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ABSTRACT

Code coverage is a measure of the degree to which a test suite

exercises a software system. Although coverage is well established

in software engineering research, deployment in industry is often

inhibited by the perceived usefulness and the computational costs

of analyzing coverage at scale. At Google, coverage information is

computed for one billion lines of code daily, for seven programming

languages. A key aspect of making coverage information actionable

is to apply it at the level of changesets and code review.

This paper describes Google’s code coverage infrastructure and

how the computed code coverage information is visualized and

used. It also describes the challenges and solutions for adopting

code coverage at scale. To study how code coverage is adopted and

perceived by developers, this paper analyzes adoption rates, error

rates, and average code coverage ratios over a five-year period,

and it reports on 512 responses, received from surveying 3000

developers. Finally, this paper provides concrete suggestions for

how to implement and use code coverage in an industrial setting.

CCS CONCEPTS

• Software and its engineering→ Software configurationman-

agement and version control systems; Software testing and

debugging;Empirical software validation;Collaboration in soft-
ware development.
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1 INTRODUCTION

Code coverage is a well established concept in computer science,

and code coverage criteria such as statement coverage, branch

coverage, and modified condition/decision coverage (MC/DC [11])

are well-known measures for test suite adequacy. For example,

MC/DC-adequacy is required for safety-critical systems (RTCA

DO-178). Code coverage has been known and applied for decades.
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For example, Piwowarski et al. [25] mention that IBM performed

code coverage measurements in the late 1960s, and Elmendorf [13]

provided a reasonably robust strategy for using branch coverage in

testing operating systems as early as 1969.

While code coverage is commonly used in software engineering

research, its effectiveness at improving testing in practice is still

a matter of debate [14, 18] and its adoption in industry is not uni-

versal. A large survey at IBM on their use of code coverage [25]

revealed that once code coverage was adopted, it led to an increase

in test suite quality; however, ease of use and scalability are primary

factors in whether code coverage is adopted in the first place. Exist-

ing industry reports on code coverage are typically based on code

bases of manageable size with one or two programming languages.

However, even at that scale, these reports raise concerns about the

cost-effectiveness of code coverage [20]. In particular, they raise

concerns that both the machine resources required to compute cov-

erage as well as the developer time required to process the results

are too costly compared to the increase in test suite quality.

Addressing and overcoming these concerns, Google has spent

more than a decade refining its coverage infrastructure and imple-

menting and validating the academic approaches. Google’s infras-

tructure supports seven programming languages and scales to a

codebase of one billion lines of code that receives tens of thousands

commits per day. The paper details Google’s code coverage infras-

tructure and discusses the many technical challenges and design

decisions. This coverage infrastructure is integrated at multiple

points in the development workflow. This paper describes this inte-

gration, and reports on the adoption and perceived usefulness of

code coverage at Google, by analyzing five years of historical data

and the 512 responses, received from surveying 3000 developers.

In summary, this paper makes the following contributions:

• It demonstrates that it is possible to implement a code cov-

erage infrastructure based on existing, well-established li-

braries, seamlessly integrate it into the development work-

flow, and scale it to an industry-scale code base.

• It details Google’s infrastructure for continuous code cover-

age computation and how code coverage is visualized.

• It details adoption rates, error rates, and average code cover-

age ratios over a five-year period.

• It reports on the perceived usefulness of code coverage, ana-

lyzing 512 responses from surveyed developers at Google.

The remainder of this paper is structured as follows. Section 2

provides background information and terminology. Section 3 details

Google’s code coverage infrastructure. Section 4 describes the adop-

tion of code coverage and its usefulness, as perceived by Google

developers. Section 5 discusses related work. Finally, Section 6 con-

cludes and discusses future work.
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Figure 1: The life cycle of a changelist (CL).

2 BACKGROUND

Code coverage is a well established concept, but also a broad term

that requires a more precise definition when applied in practice.

This section defines important terms and concepts used throughout

the paper.

2.1 Projects and Changelists

The following two concepts are required to understand the devel-

opment workflow at Google and its integration of coverage:

• Project: A project is a collection of code that the project own-

ers declare in a project definition file. The project definition

contains a set of code paths (i.e., patterns describing a set

of files) and a set of test suites and organizational metadata

such as a contact email address.

• Changelist: A changelist is an atomic update to Google’s

centralized version control system. It consists of a list of files,

the operations to be performed on these files, and possibly

the file contents to be modified or added.

Figure 1 illustrates the life cycle of a changelist using an example.

CL 1 represents the starting state of the codebase. Suppose that at

this point a developer issues a change command, which creates a

new changelist, CL 2. Initially, this new changelist is in a “pending”

state and the developer can edit its contents. As the developer edits

CL 2, it progresses through so called “snapshots” (represented in

the diagram as S1 to S5). Once the developer is satisfied with the

contents of a changelist, they issue a mail command which initiates

the code review process. At this point, automated analyses includ-

ing code coverage are started and a notification is emailed to the

reviewers. The changelist is now said to be “in review”. Through

the review process the contents may change, leading to different

snapshots. When the reviewers and the author approve of a change-

list, the author issues a submit command. In the example above,

this command first merges CL 2 with the current submitted state

of the codebase (CL 4) and, if the merge is successful, runs more

automated tests. Only if the merge is successful and all tests pass is

the changelist submitted to the codebase. To ensure that changelist

numbers in the codebase are monotonically increasing, CL 2 is also

renamed to CL 5 on submit. (CL 2 becomes a pointer and anyone

accessing it is forwarded to CL 5.) If the submit command fails, the

changelist returns back to the “in review” state and the CL author

can continue to change its contents, usually addressing the failure.
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Figure 2: Distribution of number of statements per line for

C++, Java, Go, and Python in Google’s codebase.

Multi-statement lines are predominantly for loops and idiomatic returns.

Lines with more than 5 statements are removed for clarity; in total, they

contribute less than 1%.

2.2 Code Coverage

Google’s code coverage infrastructure measures line coverage,

which is the percentage of lines of source code executed by a set

of tests. Note that blank lines and comments do not count as lines

of code, and hence do not contribute towards the denominator. Be-

cause Google enforces style guides for all major languages [15], line

coverage strongly correlates with statement coverage in Google’s

codebase. Figure 2 gives the distribution of number of statements

per line. Most lines contain a single statement, and lines with more

than one statement predominantly contain loops (initialization,

condition, update) and non-trivial, nested return statements.

For C++, Java, and Python, Google’s code coverage infrastruc-

ture also measures branch coverage, which is the percentage of

branches of conditional statements (e.g., if statements) executed by

a set of tests. Branch coverage is equivalent to edge coverage for

all conditional edges in the control flow graph [27].

This paper distinguishes between two coverage scopes:
• Project coverage: Line coverage of a project’s test suites

over that project’s code paths. Project coverage is computed

once per day for a given project.

• Changelist coverage: The union of line coverage of all test

suites of all projects that are affected by the changelist—that

is, all projects whose code paths appear in the changelist diff.

Changelist coverage is computed one or more times for a

given changelist. Within the changelist coverage scope, this

paper distinguishes between:

– Overall coverage: The code coverage of the whole con-

tents of the files in a changelist.

– Delta coverage: The code coverage of only the lines that

were modified or added in a changelist. (Deleted lines no

longer exist, and hence cannot be covered.)
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Figure 3: Google’s code coverage infrastructure.

2.3 Unit Tests

This paper considers only code coverage of tests that execute on

a single machine, usually in a single process. At Google, these are

colloquially referred to as unit tests. This paper does not consider
code coverage of more complex (i.e., integration or system) tests

that span multiple machines. Since integration tests focus on inte-

gration points between (sub)systems and not the internals of each

(sub)system, line coverage is not the best suited coverage measure

for these tests.

3 INFRASTRUCTURE

This section describes Google’s code coverage infrastructure, which

has been actively developed since 2012. It has evolved since to

improve compatibility and address many challenges. Figure 3 gives

a high-level architectural overview, showing the four main layers of

the infrastructure, which are described in the subsequent sections.

3.1 Coverage Instrumentation

Google’s code coverage infrastructure leverages a combination of

well established code coverage libraries and internally developed

solutions to support coverage computation for a variety of program-

ming languages. Specifically, the infrastructure uses:

• C++: gcov [7].
• Java: JaCoCo [5] and additional, internal support infrastruc-

ture for Android.

• Python: Coverage.py [2].

• Go: Go has built in coverage support (go -cover) [6].
• JavaScript: Istanbul [4] and an internally developed cov-

erage library, plus significant support infrastructure built

around them.

• Dart: Dart-lang has built in coverage support [3].

• TypeScript: Re-uses much of the JavaScript infrastructure.

To address the structural challenges of integrating all of these

libraries and unifying their output, external libraries were modified

or built on top. In particular, all coverage libraries were either mod-

ified to produce lcov-formatted output, or custom infrastructure

was developed to transform the output of a library into lcov format.

The lcov format is the text-based tracefile format that gcov [7]

and it’s frontend lcov use to store coverage information. Google’s

code coverage infrastructure uses a slightly modified version of the

format with slightly different branch coverage notation that does

not require internal GCC IDs to identify the branch.

Table 1: Percentage of developers manually invoking blaze
coverage at least once in the given time period. All numbers

are the average value in 2018.

Freqency %

Daily manual invocation of blaze coverage 0.5%

Quarterly manual invocation of blaze coverage 10%

Yearly manual invocation of blaze coverage 30%

On the conceptual side, lcov supports line and branch coverage,

but other types of code coverage can be simulated; for example,

function coverage can be simulated by only marking the first line

of each function as instrumented. Focusing on line coverage proved

to be a good practical choice, because it strongly correlates with

statement coverage (recall Figure 2) and is easy to visualize and

comprehend; Section 3.4 provides details.

3.2 Build System Integration

Google uses Blaze as its core build system. Blaze is an internal ver-

sion of the Bazel build system [17] and supports building binaries,

running tests, and collecting code coverage information.

Oneway to trigger coverage computation is to invoke the coverage
command for a set of code paths, using the Blaze command-line

interface. Blaze automatically handles the coverage computation,

abstracting over the implementation details of the underlying in-

strumentation libraries. Table 1 shows that manual invocations are

rare. For example, on a daily basis only about 0.5% of developers

manually invoke blaze coverage.

3.3 Coverage Automation

Google’s code coverage infrastructure provides further automation

on top of Blaze to integrate coverage computation into the regular

development workflow. A developer can easily configure automated

coverage computation for a project by setting a single boolean

option (enable_coverage=true) in the project definition.

Once coverage is enabled for a project, an automated system

computes project coverage for it once per day. The automated

system also computes changelist coverage for all changelists that

directly change the code in that project. For each changelist, at least

one coverage computation is run the very first time the changelist is

sent for review. If the changelist contents change during the review

process, at least one more coverage computation is run after the

changelist is finally submitted to the codebase.

Any developer can request a coverage computation for a change-

list at any point with a single push of a button in the code review

UI. In practice, the author or reviewer of a changelist request a

new computation if its content changes significantly during the

review process. If a changelist modifies code in multiple projects,

the results are combined.

The coverage automation infrastructure consumes the lcov-
formatted output of the coverage libraries and individual test runs,

and produces a merged coverage report. Instead of storing the in-

dividual lcov outputs, only two (run-length encoded) sequences

are stored for each file—one that encodes whether a line was in-

strumented and one that encodes whether an instrumented line
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Figure 4: Visualizing line coverage during code review.

The line numbers (highlighted with the red rectangle) are colored to visualize
coverage information. A line number is colored (1) green if that line is

covered, (2) orange if that line is not covered, and (3) white if that line

is not instrumented. Note that the lines themselves are also colored. This

is, however, not related to coverage but rather to code changes. A line is

colored with a different shade of green if it was added in this changelist; it

is colored red if it was deleted. Visualizing both coverage and code-change

information using colors is tricky. We found that using green and red for

both coverage and code changes confused developers—using green and

orange for coverage worked much better.

was covered. The raw lcov outputs are then discarded. This com-

pression is an important resource optimization and addresses a

major scalability challenge. Any other more verbose format would

be prohibitively expensive to store at scale. In the seven years that

the two-sequence encoding has been used, it has never limited the

usability of the infrastructure; more expressive formats are likely

not necessary.

A further technical challenge lies in ensuring successful cover-

age computations. To improve the success rate, project coverage is

computed only on submitted changelists for which the Google Test

Automation Platform (TAP [12]) already determined that all tests

pass. For changelist coverage, the infrastructure waits a preconfig-

ured amount of time (currently 10 minutes) for TAP to determine if

any test fails, in which case coverage will not be computed. While

this avoids futile attempts to compute code coverage in the presence

of failing tests, it does not guarantee that the coverage computation

succeeds. Executing tests with coverage instrumentation enabled

requires more resources and changes the execution environment.

Addressing these differences to further improve the success rate

required hundreds of specific fixes that target individual corner

cases within the project code or configuration.

3.4 Visualization and Data Analytics

Google’s code coverage infrastructure visualizes coverage informa-

tion in several different ways: Changelist coverage is visualized in

Critique, Google’s code review system. Project coverage is visu-

alized in CodeSearch [1] and in the developers’ IDEs. Finally, the

infrastructure provides a trend visualization for project coverage

and the coverage data can be queried for data analytics.

Visualization In Critique, changelist coverage is shown for each

project that is affected by the change and reported in a summary.

Line coverage is surfaced visually for each line, as shown in figure 4,

and aggregated coverage is reported numerically for each file and

for the whole changelist, as shown in figure 5. Branch coverage is

provided for languages for which the underlying libraries support

it, visually in the code and as an aggregate.

Figure 5: Visualizing coverage aggregates during code review.

For each file, |Cov.| gives the overall coverage and ∆ Cov. gives the delta

coverage (i.e., coverage only for added or modified lines in that file).

Figure 6: Visualizing line coverage during code search.

A line is colored (1) green if it is covered, (2) red if it is not covered, and (3)

white if it is not instrumented. Note that unlike Figure 4, this visualization

does not provide any other color coded information, so green and red for

coverage works well.

An internal version of CodeSearch [1] helps Google developers

navigate the repository, which contains over 1 billion lines of code.

CodeSearch makes it easy to navigate files, cross-reference symbols,

and see the version history. It is also convenient for rendering line

coverage, as shown in Figure 6. The underlying data comes from

the daily project coverage computations and is visualized only for

files that have not changed since the last computation.

Code editors and IDEs are another natural choice for visualiz-

ing code coverage. Using the same data source as for CodeSearch,

we provide custom support for many editors. For example, our

metaplugin for Vim is open sourced [8].

Because line numbers are present in almost all tools that deal

with code, line coverage is a good choice for visualization. Although

the coverage integration is conceptually the same for all program-

ming languages, there are nuanced differences between program-

ming languages. For example, whether the opening curly brace of

a block counts towards line coverage varies between languages,

sometimes even within a single language based on the code before

the brace. However, in our experience these conceptual differences

do not seem to be important: developers interpret the visualization

in context and simply ignore such minor idiosyncrasies.

Data Analytics In addition to visualizing changelist and project

coverage, the coverage infrastructure supports trend visualization

and data analysis. For example, a developer can track project cover-

age over a longer period of time, using a pre-built trend visualiza-

tion UI. Likewise, a developer can issue specific queries, using the

Dremel [22] query system. All coverage data is stored in a central

database for interactive analysis. This is mostly used by developers

or researchers, who are analyzing large batches of coverage data,

similar to the numbers reported in this paper.
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Figure 7: Projects actively using coverage automation.

If a project that has coverage automation enabled does not actively use

it (e.g., no daily project coverage computation is successful), it does not

contribute towards the active count.

4 COVERAGE ADOPTION AND USEFULNESS

This section reports on the results of analyzingmulti-year, historical

data and surveying 3000 developers at Google. Specifically, this

section shows (1) how Google’s developers adopted and integrated

code coverage into their workflow, (2) how code coverage ratios

evolved over time at Google, (3) and what the perceived usefulness

of code coverage is.

Code coverage has been used at Google for at least 13 years. To

the best of our knowledge, the oldest internally recorded plans for

an automated code coverage infrastructure date back to 2006.

The infrastructure described in Section 3, which is the basis for

the reported results, is the latest version and has been in continuous

use since 2012. Between 2012 and 2018, it collected approximately

13,000,000 daily project coverage measurements and 14,000,000

changelist coverage measurements.

4.1 Adoption of Code Coverage

Code coverage computation is not mandatory across Google. How-

ever, projects (or groups of projects) can choose to mandate the

use of code coverage in their teams. Further, individual teams can

opt into automated code coverage computation, and an individual

developer can interactively invoke a code coverage computation.

Recall Table 1, which shows the percentage of developers manu-

ally invoking blaze coverage interactively. A typical use case for

this is to compute code coverage before a changelist is created. Only

0.5% of developers manually invoke code coverage computation on

a daily basis. In contrast, 33.5% of developers invoke blaze test (i.e.,

running tests without coverage computation) on the command line

at least once on any given day. This shows that developers treat cov-

erage and binary pass/fail information differently in their workflow,

in particular they check coverage with much lower frequency.

For every changelist, code coverage is computed automatically.

Google’s code review tool surfaces the results to the benefit of the

changelist author and reviewers. Reviewers can use code coverage

to ask the author to improve the tests for the change, or authors

can do so proactively.
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Figure 8: Median weekly project coverage.

The weekly project coverage is the median of the daily project coverages

in a given week. If a project had no successful coverage computation in a

given week, it is excluded from the aggregation for that week. Note that

we exclude data older than 2015 because fewer than 20% of projects were

using coverage before 2015 (see Figure 7).

Figure 7 shows the percentage
1
of projects that actively use

Google’s Test Automation Platform and actively measure project

and changelist coverage. The graph shows all data since the in-

troduction of the code coverage automation. The spike in the first

quarter of 2015 is a result of an advertisement on Google’s famous

internal “Testing on the Toilet” [16]. We conjecture that if the in-

frastructure had been better at that time, the slope of the adoption

curve would have continued to be steep after the first quarter.

February 2015 until now is a period of progressively refining and

improving the coverage infrastructure to allow more projects to

use it. Many projects that were not using code coverage expressed

interest, but their code base was not supported by the infrastructure

(e.g., coverage instrumentation causing test failures). From our ex-

perience (as owners and maintainers of the coverage infrastructure),

an unsupported project usually has only a few test failures caused

by the coverage instrumentation, but each project has a different

root cause. Section 4.3 provides more details.

We do not expect changelist coverage usage to reach 100% for

technical reasons: As a resource optimization, the coverage infras-

tructure only computes changelist coverage if all tests for that

changelist pass. This means that some particularly passive projects

might not get a successful changelist coverage computation at all

in a given time period. Therefore, while the maximum is theoreti-

cally 100%, a realistic maximum is likely lower. In contrast, project

coverage usage is more likely to eventually reach 100%. Note that

the drop in changelist coverage usage in the second quarter of 2018

is not currently understood.

4.2 Code Coverage Ratios

Figure 8 shows the median project coverage as well as the interquar-

tile range (IQR) for all projects for the time period between 2015

and 2018. The chart shows the aggregated weekly project coverage

1
We give percentages because the absolute number of projects varies greatly over the

period of time, and it is a confidential value.

959



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser

Table 2: Coverage levels and corresponding thresholds.

Many projects voluntarily set these thresholds as their goal.

Level Threshold

Level 1 Coverage automation disabled

Level 2 Coverage automation enabled

Level 3 Project coverage at least 60%; Changelist coverage at

least 70%

Level 4 Project coverage at least 75%; Changelist coverage at

least 80%

Level 5 Project coverage at least 90%; Changelist coverage at

least 90%
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Figure 9: Coverage infrastructure success rates.

The success rate indicates the percentage of all automated coverage com-

putations that successfully completed per week. Note that we exclude data

older than 2015 because fewer than 20% of projects were using coverage

before 2015 (see figure 7).

(i.e., the median daily project coverage for a given week). Report-

ing on weekly project coverage smoothes out outliers caused by

intermittent test or infrastructure failures.

Google does not enforce any code coverage thresholds across the

entire codebase. Projects (or groups of projects) are free to define

their own thresholds and goals. Many projects opt-into a centralized

voluntary alerting system that defines five levels of code coverage

thresholds. Table 2 shows the criteria for each level. We suspect

that the gradual increase in project coverage since mid 2016 reflects

a gradual adoption of these levels, which we publicized in 2016.

Safety-critical systems, of course, have stricter requirements. To

ensure high quality, these projects use, e.g., mutation testing [23, 24],

which provides a more rigorous adequacy criterion [19].

4.3 Reasons for Failed Code Coverage

Computations

The coverage infrastructure computes project coverage once per

day and changelist coverage for each changelist (Section 3.3 gives

more details). Figure 9 shows the success rates of the coverage in-

frastructure for both project and changelist coverage computations.

This section describes the most common reasons for failed coverage

computations.

Figure 10: Screenshot of the coverage usefulness survey.

A common reason for a failed coverage computation is a test

failure that only manifests when coverage instrumentation of the

tested code is enabled. Coverage instrumentation is relatively ex-

pensive, and performance failures are the most common cause of

failed coverage computations. In most programming languages,

coverage instrumentation prevents at least some compiler opti-

mizations. This results in longer test run times, which leads to

more timeouts. Coverage instrumentation also results in larger

binaries, which leads to more out-of-memory errors. The second

most common cause is test flakiness. Coverage instrumentation

can worsen flakiness of non-deterministic tests. A simple example

would be any test that uses a sleep command to allow the code

under test to complete it’s work can suddenly become flaky when

instrumented simply because the code is slower. The progressive

increase in the project coverage success rate is a result of a long

series of infrastructure improvements to counter failed coverage

computations.

Note that the changelist coverage computation was initially im-

plemented along side TAP, which explains the lower success rate.

The current coverage infrastructure awaits TAP’s results to avoid

attempting coverage computation in the presence of failing tests.

The noticeable, sharp drops in Figure 9 for the changelist coverage

success rate are coverage infrastructure failures, usually resolved

within a week. These failures show the need for maintaining the

coverage infrastructure, and resources should be provisioned for

such maintenance.

4.4 Perceived Usefulness of Code Coverage

Since the coverage computation and visualization is completely

automated and integrated into the developer workflow, we wished

to understand to what extent developers consume the provided

data and what the perceived usefulness of code coverage is. To that

end, we conducted a survey in February 2019, which consisted of

three Likert-scale questions and one open-ended question. Figure

10 shows a screenshot of the survey.

The survey asked the following question: “How often do you find

coverage useful, when you are...” with three scenarios (Authoring,
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Figure 11: Self-reported usefulness of changelist coverage

The survey was sent to 3000 contributors to Google’s codebase out of which

512 (17%) responded. Each participant was asked to rate the usefulness

in the 3 most common use cases: when authoring a code change, when

reviewing a code change and when browsing a code change (i.e. neither

reviewing nor authoring).

Table 3: Sentiment towards coverage expressed in the write-

in text box in the changelist coverage usefulness survey.

Sentiment Responses Percentage

Positive 173 60%

Neutral 67 24%

Negative 46 16%

Total 286 100%

Reviewing, and Browsing a CL). Each scenario used the same five-

point Likert scale. We sent the survey to 3000 randomly chosen de-

velopers at Google out of which 512 responded (17%). We randomly

selected participants from the set of all people who have committed

at least one line to Google’s codebase.While this set contains mostly

developers, it also includes people in non-engineering roles.

Figure 11 shows the self-reported usefulness of changelist cover-

age for the three different scenarios. When authoring a changelist,

45% of respondents reported that they use coverage “Often” or “Very

Often” and 25% use it “Sometimes”. When reviewing a changelist,

40% respondents use coverage “Often” or “Very Often” and 28% use

it “Sometimes”. 10% of respondents never use coverage. Overall, a

substantial number of developers do use code coverage on a regular

basis and find value in it.

Anecdotal evidence from the open-ended text box provides addi-

tional insights. A small number of respondents were not developers

but still contribute changes to the codebase, e.g. technical writers.

Such respondents chose “Never” or “Not sure”. On the opposite side

of the scale, some respondents chose to explain the “Very Often”
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Figure 12: Self-reported usefulness of changelist coverage by

the 46 survey participants who expressed generally negative

sentiment towards code coverage.

response with statements such as “I use coverage numbers when

authoring to make sure I have remembered tests. I find it more

important when reviewing as it is hard to see if edge cases are

covered quickly without coverage”.

We analyzed the sentiment of all open ended text box answers

and categorized them into three categories:

• Positive: Answers that were generally positive towards the

concept of code coverage, even if they raised some problems

with the infrastructure.

• Negative: Answers that were generally negative towards the

concept of code coverage.

• Neutral: Answers that did not convey the general attitude

towards coverage. These were mostly reporting problems

with the infrastructure or comments on the survey itself, e.g.

“I suspect I’m too senior for the purposes of your survey. I

haven’t written or seriously reviewed code in >12 months.”

Table 3 shows the distribution of the answers in these three cate-

gories. 60% of responses were generally positive towards coverage,

16% were negative, 24% were neutral. One interesting observation

is that the percentage of respondents who expressed negative senti-

ment about code coverage is larger than the percentage of projects

not using code coverage. Figure 12 shows that some respondents

who expressed generally negative sentiment towards coverage, still

self-reported that they use it “Sometimes” or “Rarely”.

5 RELATEDWORK

Code coverage has been known since at least the 1960s. Elmen-

dorf [13] gives a reasonably robust strategy for using branch cov-

erage in testing operating systems in 1969. Piwowarski, Ohba and

Caruso [25] mention that coverage measurements were performed

within IBM in late 1960.
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Yang et al. [26] conducted a survey of 17 different coverage tools.

The survey provides a good overview of the area and contrasts the

tools based on features. It does, however, not analyze how to best

integrate different tools in a coherent workflow.

Piwowarski et al. [25] describe a large survey of IBM test orga-

nizations and their use of coverage in an industrial context. They

found that ease of use was the primary factor in coverage measure-

ment adoption, and that once coverage measurement was adopted,

it led to increase in test suite quality. Woo Kim [20] describes using

coverage to test a 19.8 kLOC product in an industrial setting. They

conclude that code coverage is useful, but that detailed code cover-

age analysis is not cost effective, because most defects are localized

in a relatively small percentage of error-pronemodules, and because

there is strong correlation between complex and simple coverage

criteria. While these industry reports are very valuable, they often

report results based on limited code base size, most importantly

they tend to analyze only one or two programming languages.

Adler et al. at IBM proposed substring hole analysis to analyze

code coverage data which makes it cost-effective for large systems

tests [9]. This approach enables reasoning about large amounts

of coverage information intuitively. To avoid problems inherent

in capturing the system test coverage, Chen et al. proposed an

automated approach to estimate code coverage with high accuracy

using execution logs [10].

Li et al. studied existing Java branch coverage tools, finding

that none measure all the branching structures correctly and that

bytecode instrumentation, which is used my most tools, is not a

valid approach to measure branch coverage on source code [21].

6 CONCLUSIONS AND FUTUREWORK

This paper describes Google’s code coverage infrastructure, how

the computed code coverage information is visualized, and how

it is integrated into the developer workflow. The code coverage

infrastructure is designed to overcome technical challenges such

as scale and programming language diversity, but our experience

also shows that a further important technical challenge in prac-

tice is dealing with failed coverage computations. A considerable

multi-year effort was required to sufficiently address these issues

at Google. Usage data and a survey of the developers suggest that

developers are generally positive towards the idea of code coverage.

They view it as a valuable addition to their daily workflows and use

it, if it is available. The key points to achieve this positive sentiment

are usability and low overhead from the developer point of view.

We hope that the ideas and experiences described in this paper

motivate and help others to develop similar infrastructure. Based

on the lessons reported in this paper, we recommend the following:

• Measure coverage automatically at critical points in the de-

velopment workflow.

• Display coverage information within the tools developers

commonly use.

• Expect to invest effort in dealing with errors caused by cov-

erage instrumentation.

• Rely on existing, well established libraries for computing

coverage; these are powerful enough for daily use.

• Integrate coverage computation for all programming lan-

guages used under a single, uniform interface.

We plan to further investigate usage data and developer opinions

in order to better understand how coverage is used and how it could

be better used to the benefit of developers. In particular, we will

broaden the scope of our survey and ask for more self-reported

data related to coverage, and will correlate this data with objective

behavioral data. Ultimately, it would be nice to determine whether

adoption of code coverage leads to better software quality, but

there is is no single, reliable proxy measurement of code quality.

For example, the number of changelists may be influenced by code

quality, but it might just as well be a result of general development

or programmer habits. Furthermore, code quality is not the only

benefit that should arise from using code coverage. Therefore, some

open questions we would like to address in future work are:

• Does the perceived usefulness differ from actual usefulness?
For example, does showing coverage during code review

actually speed up the review process?

• Does the perceived and actual usefulness depend on the size

of the changelist? For example, we conjecture that when

authoring full features, like a new class accompanied by a

test suite, developers care more about code coverage than

when authoring a very small change.

• Does showing coverage during code review have an effect

on the final code coverage ratio—that is, will tests be added

more often if coverage is shown than when it is not?
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