Guiding Testing Effort Using Mutant Utility

Justin Alvin
University of Massachusetts
Amherst, MA, USA
jalvin@umass.edu

Abstract—This paper addresses two long-standing goals in
software testing: making mutation-based testing practical and
software testing overall more effective, predictable, and consis-
tent. To that end, this paper proposes a novel mutation-based
approach that guides testing effort based on test goal utility.

I. INTRODUCTION

Writing effective software tests is a challenging task, in
particular in the absence of well-defined test goals. A test is
effective if it detects faults, but the set of faults in a program
is unknowable. Hence, developers cannot use this definition
and instead rely on proxies for test effectiveness.

An established proxy for test effectiveness in practice is
the code coverage ratio, where each fest goal is a directive to
execute, e.g., a particular statement or branch in the code. Code
coverage is intuitive, cheap to compute, and well supported
by commercial tools. However, coverage-adequate test suites,
which satisfy all test goals, are not the norm and neither should
they be [1]. In practice, developers only satisfy a fraction of
the test goals, but adequate thresholds for code coverage ratios
are inherently arbitrary and a matter of much debate [2].

An established proxy for test effectiveness in research is the
mutant detection ratio [3], [4], which measures a test’s ability
to distinguish a program under test from many artificial faults,
called mutants. Mutation-based testing, in which mutants are
test goals, has a key advantage compared to coverage-based
testing: it elicits test assertions, which ensure that a test not
only executes the code but also asserts on its behavior.

Mutation-based testing is a rigorous approach to software
testing, but comes at a substantial cost in terms of number of
test goals. Further, the mutant detection ratio, as a proxy for
test effectiveness, shares exactly the same limitations as the
code coverage ratio. While mutation-based testing generates
test goals that elicit effective tests, it inevitably generates
additional test goals that do not [5]. The latter should not be
satisfied, but the mutant detection ratio does not provide any
guidance to distinguish them. Likewise, the mutant detection
ratio is not suitable for comparing the testedness of different
artifacts because the ratio of test goals that should be satisfied
differs across them. Which test goals to satisfy (first) and when
to stop testing, heavily relies on developer experience and
characteristics of the program under test—neither of which
is captured by the mutant detection ratio.

We argue that a useful proxy for test effectiveness must
include a notion of fest goal utility (i.e., the likelihood that a
test goal elicits an effective test) and must be context sensitive
(i.e., consider test goal utility in the context of a given artifact).

Bob Kurtz, Paul Ammann, Huzefa Rangwala
George Mason University
Fairfax, VA, USA
{rkurtz2, pammann} @gmu.edu, rangwala@cs.gmu.edu

René Just
University of Washington
Seattle, WA, USA
rjust@cs.washington.edu

Test goal utility enables effective and predictable testing:
developers can make informed decisions about which test
goals to satisfy and when to stop. Context sensitivity enables
consistent testing: developers can reason about test goals in
context and assess whether test goals in similar context are
consistently satisfied (or not) across the codebase.

This paper describes a mutation-based approach that aims at
making mutation-based testing practical and software testing
overall more effective, predictable, and consistent. There are
two key insights behind this approach. First, the question of
what constitutes an adequate threshold for mutant detection
ratios is ill-posed because it presupposes that each test goal is
equally important to the developer. This assumption is invalid,
and what developers need is specific guidance as to which
test goals to satisfy—not just how many. Second, an existing
codebase, both programs and tests, encode developer expertise
that can usefully differentiate test goals that should be satisfied
from test goals that should not, based on program context.

II. PREDICTING MUTANT UTILITY FROM PROGRAM CONTEXT

Our approach extends the work of Just et al. [6], who
showed that mutant utility correlates with program context.
Specifically, our approach exploits these correlations and ex-
tracts syntactic and semantic program context features from
a program’s abstract syntax tree to train a classifier that can
predict the utility of individual mutants [7].

III. EFFECTIVE, PREDICTABLE, AND CONSISTENT TESTING

We evaluated our approach using 85 unique classes from
the Defects4] corpus [8], each accompanied by a thorough
developer-written test suite. We used this set of well-tested
classes to predict mutant utility in a cross-validation set-
ting, and to simulate mutation-based testing. Further analyses
showed that even a training set with as few as 10 classes
yields reasonable accuracy for within-project predictions and
that cross-project prediction accuracy is acceptable for training
and incrementally refining a generic classifier [7].

Effective testing Figure 2a shows the outcome from a
mutation-based testing simulation for a single class, for which
the trained classifier achieves average performance. Each unit
of work represents a mutant presented to a developer and test
completeness is measured as the ratio of detected dominator
mutants, which form a set of non-redundant mutants that sub-
sume all other mutants. Mutant-detection ratios are measurable
but inherently inflated due to redundancy among mutants, and
hence a poor proxy of test completeness. In contrast, the

30 30
» »
%25 ggs
20 20
S 15 C'TD S 15
g Class A 9]
o 10 o 10
g . g 5 Class D
=z =z
01 I I I n n 0 I —
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4

(a) Mutant-detection ratio, existing code base.

(b) Our approach (AUC), existing code base.

Class A 30 Class A
$25
20
o 15

o 10

SsSes

Class D

er of cl

Num
(6]

1.0

1.0

o

0.6 0.8 0.0 0.2 0.4 0.6 0.8

(c) Our approach (AUC), after adding two missing
tests for Class D to the code base.

Fig. 1. Consistent testing: prediction performance for mutant utility can identify test deficiencies, whereas mutant-detection ratios can be misleading.

o

o
®

o
@

o
~

Test completeness

* Random

« Best-case

o
o
00

3‘ « Utility-based + Predicted utility

o
o

0 25 50 75
Work

(a) Effective testing: test completeness vs. work.

100

Test completeness
. o o =
> (o] [e<] o

o
[N

o
o

0.6 0.4 0.2 0.0

Mutant utility

1.0 0.8
(b) Predictable testing: mutant utility as a stopping criterion.

Fig. 2. Mutant utility enables effective testing with predictable test completeness.

ratio of detected dominator mutants is a great proxy for test
completeness, but cannot be computed a priori [7].

Best-case shows the effect of ground-truth selection of
dominator mutants at each step, and hence not wasting any
work. Random is averaged over 100 iterations and shows the
expected test completeness against work for random mutant
selection, which is the state of the art and simulates what a de-
veloper would currently face in practice. Finally, Utility-based
shows our approach—ranking mutants by predicted utility.

Figure 2a shows: (1) The utility-based curve tends to rise
early at nearly the same pace as the best-case curve, and
much more steeply than the random curve. (2) Our approach
correctly identifies high-utility mutants (predicted mutant util-
ity above 0.6), which elicit effective tests. It also correctly
identifies low-utility mutants (predicted utility below 0.4),
which a developer should ignore. (3) The desirable trend for
the utility-based curve only holds until a test completeness of
about 90% and then there are three visible plateaus, which
are mutants misclassified due to uncertainty. We expect that
active learning and context-model refinements will resolve the
uncertainty and further close the gap to best-case selection.
Predictable testing Figure 2b shows the association between
mutant utility thresholds and test completeness (averaged over
85 classes). Figure 2b suggests that the predicted mutant utility
provides, for the first time, a stopping criterion for mutation-
based testing that is computable a priori and strongly corre-
lated with test completeness. The expected test completeness is

about 65% for a utility threshold of 0.6 and approaches 100%
for 0.4. Based on requirements and resources, a developer can
make an informed decision about when to stop testing.
Consistent testing Figure la shows that the mutant-
detection ratio can be misleading when reasoning about test
deficiencies. Manually determined ground truth revealed that
class A’s test suite is adequate, whereas class D’s test suite is
deficient. Specifically, most of the undetected mutants in class
A cannot or should not be detected. Considering undetected
mutants with the exact same context in all other 84 classes,
these mutants are almost never detected, which suggests that
the developer correctly avoided writing tests for them in class
A. For class D, the opposite is true—many of its undetected
mutants are almost always detected in all other 84 classes.

Our approach reasons about the prediction performance of
the trained classifier, in a hold-one-class-out setting [7]. More
precisely, it measures AUC (area under the ROC curve: < 0.5
indicates inverse predictions). If the classifier frequently makes
wrong predictions (i.e., has an unusually low AUC value)
about whether mutants should be detected in a particular class,
then this indicates an inconsistency: mutants in similar context
in other classes are not similarly tested.

In contrast to the mutant-detection ratio, our approach cor-
rectly identifies the test-deficient class D (Figure 1b). We also
added two missing tests for class D (Figure 1c): the anomaly
disappears and all classes appear fairly consistently tested.

IV. CONCLUSIONS

This paper proposes a novel, mutation-based approach that
guides testing effort based on test goal utility. It motivates
the approach and reports on promising results. Future work
includes incorporation of active learning strategies and refine-
ment of the proposed program context model.

REFERENCES

(1]
(2]

B. Marick, “How to misuse code coverage,” in Proc. of ICTCS, 1999.
A. Savoia, “Code coverage goal: 80% and no less!” July 2010,
https://testing.googleblog.com/2010/07/code-coverage-goal-80-and-no-less.html.

R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in Proc.
of FSE, 2014, pp. 654-665.

J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in Proc. of ICSE, 2005, pp. 402—411.

G. Petrovié¢, M. Ivankovié¢, B. Kurtz, P. Ammann, and R. Just, “An in-
dustrial application of mutation testing: Lessons, challenges, and research
directions,” in Proc. of Mutation, 2018, pp. 47-53.

R. Just, B. Kurtz, and P. Ammann, “Inferring mutant utility from program
context,” in Proc. of ISSTA, 2017, pp. 284-294.

B. Kurtz, “Improving mutation testing with dominator mutants,” Ph.D.
dissertation, George Mason University, Fairfax, VA, December 2018.

R. Just, D. Jalali, and M. D. Ernst, “Defects4]: A database of existing
faults to enable controlled testing studies for Java programs,” in Proc. of
ISSTA, 2014, pp. 437-440.

(3]

[4]
[5

—_

[6

—_

[7

—

[8

=

