

tation testing”. FRAFOL aims to simplify the setup and con�gura-

tion requirements by o�ering a uniform environment for learning,

and experimenting with, mutation testing.

2 The FRAFOL tool

This section explains FRAFOL’s design rationale and provides im-

plementation details. FRAFOL provides a common environment

throughwhich a student can use two di�erent mutation tools, Major

and PIT.We chose these twomutation testing tools because they are

widely used in research and practice and they have complementary

features (e.g., source code vs. bytecode mutations). FRAFOL is not

speci�c to these two tools, and others could be integrated. FRAFOL

shields students from technical complexity but nonetheless allows

them to observe key di�erences, such as types of mutants and how

di�cult it is to detect them. Furthermore, we implemented FRAFOL

as an extension of Defects4J [12], which is a collection of repro-

ducible Java bugs with an infrastructure of tools and scripts and

which is widely used in research and education. We chose Defects4J

because it provides uniform access to numerous realistic subjects,

including compiling and testing them.

FRAFOL aims to provide an easy-to-install and easy-to-use envi-

ronment where students can immediately start analyzing mutants

and writing tests to detect them without spending time �guring

out the intricacies of the mutation testing tools.

FRAFOL provides the following eight main features:

F1: Provides a web interface.

F2: Allows selecting a project version from the Defects4J.

F3: Allows selecting a mutation tool to work with (Major [11]

or PIT [6]).

F4: Provides an IDE to i) analyze the Java code of the selected

project version and ii) develop a JUnit test class.

F5: Allows compiling the JUnit test class.

F6: Supports executing the selected mutation tool and the anal-

ysis of the results.

F7: Evaluates and shows the following metrics: the number of

generated mutants, the number of killed mutants by the

JUnit test class, the number of live mutants, and the code

coverage achieved by the JUnit test class in terms of LoC

coverage and branch coverage.

F8: Shows details about live mutants to aid students in their mu-

tation testing e�ort. These details include an ID, the mutated

source code’s line number, the mutated method’s name, and

the applied mutation operator.

2.1 Design and Implementation

FRAFOL uses the Defects4J benchmark as its core component. De-

fects4J already interfaces with the Major mutation testing tool,

and it provides automation for various analyses, including muta-

tion analysis and code coverage. Additionally, Defects4J provides

uniform access to a repository of Java projects, each with corre-

sponding test cases produced by developers. However, Defects4J

is command-line driven and integration into a development envi-

ronment (e.g., for mutation testing) is left to end users. Figure 1

shows a UML component diagram of the FRAFOL tool: FRAFOL

extends Defects4J by integrating the PIT mutation tool and provid-

ing an Adapter to expose a uni�ed Common Mutation API for both

mutation tools. The adapter provides a uni�ed interface, allowing

Figure 1: UML Component Diagram of the FRAFOL tool

di�erent mutation testing tools to be executed using the same com-

mands. The Adapter also exposes a Project Gathering API providing

features for querying the repository of Defects4J projects. FRAFOL

also provides a WebGUI component, implemented in Python us-

ing Flask. We designed the GUI to provide a rich and interactive

web interface that simpli�es the use of the Defects4J Framework

APIs and o�ers an integrated development environment. We chose

this approach because previous work reported that students and

instructors prefer such a setup for educational purposes [1].

FRAFOL is integrated into a Docker-based, containerized ar-

chitecture to enhance end-user experience by simplifying deploy-

ment and ensuring consistency and e�cient dependency manage-

ment. Figure 2 shows the Docker-based container architecture im-

plemented, allowing FRAFOL to operate in a controlled environ-

ment. As illustrated, Docker implements a client-server architecture,

where the client communicates with the Docker daemon to build

and run containers. The container executes FRAFOL on an instance

of Ubuntu. The WebGUI manages interaction with FRAFOL, acting

as the communication bridge between the client and the GUI within

the container.

1847



FRAFOL: FRAmework FOr Learning mutation testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 2: UML Deployment Diagram of the FRAFOL tool

Figure 3: FRAFOL Mutation analysis integrated environment

2.2 User Interface

In the current con�guration, where the Docker is installed in the

users’ local machine, FRAFOL can be accessed through the browser

at http://localhost:8000/.

The �rst webpage of FRAFOL shows a list of Java projects avail-

able in Defects4J and their corresponding versions. A user starts

by importing a desired project version, which results in FRAFOL

obtaining and compiling the corresponding source code, and adding

the version to the list of available project versions. Afterward, a user

can Open an imported project version and also select a mutation

testing tool to work with.

FRAFOL then con�gures an environment for the user selection

and redirects the user to FRAFOL’s primary web interface (Figure 3).

Figure 3 in (A) presents two tabs: one with a dashboard featuring

infographics on code coverage, condition coverage, and mutation

score data, and another with the code of the class under mutation.

(B) also includes two tabs, one displaying the source code for the

class under mutation and the other showing existing developer-

written test cases.

The user can execute the mutation tool by clicking the Mutate

button (C). FRAFOL launches the mutation tool and runs the test

suite against the generated mutants. The user may opt to run

only existing developer tests, newly developed student tests, or

both. The compilation results for “Student Tests” class may be

1848

http://localhost:8000/


ISSTA ’24, September 16–20, 2024, Vienna, Austria Tavares et al.

seen at (F). FRAFOL presents a table containing data on all remain-

ing live mutants (D). This data comprises mutantId, codeLine,

mutantOperator, and classMethod. Given the provided informa-

tion, the user can then analyze any live mutants, inspect the source

code that was mutated, and write test cases that detect live mu-

tants. If a test case detects a previously live mutant, such mutant is

removed from the table.

2.3 Tool Availability

FRAFOL is available at https://github.com/projFRAFOL/projFRAFOL

(see README.md for details), and a video demonstration is available

at: https://youtu.be/JMvGskRQre8. The initial version of FRAFOL

supports the Gson-15 and Cli-32 project versions. We are currently

working on a generalization that will allow other Defects4J project

versions to be included.

3 Validation

We conducted two user studies—a formative study that informed

the design of FRAFOL, and a summative study that evaluated the

current version of the tool. The formative study, involving 35 stu-

dents, using an early prototype, revealed a need for the following

key improvements: (1) easy installation through Dockerization, (2)

streamlined and uni�ed GUI, (3) editing capabilities for test cases

in the same web environment, and (4) a side-by-side view of code

and tests. The summative evaluation asked four MSc students to

evaluate various aspects of FRAFOL, such as its usability and com-

plexity (see Table 1). These students had previously completed a

software testing course where they learned about mutation testing.

The study was carried out remotely and involved three steps:

First, the students installed FRAFOL, following the provided

guide, which took approximately 15 minutes. Second, one of the

authors gave a 10-minute presentation on FRAFOL. Third, the stu-

dents were given a list of four tasks to complete within 35 minutes:

(1) Select the Gson project, speci�cally version 15, and choose

the PIT mutation testing tool.

(2) Analyze only the existing developer tests and assess their

code coverage and mutation score (C in Figure 3).

(3) Analyze the results (D in Figure 3) and write a JUnit test

class (B in Figure 3) to target a speci�c mutant form the

list of the live mutants (D in Figure 3).

(4) Reevaluate the mutation coverage and score, this time in-

cluding developer and student test cases (C in Figure 3).

Finally, the students completed a questionnaire1, which consisted

of closed questions with responses based on a 5-level Likert scale,

ranging from 1 (strongly disagree) to 5 (strongly agree). Table 1

shows the aggregated results of the questionnaire.

The results indicate that students highly appreciated the Interface

(4.3) and expressed a strong sense of Satisfactionwhile using the

tool (4.2). They believed that FRAFOL could signi�cantly enhance

their learning Effectiveness (4.1) and found it Useful (4.0). The

Usability and Learnability of FRAFOL both received a score

of 3.9. Although these are positive results, there is room for im-

provement (e.g., by providing a short video tutorial). The System

feedback received a score of 3.4. Since the user study, we have

1https://forms.gle/V2C3tqaZWK4YsYkK9

Table 1: Students’ assessment of FRAFOL

Usability 3.9

Learnability 3.9

Satisfaction 4.2

Complexity 1.4

E�ectiveness 4.1

Usefulness 4.0

System feedback 3.4

Interface 4.3

implemented a new mechanism to assist students further: by se-

lecting a live mutant in the summary table, students are redirected

to the speci�c line of source code that was mutated. The perceived

Complexity was rated at 1.4. As a negatively phrased question,

the low score means that students do not �nd the tool complex or

di�cult to understand, which is a positive outcome.

4 Conclusions and Future Work

This paper presented FRAFOL (Framework For Learning Mutation

Testing). FRAFOL builds on top of the Defects4J framework, inte-

grates the PIT and Major mutation testing tools, and o�ers a uni�ed

interface formutation testing. The tool’sWebGUI andDocker-based

deployment streamline usability and accessibility, making it ideal

for teaching and learning mutation testing. FRAFOL aims at pro-

viding a user-friendly environment that supports educators and

students in mastering mutation testing techniques. Moreover, the

preliminary experimentation with four students provided valuable

insights into the usability and e�ectiveness of FRAFOL, setting a

promising foundation for further re�nement and expansion of the

tool in educational settings.

Future work includes enhancing FRAFOLwith advanced features

to aid mutation testing, such as displaying code coverage metrics, vi-

sualizing control �ow graphs of the code under test, and conducting

analyses on live and productive mutants. Additionally, we aim to

streamline accessibility by enabling installation on remote servers,

eliminating the need for local Docker installations. Furthermore,

plans involve expanding experimentation to a broader student base

and integrating FRAFOL into courses tailored for industrial pro-

fessionals, thereby enhancing its practical utility and educational

impact. Finally, we plan to incorporate a dedicated set of GUIs

within FRAFOL designed for teachers. This will make it easier to

manage and monitor students’ progress, provide comprehensive

analytics on their performance, and o�er intuitive interfaces for

creating and administering mutation testing tasks. Lastly, we intend

to integrate additional mutation tools in FRAFOL.

Acknowledgments

This work is being funded by the ENACTEST Erasmus+ project

number 101055874. René Just’s work is supported in part by Na-

tional Science Foundation grants CCF-1942055 and CNS-2120070.

1849

https://github.com/projFRAFOL/projFRAFOL
https://youtu.be/JMvGskRQre8
https://forms.gle/V2C3tqaZWK4YsYkK9


FRAFOL: FRAmework FOr Learning mutation testing ISSTA ’24, September 16–20, 2024, Vienna, Austria

References
[1] Domenico Amal�tano, Ana C. R. Paiva, Alexis Inquel, Luís Pinto, Anna Rita

Fasolino, and René Just. 2022. How do Java mutation tools di�er? Commun. ACM
65, 12 (nov 2022), 74–89. https://doi.org/10.1145/3526099

[2] James H Andrews, Lionel C Briand, and Yvan Labiche. 2005. Is mutation an
appropriate tool for testing experiments?. In Proceedings of the 27th international
conference on Software engineering. 402–411.

[3] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What It Would Take to Use Mutation
Testing in Industry—A Study at Facebook. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
268–277. https://doi.org/10.1109/ICSE-SEIP52600.2021.00036

[4] Yiqun T Chen, Rahul Gopinath, Anita Tadakamalla, Michael D Ernst, Reid Holmes,
Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the relationship
between fault detection, test adequacy criteria, and test set size. In Proceedings of
the 35th IEEE/ACM international conference on automated software engineering.
237–249.

[5] P. J. Clarke, A. A. Allen, T. M. King, E. L. Jones, and P. Natesan. [n. d.]. Using
a web-based repository to integrate testing tools into programming courses. In
Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, SPLASH ’10. 193–
200. https://doi.org/10.1145/1869542.1869573

[6] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: a practical mutation testing tool for Java (demo). In
Proceedings of the 25th International Symposium on Software Testing and Analysis
(Saarbrücken, Germany) (ISSTA 2016). Association for Computing Machinery,
New York, NY, USA, 449–452. https://doi.org/10.1145/2931037.2948707

[7] Gordon Fraser, Alessio Gambi, and José Miguel Rojas. 2020. Teaching Software
Testing with the Code Defenders Testing Game: Experiences and Improvements.
In 2020 IEEE International Conference on Software Testing, Veri�cation and Vali-
dation Workshops (ICSTW). 461–464. https://doi.org/10.1109/ICSTW50294.2020.
00082

[8] V. Garousi, M. Felderer, M. Kuhrmann, K. Herkiloğlu, and S. Eldh. 2020. Exploring
the industry’s challenges in software testing: An empirical study. Journal of
Software: Evolution and Process 32, 8 (2020). https://doi.org/10.1002/smr.2251

[9] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34–67.
https://doi.org/10.1109/TSE.2017.2755013

[10] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program
repair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (Beijing, China) (IS-
STA 2019). Association for Computing Machinery, New York, NY, USA, 19–30.
https://doi.org/10.1145/3293882.3330559

[11] René Just. 2014. The Major mutation framework: E�cient and scalable mutation
analysis for Java. In Proceedings of the 2014 international symposium on software
testing and analysis. 433–436.

[12] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 international symposium on software testing and analysis. 437–440.

[13] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association
for Computing Machinery, New York, NY, USA, 654–665. https://doi.org/10.
1145/2635868.2635929

[14] A. Je�erson O�utt and Roland H. Untch. 2001. Mutation 2000: Uniting the Orthog-
onal. Springer US, Boston, MA, 34–44. https://doi.org/10.1007/978-1-4757-5939-
6_7

[15] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does
mutation testing improve testing practices?. In Proceedings of the 43rd Interna-
tional Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press,
910–921. https://doi.org/10.1109/ICSE43902.2021.00087

[16] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Practical
mutation testing at scale: A view from google. IEEE Transactions on Software
Engineering 48, 10 (2021), 3900–3912.

[17] Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René Just. 2018.
An Industrial Application of Mutation Testing: Lessons, Challenges, and Research
Directions. In 2018 IEEE International Conference on Software Testing, Veri�cation
and Validation Workshops (ICSTW). 47–53. https://doi.org/10.1109/ICSTW.2018.
00027

Received 2024-07-05; accepted 2024-07-26

1850

https://doi.org/10.1145/3526099
https://doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://doi.org/10.1145/1869542.1869573
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/ICSTW50294.2020.00082
https://doi.org/10.1109/ICSTW50294.2020.00082
https://doi.org/10.1002/smr.2251
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1145/3293882.3330559
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1109/ICSTW.2018.00027

	Abstract
	1 Introduction
	2 The FRAFOL tool
	2.1 Design and Implementation
	2.2 User Interface
	2.3 Tool Availability

	3 Validation
	4 Conclusions and Future Work
	Acknowledgments
	References

