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SUMMARY

Researchers and practitioners have designed and implemented various automated test case generators to
support effective software testing. Such generators exist for various languages (e.g., Java, C#, or Python) and
various platforms (e.g., desktop, web, or mobile applications). The generators exhibit varying effectiveness
and efficiency, depending on the testing goals they aim to satisfy (e.g., unit-testing of libraries vs. system-
testing of entire applications) and the underlying techniques they implement. In this context, practitioners
need to be able to compare different generators to identify the most suited one for their requirements, while
researchers seek to identify future research directions. This can be achieved by systematically executing
large-scale evaluations of different generators. However, executing such empirical evaluations is not trivial
and requires substantial effort to select appropriate benchmarks, setup the evaluation infrastructure, and
collect and analyze the results. In this Software Note, we present our JUnit Generation Benchmarking
Infrastructure (JUGE) supporting generators (search-based, random-based, symbolic execution, etc.)
seeking to automate the production of unit tests for various purposes (validation, regression testing, fault
localization, etc.). The primary goal is to reduce the overall benchmarking effort, ease the comparison of
several generators, and enhance the knowledge transfer between academia and industry by standardizing the
evaluation and comparison process. Since 2013, several editions of a unit testing tool competition, co-located
with the Search-Based Software Testing Workshop, have taken place where JUGE was used and evolved. As
a result, an increasing amount of tools (over ten) from academia and industry have been evaluated on JUGE,
matured over the years, and allowed the identification of future research directions. Based on the experience
gained from the competitions, we discuss the expected impact of JUGE in improving the knowledge transfer
on tools and approaches for test generation between academia and industry. Indeed, the JUGE infrastructure
demonstrated an implementation design that is flexible enough to enable the integration of additional unit
test generation tools, which is practical for developers and allows researchers to experiment with new and
advanced unit testing tools and approaches. Copyright c© 2022 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last decades, researchers have come up with various techniques to automate the generation
of test cases. In particular, unit test generators seek to automate the production of tests for various
purposes (validation, regression testing, fault localization, etc.) using different techniques, including
random search (e.g., [1, 2]), search-based software testing (e.g., [3–5]), and symbolic (e.g., [6, 7])
and concolic execution (e.g., [8, 9]).

Juristo et al. [10] identified three essential features each empirical evaluation should contribute
to the software testing empirical body of knowledge. First, the evaluation should be fully defined,
and the data should be analyzed with appropriate techniques to interpret the results. Second, the
programs used for the evaluation and the setup and variables considered should represent the reality
of the practice. Third, an evaluation should be replicable and come with a replication package to
confirm previous results and reach an acceptable level of confidence in the hypothesis.

Similarly, to bridge the gap with industry, automated test case generators must come with solid
evidence that the approach can also be applied in practice. For instance, evidence-based software
engineering [11] can help practitioners make informed decisions about the choice of a generator
based on the current best evidence from research. Those pieces of evidence come from empirical
evaluations identifying the strengths and weaknesses of various generators.

In the case of unit test generators, conducting an empirical evaluation is not trivial. It requires an
extensive manual effort to collect benchmarks (i.e., Java classes for which to generate test cases),
setup the evaluation and the evaluation infrastructure, collect and analyze the produced unit tests,
and compare the results against the state-of-the-art. The primary goal of our JUnit Generation
Benchmarking Infrastructure (JUGE) [12] is to reduce the overall effort and ease the comparison of
several generators by standardizing the evaluation process. This standardization allows researchers
to meet the requirements, enabling an effective contribution to the empirical body of knowledge in
software testing.

JUGE is suited for evaluating and comparing fully automated black, white, and gray-box unit
test generators. For instance, in past editions of the tool competition, JUGE has been applied to
evaluate various types of tools relying on a variety of approaches, including search-based [3,13,14],
random-based [1,2,15], and symbolic execution [7,16]. In a nutshell, the generator takes the source
code or the binaries of a Java project as input and generates unit tests for a given class or set
of classes. A time budget limits the generation, and the generated tests are compared w.r.t. their
structural coverage and mutation score. The benchmarks, the tests, and the intermediate results can
be saved and archived to be added to a replication package and enable future comparisons without
re-executing all the generators, thanks to the standardized evaluation process implemented in JUGE.

JUGE has been initially developed in the context of the tool competition, co-located with the
Search-Based Software Testing (SBST) workshop. It has been built to be extensible and configurable
to be used with different test case generators and deployed in different environments. It relies on
standardized processes, including an adapter mechanism to run a tool and process the generated
tests. Isolation of the generator and test executions are handled through containerization (using
Docker). Similarly, scalability of the evaluations relies on the parallelization of different containers,
which allows relying on standard technologies (e.g., Docker commands and dashboards) to handle
the overall evaluation smoothly.

Since 2013, ten editions of the tool competition have taken place and used the JUGE
infrastructure to evaluate and compare automated unit test generators [17–26]. Consequently, JUGE
has been improved and evolved over the years to integrate the latest advances from academia to
enhance the comparison and best practices from industry to achieve high automation. Several tools
have entered the competition [27–54] and matured over the years by fixing bugs evidenced by
the evaluations using the JUGE infrastructure, but also by confronting the various approaches to
different benchmarks to discover areas for improvement and future research directions. The current
implementation is openly available on GitHub† and on Zenodo for long-term storage [12].

†https://github.com/JUnitContest/JUGE
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The remainder of this paper is structured as follows: Section 2 discusses the background and
related work of empirical evaluation and comparison of test case generators. Section 3 presents
the challenges and requirements for building JUGE, as well as the design and implementation
choices made to address those challenges. Section 4 provides guidelines for setting up an evaluation
with JUGE (examples of evaluations setups using JUGE are discussed in Appendix A). Section 5
presents the impact of JUGE so far, while Section 6 discusses the lessons learned from building
JUGE and running evaluation with it, as well as the selection of suitable benchmarks (i.e., classes
under test), and the future work. Finally, Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK

When designing a new test case generation technique, conducting empirical evaluations is
paramount to position this new technique in the current software testing body of knowledge [10,55].
When the technique gains in maturity, developers will also rely on those empirical evaluations
to make informed decisions about choosing a tool relevant to their industrial context [4, 11]. For
instance, Melo et al. [56] designed a recommender for concurrent software testing techniques based
on the characteristics of the software under test and the current body of knowledge in concurrent
software testing.

2.1. Empirical evaluation guidelines

Over the years, several guidelines, benchmarks, and infrastructures have been developed to design,
execute, and assess test case generators. For instance, Arcuri and Briand [57] defined guidelines
for using statistical tools when evaluating and comparing randomized algorithms, which is the case
with many automated test case generators. In their systematic review of the empirical evaluation
of search-based test case generation, Ali et al. [58] identify the elements that should be reported
in study designs. They found that search-based software testing has been focused on structural
coverage and unit testing and that empirical studies should adopt a more rigorous and standardized
execution and reporting approach. In particular, studies should account for random variation in the
results using appropriate statistical hypothesis testing. They should then compare the techniques
with other baselines to conclude that it brings any advantage.

More recently, in a significant effort to improve the review process in software engineering,
Ralph et al. [59] defined Empirical Standards listing specific attributes expected when conducting
empirical evaluation following a given research methodology. The empirical evaluation of
automated test cases generation is classified under the umbrella of Optimization Studies in Software
Engineering: i.e., research studies that focus on the formulation of software engineering problems
as search problems and apply optimization techniques to solve such problems [59]. Among the
essential characteristics of such studies, the standards require comparing the approach to an
appropriate baseline and the distribution of the dataset (i.e., the benchmarks used for the evaluation,
if possible, and the results).

JUGE contributes to the general effort of improving the quality and reproducibility of empirical
evaluations for unit test generators by (i) standardizing the evaluation process, using appropriate
data analysis techniques, and (ii) enabling easy distribution of the benchmarks (i.e., classes under
tests used for the evaluation) and results, including the test cases, coverage, and mutation analysis,
and statistical analysis for future comparisons and reproductions. Section 4 discusses the guidelines
to design, execute, and report the results of an empirical evaluation using our infrastructure.

Similar efforts have been pursued in other areas of automated testing. Recently, FUZZBENCH
[60], an open fuzzer benchmarking platform-as-a-service, has received much attention after its
deployment, thanks to the support of Google. Similarly to JUGE, FUZZBENCH provides a standard
procedure to benchmark fuzzer, using coverage and fault coverage on representative program
datasets. It has been designed to be scalable and ensure fair resource allocation and platform
independence. JUGE achieves the same goals by relying on containerization via Docker. It allows
running the different generators in isolation while relying on standard technologies and tools
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(e.g., Docker dashboards) to manage scalability, resource allocations, and independence from the
underlying platform (more details about the infrastructure will be provided in Section 3).

2.2. Comparison of test case generators

Besides structural coverage, like lines or branch coverage, empirical evaluations rely on mutation
analysis to compare different test case generators [61]. Mutation analysis [62] applies mutation
operators, e.g., replacing an arithmetic operator, to a program under test to produce faulty variants
(i.e., mutants) and executes a test suite on those variants. If a test fails on a particular mutant, this
mutant is considered as killed. The mutation score, i.e., the ratio of killed mutants to the total number
of mutants, is used to measure the faults detection capabilities of the test suite [63].

For now, JUGE supports structural coverage and mutation analysis of the generated tests.
Other kinds of automated analysis can be plugged into the infrastructure’s extensible architecture.
Additionally, all the generated test suites are saved using a unique identifier and can be collected for
additional manual inspection.

2.3. Benchmarks for software testing

Empirical evaluations can be performed on various benchmarks (i.e., classes under test). For
instance, Fraser and Arcuri built SF110 [64], a corpus of 23,886 classes from 110 open-source
projects used to evaluate and compare unit test generators. Other benchmarks follow a different
approach by using actual bugs extracted from Java software systems. For instance, DEFECTS4J [65]
is a collection of reproducible bugs and a supporting infrastructure widely used for evaluating
software testing and debugging approaches. In its latest version (v2.0.0), DEFECTS4J contains 835
bugs from 17 Java software systems [66]. Similarly, BUGSWARM [67] is a toolkit designed to mine
reproducible failures and corresponding fixes to evaluate fault-detection, localization, and repair
approaches.

JUGE supports the definition of customized benchmarks. For instance, previous editions of
the tool competition have used classes from DEFECTS4J’s projects and classes collected from
open-source projects. Section 6.2 discusses guidelines to select classes under test for an empirical
evaluation based on our experience in the tool competition and related work.

3. JUGE INFRASTRUCTURE

We describe hereafter the challenges and requirements for building an automated infrastructure like
JUGE. Based on those requirements, we present the architecture and implementation of JUGE.

3.1. Challenges and requirements

Building an evaluation infrastructure like JUGE poses several challenges. Indeed, to be reusable
and have an impact on automated unit test generation, such infrastructure has to meet several
requirements. We present and discuss the most important ones in the following paragraphs.

Extensible and configurable (C1). JUGE has to be extensible to adapt to different research
contexts. For instance, JUGE has been used for the unit testing competition (described in Section 5)
for which the overall execution time is limited. It should also be practical for large-scale evaluations
running over several weeks. For this, adding new generators to the infrastructure should be easy to
compare them to the state-of-the-art. Similarly, it should be easy to configure JUGE to use a given
set of classes under test (i.e., benchmarks) for an evaluation. Finally, it should be easy to extend
JUGE to use different measures on the generated tests and add new ones to adapt to the different
research questions and hypotheses driving the empirical evaluation.

Isolation (C2). The execution of automated test case generators may have side effects on the rest
of a system [68]. For instance, a generator using all available resources by default can negatively
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impact other generators running in parallel. Additionally, unexpected behavior, such as failures
caused by faults in the generator, can cause damage to the system. Moreover, evaluating the
generated tests requires executing them, which might also cause undesirable side effects. JUGE
has to include mechanisms to isolate the execution of the generator and the generated test from the
rest of the host system to avoid any undesirable side effects or damages.

Performance and scalability (C3). JUGE should be able to run on various platforms depending
on the resources available. For instance, it should run on a standalone machine but also on a
computationally intensive server or in a distributed setting on several servers in parallel. It should
also scale to extensive empirical evaluations involving several tools and hundreds of classes under
test.

Standardization (C4). Finally, evaluations relying on JUGE should be standardized to ease
replication. This includes configuration of JUGE for a given evaluation, recording, analysis, and
reporting of the data, and archiving to provide a companion artifact for the evaluation.

3.2. Implementation of JUGE

Given the identified requirements, we developed JUGE. JUGE is extensible and can be configured
for evaluating and comparing fully automated black, white, and grey-box unit test generators (C1).
The generator expects as input the source code or the binaries of a Java project and generates unit
tests for a given class or set of classes. The generation is limited by a time budget provided as
input to the generator. The overall execution is limited by a global timeout (i.e., to twice the time
budget) to take the pre and post-processing of the generator into account. For each benchmark
(i.e., class under test), JUGE runs the test case generator with the given time budget. JUGE can be
configured to repeat the executions a given amount of times to balance performance and scalability
(C3), depending on the available resources and the required statistical power of the results. Once the
generation is completed, JUGE can measure structural coverage, perform mutation analysis of the
generated tests, and compare the different generators using sound statistical analysis in a standard
manner (C4). Moreover, the benchmarks, generated tests, and other data can be collected and stored
in an artifact.

JUGE is open-source, available on GitHub‡ and packaged as a Docker image to ensure isolation
from the host system (C2). It contains scripts and tools supporting (i) the generation of unit tests
for a given set of classes under test and time budget; (ii) the coverage and mutation analysis of the
generated tests; and (iii) the statistical analysis and comparison of different unit test generators.

As illustrated in Figure 1, JUGE relies on an adapter, called runtool, to wrap specific
calls to a unit test generator (MYTOOL in Figure 1). This adapter offers an interface to the
benchmarktool, in charge of orchestrating the evaluation of the unit test generator. The
communication between the host and the JUGE docker container (B in Figure 1) is done
via a common folder (A in Figure 1), mounted in the file tree structure of the image. This folder
contains the executable binaries of the unit test generator and its runtool adapter. The generated
tests, the metrics, and the statistical analysis results are saved in a subfolder (results/) to be
made available to the host. The classes under test and the corresponding configuration file are saved
in the Docker container (benchmarks/). Hence, to evaluate multiple tools, one can reuse the
same container and only has to mount different folders, each containing the unit test generator and
its runtool adapter.

3.3. Unit test generation

One of the main challenges when building JUGE was to define a generic protocol for the generation
of unit tests able to handle various unit test generators. We rely on a set of conventions and a generic
communication protocol between the benchmarktool and the runtool adapter.

‡https://github.com/JUnitContest/JUGE
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JUGE docker container

runtool

MyTool

benchmarktool

tests/

results/

metrics

A

Bmytool/

benchmarks/

CUTCUTCUTCUT
runtool.sh

Figure 1. JUGE architecture overview

Listing 1: ITestingTool adapter interface
public interface ITestingTool {

/**
* List of additional class path entries required by a testing tool.
* @return List of directories/jar files.
*/

public List<File> getExtraClassPath();

/**
* Initialize the testing tool, with details about the code to be tested (

SUT).
* Called only once.
* @param src Directory containing source files of the SUT.
* @param bin Directory containing class files of the SUT.
* @param classPath List of directories/jar files (dependencies of the SUT)

.
*/

public void initialize(File src, File bin, List<File> classPath);

/**
* Run the test tool, and let it generate test cases for a given class.
* @param cName Name of the class for which unit tests should be

generated.
* @param timeBudget How long the tool must run to test the class (in

miliseconds).
*/

public void run(String cName, long timeBudget);

}

Conventions. By convention, the common folder (A in Figure 1) has to be named after the gener-
ator (mytool/ in our example) and mounted in the /home/ directory of the Docker container.
For any generator, unit tests have to be generated in /home/mytool/temp/testcases/.
Unit tests have to be stored as one or more Java test files containing JUnit tests for each class
under test. Each Java test file has to declare a public class with a zero-argument public constructor,
annotate test methods with @Test, and declare test methods public. Additional files may be saved
to /home/mytool/temp/data/ for later offline analysis (e.g., for debugging of the generator).

Adapter. To make the liaison between the benchmarktool and the runtool adapter,
the folder /home/mytool/ must contain a runtool executable script or binary

Copyright c© 2022 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2022)
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:benchmarktool

start

:runtool

for i from 1 to count

'BENCHMARK'

:MyToolAdapter

src/

bin/

CLASSPATH count

CLASSPATH entry

CUTs count

'CLASSPATH'
CLASSPATH count

CLASSPATH entry

initialize(src/, bin/, CLASSPATH)

status

'READY''

getExtraClassPath()
extra CLASSPATH

for i from 1 to count

if extra CLASSPATH not empty

'READY''

budget

CUT
run(CUT, budget)

return

A

B

C

:MyTool

init

generateTest

for i from 1 to CUTscount

Figure 2. Communication protocol of the runtool adapter

(e.g., runtool.sh in Figure 1) that will be called by the benchmarktool to start the
generation of unit tests. Typically, runtool.sh contains a single command launching the adapter.
A customizable implementation of runtool is provided in the source code repository of our
infrastructure.§ The create an adapter for a new tool, one has to implement the different methods
of the ITestingTool.java interface described in Listing 1.¶ This effort should be minimal for
any reasonably well-implemented tool. For instance, the implementation for RANDOOP is 102 lines
long, against around 150 lines of code for EVOSUITE-based implementations. The methods are then
called, as specified by the protocol described in the following paragraph.

Communication protocol. The adapter has to support the protocol described in Figure 2. In
the first part (A), the benchmarktool signals the start of a new evaluation by sending the
’BENCHMARK’ message, followed by the paths to the source code and binaries of the software
under test, the CLASSPATH, and the number of classes under test in the evaluation. Based on that
information, the runtool adapter initializes the generator (in this case, MYTOOL).

After the initialization, the generator can signal that it will use additional CLASSPATH entries for
its execution. The adapter notifies the benchmarktool of those additional entries (B in Figure 2).
In the third part (C), the adapter notifies the benchmarktool that the generator is ready to start the
evaluation by sending the ’READY’ message. The benchmarktool then sends the time budget
allocated for the generation and the class under test of the first run to the adapter that, in its turn, calls

§https://github.com/JUnitContest/JUGE/tree/master/runtool
¶https://github.com/JUnitContest/JUGE/blob/master/runtool/src/main/java/sbst/
runtool/ITestingTool.java
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the generator. After the generation, the adapter notifies the benchmarktool that the generator is
ready for the next class under test.

3.4. Data collection

Once the test cases have been generated, JUGE can compute the different metrics for each
test suite (A in Figure 1). Those metrics include: (i) the number of flaky and non-compiling tests,
(ii) the line and branch coverage, and (iii) the mutation score of the generated tests. The JUGE
infrastructure can be extended to support other kinds of metrics.

Flaky and non-compiling tests. First, if the test suite (one per class under test) does not
compile, it is tagged and ignored in the subsequent analysis steps. Once compiled, the test suite
is executed five times. Test methods (identified using the @Test annotation) producing different
results between different executions are marked as flaky and ignored for the remainder of the
analysis.

Line and branch coverage. JUGE relies on JACOCO [69] for statement and conditions coverage
of the generated tests. Coverage information is furthermore used to reduce the subsequent mutation
analysis time by restricting the execution of the tests against a given mutant to the tests effectively
covering the lines modified by the mutant.

Mutation analysis. In the early versions of JUGE, we relied on PITEST [70] to generate and
execute the mutants. However, it raised several issues for unit test generators relying on a dedicated
test execution environment. For instance, test cases generated using EVOSUITE require executing
with a dedicated runner to avoid flakiness, handle inputs and outputs, etc., preventing JUGE from
using the PITEST environment for test execution. To solve this issue, we refined the mutation
analysis to use the default test execution environment, supporting ad-hoc test runners. We use
PITEST to generate the various mutants and the results of the line coverage to reduce the analysis
time by executing only tests reaching the mutated lines against each mutant. Additionally, we set a
hard deadline (5 minutes by default) for the mutation analysis to avoid endless executions.

3.5. Data analysis

The generators can be compared based on quantitative analysis and the different measures collected
during the analysis of the generated tests. For that, JUGE relies on Friedman’s and post-hoc
Conover’s tests for multiple pairwise comparison [71] (available as an R script in JUGE). The
former is a non-parametric test for significance, and it is widely used for multiple-problem analysis,
where the problems correspond to the classes under test in our case. A significant p-value for
this test indicates that the evaluated tools statistically differ w.r.t. to the overall performance score
(alternative hypothesis). While Friedman’s test does indicate whether the tools in the comparison
are statistically different or not, it does not indicate for which pairs of tools such significance holds.
Hence, the statistical analysis is complemented by using the post-hoc Conover’s test for the pairwise
comparison. Notice that the p-values produced by the post-hoc test are further adjusted with the
Holm-Bonferroni procedure. This procedure corrects the statistical significance level (p-value=0.05)
in case of multiple comparisons [21].

3.6. Internal architecture

The module benchmarktool (in Figure 1) is responsible for the orchestration and execution
of the different steps of an evaluation. Figure 3 presents the main classes of that module. From a
configuration file, the Main class loads the list of the benchmarks (i.e., the classes under test) to use
for the evaluation in a BenchmarkCollection. Each Benchmark object contains information
about the class under test, classpath, and binary and source directory to use.
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Benchmark

BenchmarkCollection
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IBenchmarkTask
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IToolListener

JaCoCoLauncher JacocoResult
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MutationAnalysis

MutationSetMutationsEvaluator

PITWrapper

RunTool

TestInfo TestSuite

TranscriptWriter

«create»
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* benchmarks

1 1results

«create»
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1
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1

1 generatedMutants

1 1

listener

1

1

task

«create» 1

1 jacoco_result

«create»

«create»
1

*

flakyTests

«create»

Figure 3. Internal architecture of the benchmarktool module

Once the benchmarks are loaded, the main class creates a RunTool, which is responsible
for handling the execution and communication with the test case generator (the sbst.bench-
mark.RunTool class was renamed to :benchmarktool in Figure 2 to avoid confusion with
the :runtool adapter module). This class opens an SBSTChannel, implemented as print and
write streams on standard input and output, to communicate with the adapter (:runtool in Figure
2) of the generator following the protocol described in Section 3.3.

For each generated test suite, the TranscriptWriter class is responsible for collecting
the different data (encapsulated in TestInfo objects) described in Section 3.4. The
JaCoCoLauncher and PITWrapper encapsulate calls to (resp.) JACOCO, for code coverage
information, and PITEST, for mutation analysis. As explained in 3.4, it was not possible to use
PITEST to execute the full mutation analysis. The PITWrapper is therefore used to create the
mutants, while a MutationEvaluator is in charge of executing the test suite on them and
collecting the corresponding information.

4. SETTING UP AND RUNNING AN EVALUATION WITH JUGE

This section provides general guidelines for evaluating and comparing unit test generation tools
with JUGE.

4.1. Evaluation setup

JUGE can be used to evaluate automated unit test generators that do not require human intervention
during the generation process. It relies on the source code or binaries of a set of projects. JUGE
is primarily designed to help carry out quantitative studies. It comes with support for structural
coverage and mutation analysis and can be extended to support other measures.

Nevertheless, JUGE also allows qualitative analysis as all the tests generated during the
evaluation are saved and can be inspected or reused. Additionally, as explained in Section 3.3,
JUGE allows the unit test generators to save any additional data for later analysis. For instance, a
search-based unit test generator can save intermediate fitness values to analyze the fitness landscape
evolution.
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Listing 2: Excerpt of a benchmarks.list configuration file
1 {
2 BCEL-1= {
3 src=/var/benchmarks/projects/bcel-6.0-src/src/main/java
4 bin=/var/benchmarks/projects/bcel-6.0-src/target/classes
5 classes=(org.apache.bcel.classfile.Utility)
6 classpath=(/var/benchmarks/projects/bcel-6.0-src/target/classes)
7 }
8 BCEL-2= {
9 [...]

10 }
11 }

Generator meta-parameters. Many unit test generators can be configured through meta-
parameters (e.g., mutation and crossover probabilities for search-based approaches). To ease the
evaluation and processing of the results, we recommend considering each configuration as an
individual generator with its adapter in a dedicated folder (A in Figure 1) and an explicit name
reflecting the configuration. Configuring the generators with the right parameters to answer the
research questions and reporting those configurations in the empirical study is of paramount
importance to reduce the threats to validity and enable the replicability of the results.

JUGE meta-parameters. The infrastructure has two meta-parameters: the time budget and the
number of repetitions. The time budget corresponds to the budget allocated to generate a set of test
cases for a given benchmark (i.e., a class under test). JUGE also uses the time budget to set a global
timeout for each execution equal to twice the time budget. The time budget depends mainly on the
type of approach used by the test case generator. For instance, previous research indicates that a
time budget of three minutes is suited for a search-based generator like EVOSUITE [3,13] but is not
enough for symbolic execution approaches like TARDIS or SUSHI [44].

Similarly, the number of repetitions varies if the generator relies on an exact approach or uses
randomness. For exact approaches, one execution is enough (unless one of the research questions
considers the execution time, in which case, several repetitions are necessary). For randomized
approaches (e.g., search-based and random approaches), several repetitions are necessary to ensure
the statistical power of the results. Arcuri and Briand [57] estimated that the number of repetitions
is a compromise between the number of benchmarks used in the evaluation, the execution time of
the generators, and the overall budget available to perform the evaluation. They concluded that each
randomized generator should be executed 1,000 times and, if it is not possible, report the reasons
and the total execution time of the entire evaluation. However, the number of repetitions (for a more
significant number of benchmarks) should be at least 10.

4.2. Benchmarks

The selection of the benchmarks (i.e., sets of classes under test) should follow a systematic approach
and ensure that the benchmarks are diverse enough to reduce the threats to the validity of the research
questions [72]. For instance, by considering projects from different application domains. Those
projects (and classes under test) can come from existing benchmarks: e.g., DEFECTS4J [65] or the
previous editions of the tool competition relying on JUGE [20–24].

The benchmarks are described in a dedicated configuration file (benchmarks.list).
Listing 2 provides an excerpt of benchmarks.list configuration file from the JUGE example
benchmarks. Each benchmark has a unique identifier (line 2), the path to the root folder of the source
files of the project (line 3), the path to the root folder containing the compiled classes (line 4), the list
of classes under test (line 5), and the classpath with all the dependencies to use for the generation and
coverage and mutation analysis (line 6). Once the benchmarks are defined, JUGE allows building a
new Docker image (B in Figure 1) that can be instantiated multiple times in different containers to
run the different tools.
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4.3. Evaluation execution and results processing

Once the benchmarks and meta-parameters are defined, JUGE can start the evaluation by running
different commands from the home directory of the tool in the Docker image (e.g., /home/mytool
in the example of Figure 1). We summarize hereafter the main steps and commands to use during
the evaluation.‖ If the available hardware allows it, it is possible to run several Docker containers in
parallel (instantiated from the same JUGE Docker image), each responsible for executing a different
generator. One should, however, be cautious to avoid overloading the machine as it could impact
the execution of the generators and provoke timeouts. Different Docker containers should be run on
independent machines with the same hardware configuration. Practically, if this is not possible, we
strongly recommend doing some initial tests to determine the adequate number of parallel Docker
containers to avoid undesirable side effects.

Unit test generation. JUGE allows running multiple rounds of the tool’s execution on the same
benchmarks and with the same budget in one command. Each execution’s results are placed in a
folder named after the tool and the time budget (e.g., /home/mytool/results mytool 10
for a time budget of 10 seconds). For each benchmark and each round, JUGE creates a folder with
the tests generated by the tool (e.g., BCEL-1 1, BCEL-2 1, etc. for the first round of executions).
Those different folders also contain text files with the logs and additional data produced by the
generator.

Data collection and analysis. After the generation of the unit tests, JUGE can perform a coverage
and mutation analysis using JACOCO and PITEST. The different results are stored in a dedicated
CSV file (transcript.csv) for analysis. In our future work, we intend to extend JUGE to
consider other types of measures, for instance, test case readability [73].

Once the different metrics have been computed for the different tools and budgets, the different
results can be grouped in a single results.csv for a global quantitative analysis. JUGE can
perform statistical analysis, as explained in Section 3.5, and produce a report with the results of the
comparison.

4.4. Reporting, archiving, and reproducibility

One of the goals of the JUGE infrastructure is to enhance repeatability and reproducibility of both
the results and statistical and qualitative analysis. For that, we strongly recommend submitting an
artifact containing the following elements:

• the benchmarks, the generated tests, and additional data, if any,

• the files produced by the coverage and mutation, as well as any additional analysis,

• the results of the statistical analysis, together with any other data analysis scripts used for the
evaluation.

Suppose some of the benchmarks are under a non-disclosure agreement. In that case, we strongly
recommend adding benchmarks from open source systems to the evaluation and releasing those in
the artifact. The design of such an artifact must be considered early in the study. We recommend,
for instance, to fork the JUGE repository and update the benchmarks configuration and files to
generate a Docker image used to perform the evaluation. The fork can then be easily saved in a data
repository (like Zenodo,∗∗ which has a GitHub integration) for long-term storage with a dedicated
DOI.

In addition to the artifact, the reporting of the evaluation setup should mention the following
elements:

‖Details on how to start the Docker container, and the different commands available in JUGE are available in the
documentation at https://github.com/JUnitContest/JUGE/blob/master/docs/.
∗∗https://zenodo.org
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• the randomized (or not) nature of the generators used in the evaluation;

• the meta-parameter configuration(s) of each generator;

• the meta-parameter configuration of JUGE (including the number of repetitions in the case
of randomized generators) with a justification for those values;

• the total number of independent executions and the total execution time taken by the
evaluation;

• the specifications of the hardware and the number of Docker containers running in parallel;

• the benchmarks selection procedure and the characteristics of the selected benchmarks
relevant to the goals of the evaluation (e.g., the number of lines of code of the projects and
classes under test, the average McCabe’s cyclomatic complexity of the benchmarks, etc.);

• any additional data collected and statistical analysis performed on the evaluation results with
a proper justification (e.g., see Arcuri and Briand [57] for a discussion on statistical analysis
for randomized algorithms).

5. IMPACT OF JUGE

The JUGE infrastructure played a significant role in the replication of previous results regarding
the structural coverage and mutation score achieved by automated unit test generators. The
configurability of the infrastructure through the meta-parameters and the benchmarks considered for
the various editions of the tool competition allowed us to assess the generated tests under various
conditions. It independently confirmed that (i) search-based unit test generation (as implemented in
EVOSUITE) achieves a better coverage and mutation score [20–22, 24–26]; and (ii) automatically
generated tests can compete with manually written ones w.r.t. coverage and mutation score [22,23].

5.1. Ten editions of the tool competition

The JUGE infrastructure and the tool competition also helped to push the boundaries of unit test
generation by confronting industrial generators to academic ones and showcasing how research
can contribute to the industrial practices [19, 25, 26]. Also, selecting various benchmarks from
open source systems helped to improve the academic generators by confronting them with new
classes under test, thereby increasing the generalisability of the underlying approaches. For instance,
EVOSUITE has entered the competition multiple times with several algorithms (whole suite
approach [74], MOSA [75], DYNAMOSA [13], etc.) and in 2019, the results of the competition
lead to the fix of a major bug [43]. The results of EVOSUITE have also been recently independently
confirmed using JUGE by Herlim et al. [76].

Table I describes the main characteristics of the different editions of the tool competition. Over the
years, various tools have entered the competition and evolved. Among the different tools, RANDOOP
is used as a baseline, and EVOSUITE has joined every year since the first edition. In 2015, 2021,
and 2022, different industrial test case generation tools entered the competition.

The different editions have also tried different configurations w.r.t. to the execution of the tools and
the time budget allocated for the generation. Before 2016, the time budget was left to the participants
to decide (marked as - in Table I). Since 2016, the organizers have tried various time budgets to
assess how the different tools react under a minimal budget: 10 seconds in 2017 and 2018 and 30
seconds in 2017 and 2021.

Similarly, the different editions have used classes under tests from various open-source projects to
allow the distribution of the benchmarks after the competition. It allows one to replicate the results
and the participants of the next edition to try their runtool adapter before submitting their tool
to the competition. In 2016, the organizers used DEFECTS4J to generate regression tests and assess
the tools’ capability to expose real-world faults. Also, in 2019, 78 classes under test were initially
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Table I. Editions of the tool competitions relying on the JUGE infrastructure with the generators, the time
budgets (in seconds), the number of classes under test (#C), and the projects considered for the edition.

Industrial tools are indicated by a start (?).

Edition Generators Budgets
(in sec.)

#C Projects

2013 [17] RANDOOP, EVOSUITE [27], T2 [28] - 77 Apache Commons Lang, Apache
Lucene, Barbecue, Joda Time, sqlsheet

2014 [18] RANDOOP, EVOSUITE [29], T3 [30] - 63 Async Http Client, eclipse-cs, GData
Java Client, Guava, Hibernate, JMLL,
JWPL, Scribe, Twitter4j

2015 [19] RANDOOP, EVOSUITE
(whole-suite) [31], EVOSUITE
(MOSA) [34], GRT [32],
JTEXPERT [33], T3 [35], undisclosed
Commercial Tool (CT)?

- 63 Async Http Client, eclipse-cs, GData
Java Client, Guava, Hibernate, JMLL,
JWPL, Scribe, Twitter4j

2016 [20] RANDOOP, EVOSUITE
(whole-suite) [36], JTEXPERT [37],
T3 [38]

60, 120,
240, 480

68 DEFECTS4J [65]

2017 [21] RANDOOP, EVOSUITE
(whole-suite) [39], JTEXPERT [40]

10, 30,
60, 120,
240, 300,
480

69 Apache Commons BCEL, Imaging,
and Jxpath, Freehep, Gson, Re2J,
LA4J, Okhttp

2018 [22] RANDOOP, EVOSUITE
(whole-suite) [41], T3 [42]

10, 60,
120, 240

59 Dubbo, FastJason, JSoup, Okio,
Redisson, Webmagic, Zxing

2019 [23] RANDOOP, EVOSUITE
(DYNAMOSA) [43], SUSHI [44],
TARDIS [44], T3 [45]

10, 60,
120, 240

38 Antlr4, AuthzForce, Dubbo, Fescar,
FastJason, Imixs-Workflow, Okio,
Spoon, Webmagic, Zxing

2020 [24] RANDOOP, EVOSUITE
(DYNAMOSA) [46]

60, 180 70 Fescar/Seata, Guava, PdfBox, Spoon

2021 [25] RANDOOP, EVOSUITE [47],
EVOSUITE (dynamic symbolic
execution) [48], KEX [49]?,
UTBOT [50]?

30, 120 98 Seata, Guava, FastJSON, Spoon, Weka,
Okio

2022 [26] RANDOOP, EVOSUITE [52],
BBC [51], KEX and KEX
(reflection) [53]?, UTBOT and UTBOT
(mocks) [54]?

30, 120 65 Seata, Guava, FastJSON, Spoon

selected. However, due to issues with metrics computation (that have been fixed), the number of
classes considered for the final ranking dropped to 38.

Running the tool competition every year is not trivial. One of the main challenges the different
organizers face is the hardware infrastructure required due to the limited time between the
submission of the different tools and the limit for providing the results (around two weeks). Both
the generation of the tests and their evaluation using coverage and mutation analysis are time-
consuming, requiring a powerful server or a cluster.

5.2. Overview of the results of the competition

As illustrated in Table I, several tools have entered the competition over the years. Figure 4 presents
the averaged instruction and branch coverage, and averaged mutation score of the different tools
per year, collected from the reports of the past editions [17–54]. As can be seen from the Figure,
EVOSUITE has the best averaged structural coverage and mutation scores over the years. The
evolution from one edition to another can be attributed to several factors, including bug correction
and improvements of the underlying algorithms, selection of different time budgets and benchmarks.
The full dataset providing averaged coverage, mutation score, and execution times per benchmark
and time budget is available on Zenodo [77].††

Among the different tools, RANDOOP, relying on feedback-directed random test generation [1],
and EVOSUITE, relying on genetic algorithms [3], have entered the competition every year since

††Due to incomplete data, the results of T2 from 2013 [28] are not included in Figure 4.
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Figure 4. Averaged coverage evolution per tool over the years.
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Figure 5. Averaged coverage evolution per benchmark for EvoSuite and Randoop. Diamond (�) indicates
the mean value.

2013. Figure 5 presents the distributions of the averaged coverage evolution per benchmark for each
configuration of EVOSUITE and RANDOOP for the different editions of the competition (i.e., each
data point represents an averaged value of all the executions of the tool with one time budget on
one benchmark). Generally, EVOSUITE performs better on individual benchmarks than RANDOOP
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for unit test generation. This is confirmed when applying Friedman’s non-parametric with post-
hoc Nemenyi test [78, 79] on instructions coverage (RANDOOP ranking 1.77 and EVOSUITE 1.23),
branch coverage (RANDOOP ranking 1.77 and EVOSUITE 1.23), and mutation score (RANDOOP
ranking 1.73 and EVOSUITE 1.27). The rankings are significantly different as their corresponding
average ranks differ by at least the given critical distance, here, 0.048, with a Friedman’s test p-value
below 0.01 for the three cases.

6. DISCUSSION AND LESSONS LEARNED

Any empirical evaluation of automated unit test generation faces several technical and
methodological challenges. JUGE seeks to alleviate those challenges by providing a standardized
way of designing, running, and reporting such evaluations. Both the development of JUGE and the
evaluation method reported in Section 4 took several years to develop. We discuss hereafter the main
lessons learned and potential new applications of JUGE.

6.1. Building JUGE and evaluating generators

Adapt to different generators. The main technical challenges for such an infrastructure come
from the diversity of the generators that can be considered for an empirical evaluation (i.e., random-
based, search-based, concolic/symbolic-based, etc.)(C1). It requires isolating (C2) the executions
to avoid troubles in case of a bug in the generator (e.g., erasing files from the host file system [68])
while still having a standard communication interface (C4). It is achieved through an adapter with
a shared standard set of commands used by JUGE to interact with the generator. JUGE runs in a
Docker container to guarantee the isolation of the generator from its environment during test case
generation.

Performance, scalability, and statistical power. As for any empirical evaluation with a random-
based generator, researchers have to balance the number of classes under test to consider reducing
external validity with the number of executions to ensure enough statistical power, giving the
external constraints on the overall execution time [57]. For instance, in the tool competition, the
entire evaluation must be done in around two weeks. To cope with this limitation, organizers use
sampling to select a subset of classes under test, limit the time budget (not more than 8 minutes), and
the number of repetitions of the executions (between 6 and 10, depending on the year). As explained
in Section 4.1, the time budget allocated to the generator depends on the type of approach and the
goals of the evaluation.

JUGE supports parallel executions by running several Docker containers in parallel (the number
of containers depends on the technical specifications of the host machine), allowing to scale while
preserving the overall performances of an evaluation (C3). It allows relying on standard Docker
technologies and tools (e.g., dashboards) to handle the overall evaluation.

Configuration of the meta-parameters. In addition to the time budget and the number of
repetitions, which can be configured for JUGE, the generators usually come with various meta-
parameters that directly influence the generation process (C1). As explained in Section 4.1, such
parameters should be carefully considered and reported to reduce the threats to the validity and
enable the replicability of the results.

For instance, many test generators like EVOSUITE and RANDOOP include post-processing
mechanisms that can be activated to minimize the generated tests [1, 3]. Such mechanisms are
time-consuming and can be deactivated to reduce the overall execution time when evaluating
properties such as coverage or the mutation score. However, deactivating test case minimization
has a significant impact on other properties, such as structural properties, readability, the execution
time of the tests, etc. Researchers should be aware of such impacts and carefully consider them
when designing their studies.
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Analysis of the generated tests. Automated test case generation is a challenging task and requires
several mechanisms (e.g., code instrumentation, handling I/O operations on the system under test,
etc.) to be effective. Among the possible mechanisms is using a specific scaffolding for the generated
tests: for instance, EVOSUITE controls elements that could be non-deterministic to avoid test
flakiness. However, such mechanisms might cause undesired interactions with the infrastructure
and, more specifically, with the tools used to analyze the generated tests (C1). It has been the case
for EVOSUITE and the mutation analysis: the test runner (EvoRunner) used in the generated tests
was not compatible with PITEST and required to use the mutated .class files directly instead
of relying on the optimized PITEST infrastructure. In the latest version, JUGE includes options
to parallelize the execution of the mutation analysis and reduce the overall execution time of the
evaluation (C3).

Repeatability and reproducibility. JUGE considers each generator configuration (e.g., EVO-
SUITE using a different generation algorithm) as a generator that will require its runtool adapter
and corresponding shared folder, like, for instance, the different algorithms used with EVOSUITE
in the competition. Those generators should be shared in a companion artifact to provide standard
readily usable implementations to the research community (C4). As one of the main goals of JUGE
is to provide a common platform where researchers and practitioners can plug their generators and
compare them using various benchmarks, sharing generators and their corresponding adapters will
greatly improve repeatability (i.e., the same evaluation can be performed by the same team in the
same conditions and produce the same results) and reproducibility (i.e., the same evaluation can
be performed by a different same team in similar conditions and produce the same results) of the
results.

6.2. Benchmarks selection

As explained in Section 4.2, JUGE allows one to define their own set of benchmarks for a given
evaluation. Section A.1 provides an example of benchmarks selection process, followed in the eighth
edition of the tool competition [24]. As illustrated by the example, the competition mainly used an
opportunistic approach by considering open-source projects built with Maven to ease the collection
of projects’ dependencies. The main selection criteria were availability and the complexity of the
classes to test. Other criteria can also be taken into account.

In general, selecting representative benchmarks for an evaluation is not an easy task. The selection
criteria depend on the goals of the evaluation but also the availability of the benchmarks. We provide
some guidelines for benchmark selection based on our experience and related literature.

Representative. A good set of benchmarks should be representative of real-world software. This
is a best practice adopted by the software engineering research community to ensure that the
evaluation addresses a relevant problem [11, 13, 55, 60, 80]. The benchmarks can come from one
or more systems depending on the experimental design. For instance, Almasi et al. [81] performed
an evaluation of unit test generation on a closed-source industrial case study. Other evaluations
studied unit test generation on various open-source (and openly accessible) systems [13,74,75,82].
In this latter case, one should take care of selecting systems that are popular (e.g., by looking at the
number of stars on GitHub or the number of dependant projects in Maven central) and under active
maintenance (e.g., by looking at the commit frequency) to ensure that the results of the evaluation
will be relevant to the software engineering industrial community.

Diverse. The benchmarks used for an evaluation should be diverse enough to mitigate threats
to external validity. This diversity can, for instance, be achieved by considering benchmarks from
multiple projects from diverse application domains. Another approach could be, instead of a random
sampling like in Section A.1, selecting diverse benchmarks based on the coverage and mutation
score a random generator achieves.
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Adequate. The benchmarks should be selected adequately w.r.t. the goals of the evaluation.
For instance, if one of the evaluation goals is to compare the coverage and mutation score of
automatically generated and hand-written tests, one has to consider the coverage and mutation
score of the existing test suites when selecting the benchmarks. E.g., in 2019, the competition [23]
introduced Spoon in the benchmarks as it has a hand-written test suite with high coverage. The
results showed that none of the generators used in that edition could achieve a higher branch or line
coverage, or mutation score.

Challenging. Depending on the kind of generation technique considered, some benchmarks
might not be relevant or do not bring any interesting insights. For instance, Shamshiri et al. [83]
showed that many classes in the SF110 corpus [64], a corpus of benchmarks widely used for unit
test generation, can be covered using random search. Those benchmarks should be filtered out
for evaluating search-based unit test generators as they will not provide interesting insights. For
instance, the competition and other related work [13, 82] have considered McCabe’s cyclomatic
complexity (i.e., the number of independent paths in a control flow graph) of the benchmarks to
filter out simple benchmarks, easily covered (i.e., classes with a cyclomatic complexity lower than
five).

Comparable. Generalizability is hard to achieve and requires several evaluations, preferably
performed independently by different research teams. Selecting a subset of benchmarks that have
already been used in other studies is interesting to allow comparison between different studies.
It enables the meta-analysis of the results and cross-comparisons between different studies. For
instance, Campos et al. [82], and Panichella et al. [13] reused the same benchmarks to perform
large-scale empirical evaluations of search-based unit test generation algorithms, allowing a direct
comparison and discussion of the results.

Documented. As stated in Section 4.4, both the selection procedure and the characteristics of the
benchmarks should be reported together with the evaluation results. It is essential to the reviewing
process to ensure that reviewers have enough information about the benchmarks to assess the paper
describing the evaluation [59], but also to ensure that future research can compare and replicate the
results on other benchmarks with similar characteristics.

Available. Finally, benchmarks coming from open-source projects should be made available to
the research community. Building a good benchmark is not trivial and represents a substantial
effort [65]. The community should share this effort by encouraging the best open-science practices
and distribution of the benchmarks. JUGE provides a standard way of sharing and reusing such
benchmarks (described in Section 4.2). ‡‡

6.3. Future applications

The method described in Section 4 constitutes a standard that can be applied to unit test generation
for other kinds of languages using an infrastructure similar to JUGE. For instance, Lukasczyk et
al. [84] recently defined an approach to generate unit tests for Python. Of course, dynamically
typed languages such as Python face additional challenges than those discussed in Section 3.1.
Such challenges must be considered in the design of the infrastructure (e.g., running type inference
engines during pre-processing) and the selection of the benchmark (e.g., considering classes with
type annotations only, etc.), and reported in the description of the empirical evaluation.

Besides comparing unit test generators, the JUGE infrastructure can be used to generate large
amounts of tests for various kinds of classes using different tools and configurations. It enables
the continuous creation of an openly available corpus of automatically generated unit tests. Such a

‡‡Benchmarks of previous tool competitions are available at https://github.com/JUnitContest/JUGE/
tree/master/infrastructure.
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corpus would (i) directly contribute to the body of empirical evidence on which decision-makers
can rely to assess the usage of a unit test generator in their industrial context [11]; and (ii) enables
further empirical evaluations on automatically generated tests without configuring and running the
generators, which require a certain level of expertise. For instance, in a recent study, Panichella et
al. [85] revisited previous studies on the presence of test smells in automatically generated tests
and found that previous results vastly overestimated their presence. Among the different problems,
they pointed out a misconfiguration of EVOSUITE and its minimization process, resulting in more
prominent test cases more likely to contain certain smells. Building openly available corpora using
the appropriate configuration for the generators, with a description of the characteristics applicable
evaluations, would avoid such issues. More in general, having the JUGE infrastructure and its
associated standards available to industrial and academic research communities can open the road
for more systematic testing for other languages (e.g., Python, etc.) as well as the definition of testing
pipelines to identify bugs and imperfections of systems in other application domains [86–90]. The
availability of such technologies can also impact computer science education, with available tools
that can be used in practical courses. Finally, we also expect future investigation supported by
JUGE in the context of test code quality and cost-effectiveness of both automatically and manually
generated tests [91, 92].

Finally, regarding the infrastructure itself, we plan to add other types of analysis in addition
to coverage and mutation score. Such analyses include performances of the generated tests
(e.g., execution time and memory consumption) and readability.

7. CONCLUSION

JUGE sets a standard for properly assessing automated test case generators. It provides an
infrastructure and a method to design, set up, and execute an empirical evaluation, collect
and analyze the results, and produce a replication package to meet the requirements, enabling
an effective contribution to the software testing empirical body of knowledge. It includes
recommendations for selecting benchmarks and the parametrization of the generator and the
infrastructure, depending on the research questions. JUGE was initially introduced and developed
in the context of the tool competition and has been used with several generators and dozens of
classes under test from various projects.

Finally, the JUGE infrastructure availability opens several directions for practitioners, who can
rely on a large body of empirical evidence to assess automated test case generation usage in their
context, and researchers, who can benefit from corpora of automatically generated tests for further
empirical evaluations. JUGE also provides guidelines for evaluating unit test generation in other
programming languages and for defining similar infrastructures in other domains.
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7. Braione P, Denaro G, Mattavelli A, Pezzè M. Combining symbolic execution and search-based testing for programs
with complex heap inputs. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis - ISSTA 2017, ACM Press: New York, New York, USA, 2017; 90–101, doi:10.1145/3092703.3092715.

8. Yun I, Lee S, Xu M, Jang Y, Kim T. QSYM : A practical concolic execution engine tailored for hybrid fuzzing.
27th USENIX Security Symposium (USENIX Security 18), USENIX Association: Baltimore, MD, 2018; 745–761.

9. Sen K. Concolic testing. Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering - ASE ’07, 1, ACM Press, 2007; 571–572, doi:10.1145/1321631.1321746.

10. Juristo N, Moreno AM, Vegas S. Towards building a solid empirical body of knowledge in testing techniques. ACM
SIGSOFT Software Engineering Notes sep 2004; 29(5):1–4, doi:10.1145/1022494.1022544.

11. Dyba T, Kitchenham B, Jorgensen M. Evidence-based software engineering for practitioners. IEEE Software jan
2005; 22(1):58–65, doi:10.1109/MS.2005.6.

12. Devroey X, Gambi A, Galeotti JP, Just R, Kifetew F, Panichella A, Panichella S. JUGE: Junit generation
benchmarking infrastructure Jun 2021, doi:10.5281/zenodo.4904393. URL https://doi.org/10.5281/
zenodo.4904393.

13. Panichella A, Kifetew FM, Tonella P. Automated Test Case Generation as a Many-Objective Optimisation Problem
with Dynamic Selection of the Targets. IEEE Transactions on Software Engineering 2018; 44(2):122–158, doi:
10.1109/TSE.2017.2663435.

14. Sakti A, Pesant G, Gueheneuc YG. Instance Generator and Problem Representation to Improve Object Oriented
Code Coverage. IEEE Transactions on Software Engineering mar 2015; 41(3):294–313, doi:10.1109/TSE.2014.
2363479.

15. Prasetya ISWB. T3, a Combinator-Based Random Testing Tool for Java: Benchmarking. Future Internet Testing.
FITTEST 2013, LNCS, vol. 8432, Vos T, Lakhotia K, Bauersfeld S (eds.), Springer, 2014; 101–110, doi:10.1007/
978-3-319-07785-7 7.

16. Braione P, Denaro G, Mattavelli A, Pezzè M. SUSHI: A Test Generator for Programs with Complex Structured
Inputs. Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings, i,
ACM Press: New York, NY, USA, 2018; 21–24, doi:10.1145/3183440.3183472.

17. Bauersfeld S, Vos TEJ, Lakhotia K, Poulding SM, Condori-Fernández N. Unit testing tool competition. Sixth IEEE
International Conference on Software Testing, Verification and Validation, ICST 2013 Workshops Proceedings,
Luxembourg, Luxembourg, March 18-22, 2013, IEEE Computer Society, 2013; 414–420, doi:10.1109/ICSTW.
2013.55.

18. Bauersfeld S, Vos TEJ, Lakhotia K. Unit testing tool competitions - lessons learned. Future Internet Testing - First
International Workshop, FITTEST 2013, Istanbul, Turkey, November 12, 2013, Revised Selected Papers, Lecture
Notes in Computer Science, vol. 8432, Vos TEJ, Lakhotia K, Bauersfeld S (eds.), Springer, 2013; 75–94, doi:
10.1007/978-3-319-07785-7 5.

19. Rueda U, Vos TEJ, Prasetya ISWB. Unit testing tool competition - round three. 8th IEEE/ACM International
Workshop on Search-Based Software Testing, SBST 2015, Florence, Italy, May 18-19, 2015, Gay G, Antoniol G
(eds.), IEEE Computer Society, 2015; 19–24, doi:10.1109/SBST.2015.12.

20. Rueda U, Just R, Galeotti JP, Vos TEJ. Unit testing tool competition: round four. Proceedings of the 9th International
Workshop on Search-Based Software Testing, SBST@ICSE 2016, Austin, Texas, USA, May 14-22, 2016, ACM,
2016; 19–28, doi:10.1145/2897010.2897018.

21. Panichella A, Molina UR. Java unit testing tool competition - fifth round. 10th IEEE/ACM International Workshop
on Search-Based Software Testing, SBST@ICSE 2017, Buenos Aires, Argentina, May 22-23, 2017, IEEE, 2017;
32–38, doi:10.1109/SBST.2017.7.

22. Molina UR, Kifetew FM, Panichella A. Java unit testing tool competition: sixth round. Proceedings of the 11th
International Workshop on Search-Based Software Testing, ICSE 2018, Gothenburg, Sweden, May 28-29, 2018,
Galeotti JP, Gorla A (eds.), ACM, 2018; 22–29, doi:10.1145/3194718.3194728.

Copyright c© 2022 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2022)
Prepared using stvrauth.cls DOI: 10.1002/stvr

https://doi.org/10.5281/zenodo.4904393
https://doi.org/10.5281/zenodo.4904393


20

23. Kifetew FM, Devroey X, Rueda U. Java unit testing tool competition: seventh round. Proceedings of the 12th
International Workshop on Search-Based Software Testing, SBST@ICSE 2019, Montreal, QC, Canada, May 27,
2019, Gorla A, Rojas JM (eds.), IEEE / ACM, 2019; 15–20, doi:10.1109/SBST.2019.00014.

24. Devroey X, Panichella S, Gambi A. Java Unit Testing Tool Competition - Eighth Round. 2020 IEEE/ACM 13th
International Workshop on Search-Based Software Testing (SBST), IEEE / ACM, 2020, doi:10.1145/3387940.
3392265.

25. Panichella S, Gambi A, Zampetti F, Riccio V. Sbst tool competition 2021. 2021 IEEE/ACM 14th International
Workshop on Search-Based Software Testing (SBST), IEEE / ACM, 2021, doi:10.1109/SBST52555.2021.00011.

26. Gambi A, Jahangirova G, Riccio V, Zampetti F. Sbst tool competition 2022. 2022 IEEE/ACM 15th International
Workshop on Search-Based Software Testing (SBST), IEEE / ACM, 2022, doi:10.1145/3526072.3527538.

27. Fraser G, Arcuri A. Evosuite at the SBST 2013 tool competition. Sixth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2013 Workshops Proceedings, Luxembourg, Luxembourg, March 18-22,
2013, IEEE Computer Society, 2013; 406–409, doi:10.1109/ICSTW.2013.53.

28. Prasetya ISWB. Measuring T2 against SBST 2013 benchmark suite. Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013 Workshops Proceedings, Luxembourg, Luxembourg,
March 18-22, 2013, IEEE Computer Society, 2013; 410–413, doi:10.1109/ICSTW.2013.54.

29. Fraser G, Arcuri A. Evosuite at the second unit testing tool competition. Future Internet Testing - First International
Workshop, FITTEST 2013, Istanbul, Turkey, November 12, 2013, Revised Selected Papers, Lecture Notes in
Computer Science, vol. 8432, Vos TEJ, Lakhotia K, Bauersfeld S (eds.), Springer, 2013; 95–100, doi:10.1007/
978-3-319-07785-7 6.

30. Prasetya ISWB. T3, a combinator-based random testing tool for java: Benchmarking. Future Internet Testing - First
International Workshop, FITTEST 2013, Istanbul, Turkey, November 12, 2013, Revised Selected Papers, Lecture
Notes in Computer Science, vol. 8432, Vos TEJ, Lakhotia K, Bauersfeld S (eds.), Springer, 2013; 101–110, doi:
10.1007/978-3-319-07785-7 7.

31. Fraser G, Arcuri A. Evosuite at the SBST 2015 tool competition. 8th IEEE/ACM International Workshop on Search-
Based Software Testing, SBST 2015, Florence, Italy, May 18-19, 2015, Gay G, Antoniol G (eds.), IEEE Computer
Society, 2015; 25–27, doi:10.1109/SBST.2015.13.

32. Ma L, Artho C, Zhang C, Sato H, Hagiya M, Tanabe Y, Yamamoto M. GRT at the SBST 2015 tool competition.
8th IEEE/ACM International Workshop on Search-Based Software Testing, SBST 2015, Florence, Italy, May 18-19,
2015, Gay G, Antoniol G (eds.), IEEE Computer Society, 2015; 48–51, doi:10.1109/SBST.2015.19.
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A. EXAMPLE OF EVALUATION USING JUGE

This appendix illustrates how JUGE can be used in practice. We use as an example the eighth edition of
the Java unit testing tool competition [24] in which three of the authors were involved. The competition
has occurred since 2013 and is co-located with the Search-Based Software Testing workshop. Participants
willing to enter the competition have to provide (i) an executable version of their tool (potentially obfuscated,
which enables the participation of industrial tools); and (ii) an implementation of the runtool adapter
(described in Section 3.3) for their tool. In practice, this implementation consists in cloning the runtool
project available in the JUGE repository and defining the methods of the ITestingTool interface
described in Listing 1. The effort is minimal and consists of writing between 100 and 200 lines of code
for a reasonably well-implemented tool (i.e., tools relying on configuration parameters, for instance).
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Figure 6. Example of reporting of the line coverage, branch coverage and mutation score for the candidate
(382 classes) and selected benchmarks (60 classes, 20 per project) from the 2020 tool competition [24].

The competition aims to compare different tools on a diverse set of classes under test (i.e., benchmarks)
for different time budgets. As the organizers run the evaluation, the time budgets and number of executions
depend on the computational resources available. For the eighth edition, the tools were executed ten times
for 60 and 180 seconds on each benchmark.

A.1. Benchmarks selection

Several ways exist to define a new set of benchmarks for a given set of projects. The projects selected for
that edition were a mix of projects from the previous iterations of the competition to allow comparing results
across years and popular GitHub projects built using Maven to ease dependency collection. The benchmarks
were selected following a two-step procedure for the list of selected projects. In the first step, (i) identifying
the packages in the project that contain classes relevant for the evaluation (e.g., packages containing classes
with the business logic); (ii) computing the McCabe’s cyclomatic complexity for the different classes of
those packages and remove classes with a complexity lower than five. This reduces the risk to sample classes
with few branches, easily covered by randomly generated tests [13].

In the second step, a random generator (here, RANDOOP [1]) was executed with a low time budget
(e.g., ten seconds) on the remaining classes to filter out classes for which the generator could not generate
any tests. This reduces the chances of facing technical difficulties while evaluating the different tools. Since
the remaining classes were still too high, a subset of classes was randomly sampled for each project.

In addition to the previous steps, one can also use JUGE to perform a coverage and mutation analysis
of the tests produced by the random generator and report the results for the candidate and sampled classes.
Figure 6 shows the line and branch coverage and mutation score of the candidate and sampled classes of the
eighth edition of the tool competition.

A.2. Execution

The eighth edition of the competition received only one submission (i.e., EVOSUITE with DYNAMOSA)
that was compared against RANDOOP, used as a baseline. The implementation of the runtool adapter is
available in JUGE’s GitHub repository. EVOSUITE and RANDOOP were executed ten times each against
each benchmark. The executions were run in parallel (using Docker) on two servers: one with 40 CPU cores
(2.30GHz) with 128 GB memory and one with 8 CPU cores (2.49GHz) with 160 GB memory. The coverage
and mutation analysis were performed on the same machines. The total execution time for test generation
and analysis took around four days.

A.3. Data analysis and ranking of the contestants

The competition combines the different metrics to ease the comparison of different generators. For that, it
relies on a scoring formula [21]. This formula has been developed and refined during the different editions
of the competition and takes into account the line and branch coverage, the mutation score, and the time
budget used by the generator, and applies a penalty for flaky and non-compiling tests. In 2020, EVOSUITE
ranked first. As a further example, Table II provides the ranking obtained through Friedman’s test for the
fifth edition of the tool competition [21]. EVOSUITE is ranked first with an average score of 1457, followed
by JTEXPERT, T3, and RANDOOP. Table III gives the post-hoc Conover’s test results for the same edition

Copyright c© 2022 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2022)
Prepared using stvrauth.cls DOI: 10.1002/stvr



24

Table II. Example of scores and ranking obtained through Friedman’s test for the 5th edition of the tool
competition [21].

Tool Score Std.dev Ranking
EVOSUITE 1457 192.72 1.55
JTEXPERT 849 102.03 2.71

T3 526 82.43 2.81
RANDOOP 448 34.75 2.92

Table III. Example of results of the post-hoc Conover’s test for the 5th edition of the tool competition [21].

EVOSUITE JTEXPERT T3 RANDOOP
EVOSUITE - - - -
JTEXPERT < 0.01 - - -

T3 < 0.01 0.01 - -
RANDOOP < 0.01 < 0.01 0.06 -

of the competition and indicates that the various comparisons are statistically significant, except for T3 and
RANDOOP for which the p-value is above the confidence level of 0.05.

The scoring formula used in the competition provides an aggregated measure to rank the different tools
based on their coverage and mutation analysis performances. Other aspects could be considered, like, for
instance, the readability of the generated tests. Considering such aspects and including them in the scoring
formula is part of the future work identified in the tenth edition of the competition [26].

Once the coverage and mutation analysis have been performed, the full results for a tool (i.e., benchmarks,
generated tests, and collected data) are sent to the tool’s authors for further analysis. Authors can further
analyze the results for each round of execution of their tool on each benchmark.
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