
Medusa: Mutant Equivalence Detection
Using Satisfiability Analysis

Benjamin Kushigian
University of Massachusetts

Amherst, MA, USA
bkushigian@cs.umass.edu

Amit Rawat
University of Massachusetts

Amherst, MA, USA
amitrawat@cs.umass.edu

René Just
University of Washington

Seattle, WA, USA
rjust@cs.washington.edu

Abstract—This paper introduces Medusa, a framework for
reasoning about the equivalence of first-order mutants in Java
programs. Since the problem of detecting equivalent mutants
is undecidable in general, even when restricted to first-order
mutants, Medusa focuses on a subset of Java that can be
modeled as SMT solver constraints. This paper describes the
key insights behind Medusa and provides details about its
concepts and components, in particular constraint forking—a
novel approach that leverages structural similarities between
mutants to improve its efficiency. This paper further reports
on a preliminary evaluation and outlines several optimizations
that leverage the first-order mutant property to further improve
Medusa’s applicability and efficiency.

Index Terms—Mutation testing, equivalent mutants, SMT solver

I. INTRODUCTION

Mutation analysis is widely used in research [1]–[3], and
mutation-based testing sees increasing adoption in practice
(e.g., [4], [5]). However, equivalent mutants remain a major
concern as they skew analysis results and waste resources.

Recent advances in SMT solvers [6] make automatically
generating proofs of mutant equivalence and model checking
non-equivalence a viable option [7]–[9]. By constructing a
first-order logical formula ϕ representing the execution of a
program p and a mutant m, we may ask an SMT solver if there
is a set of inputs for which p and m yield different outputs.
If not, ϕ is unsatisfiable, and m is an equivalent mutant and
can be discarded. Otherwise, m is a non-equivalent mutant,
and we may ask the SMT solver for inputs that witness non-
equivalence, thereby generating a test that kills m. In both
cases the mutation score increases: in the first case the increase
corresponds to an improved accuracy; in the second case the
increase corresponds to an improved test suite.

SMT-based mutant equivalence detection and test generation
suffer from two major challenges: applicability (whether or not
an approach can reason about a program) and efficiency (the
amount of resources needed to reason about a program).

Applicability challenges stem from programming language
features, such as heap allocation, loops, method calls, and
exceptions, which occur in real-world programs [10], [11].
Many of these features cannot be defined by first-order logic—
they are not FO-definable—and thus cannot be modelled with
SMT solvers. In practice, however, many special cases of
undecidable problems can be reasoned about1. Additionally,

1For example, the halting problem is known to be undecidable in general,
but the program int foo(){return 17;} can be easily proven to halt.

we can improve applicability by abstracting the execution of
non-FO-definable features into FO-definable ones. Medusa is
motivated by the fact that while many problems are undecid-
able in general, instances that are encountered in the wild tend
to follow certain patterns that can be reasoned about. For ex-
ample, Java generics are Turing complete [12], but developers
rarely, if ever, leverage this fact. Hence, applicability can be
improved by identifying and solving frequently encountered
special cases of these problems.

Efficiency challenges stem from the fact that, at their core,
SMT solvers are solving instances of SAT, a well known NP-
complete problem. This paper hypothesizes and demonstrates
that additional information about inputs to the equivalent
mutant problem, such as the first-order mutation property, can
be used to increase efficiency by refining the queries made to
the SMT solver.

This paper introduces Medusa, a framework for automati-
cally reasoning about mutant equivalence by modelling JVM
bytecode with SMT constraints. The current prototype of
Medusa can prove mutant equivalence in loop-, heap-, and
call-free programs using primitive types. Medusa also handles
some object references and restricted cases of method invoca-
tions such as boxing and unboxing primitives.

To improve Medusa’s efficiency, we designed, implemented,
and evaluated constraint forking, a new approach that lever-
ages structural similarities between mutants to efficiently rea-
son about batches of mutants (Sections V and VI).

To improve Medusa’s applicability, we propose a new
approach called middle-out constraint generation (Section VII)
as well as some additional techniques (Section VIII). Middle-
out constraint generation allows Medusa to reason about
subsets of a method execution, such as loop bodies, without
constraining the entirety of the method.

II. BACKGROUND

Mutation analysis measures a test suite’s ability to distin-
guish a program under test from many artificial faults—small
variations, called mutants. A test that detects a mutant is said to
kill that mutant. Given a program p, mutation analysis applies
a set of small syntactic changes (mutations) to p, generating
a set of mutants M . A first-order mutant is one derived from
applying precisely one mutation; we say that such a mutant
satisfies the first-order mutation property.

The necessary conditions for a test t to kill a mutant
m ∈ M can be described using the reachability, infection,
and propagation (RIP) model [11]:

1) Reachability: t must execute m’s mutation at least once.
2) Infection: at least one execution of m’s mutation must

cause m’s execution state to differ from that of p.
3) Propagation: the infected execution state of m must

propagate to some observable output.
There are two common variants of mutation analysis: weak

and strong mutation. In weak mutation, a test t kills a mutant
m if t satisfies the infection condition. In strong mutation, a
test t kills a mutant m if t satisfies the propagation condition.
Note that satisfying the reachability condition is equivalent
to satisfy statement coverage of the mutated statement. This
paper is concerned with strong mutation.

A mutant that cannot be killed by any test is called an
equivalent mutant. The mutation score µ(T) of a test suite T
is defined as the number of mutants killed by T divided by
the number of generated nonequivalent mutants. To compute
µ(T), all equivalent mutants must be identified, an intractable
problem. Instead, µ(T) is commonly approximated by the
mutation kill ratio of T , defined as the number of killed
mutants divided by the number of generated mutants that have
not (yet) been identified as equivalent.

Each unidentified equivalent mutant wastes resources and
underestimates µ(T). The problem of identifying equivalent
mutants is thus crucial to improving the accuracy and effi-
ciency of mutation analysis.

III. GENERATING CONSTRAINTS FROM BYTECODE

This section describes our approach to modelling pro-
gram execution with SMT constraints, enabling queries
to SMT solvers about mutant equivalence. As a running
example, suppose we want to reason about the equiv-
alence of mutants m1 and m2 to the original program
squarePos in Figure 1a. We are first confronted with the
problem of defining the program semantics. Since the se-
mantics are ultimately defined by Javac and the JVM,
we work with JVM bytecode instead of Java source code.

A. SMT Constraints
A constraint is a boolean expression in a representation

understood by our constraint solver. In the remainder of this
paper, constraints are written in prefix syntax. For example,
(ite (< x y) (= z x) (= z y)) represents a constraint for
z = x < y ? x : y. We can constrain a program p by gener-
ating constraints that capture p’s execution; we will also speak
of constraining blocks and edges of p’s control flow graph.

We may assert a set of constraints to our constraint solver—
that is, ask the solver to check satisfiability. The solver will
attempt to find a model satisfying all asserted constraints and,
if found, returns that model.

B. Control Flow Graph
The bytecode in Figure 1b is easier to reason about than the

original source code, but the control flow is implicit; to make it
explicit, Medusa calculates the program’s control flow graph.

int squarePos(int x) {
if (x > 0)
x = x * x;

return x;
}

Mutants Equivalent

m1: > 7→ >= yes
m2: > 7→ < no

(a) Original source code and
two mutants m1 and m2.

B0: 0: iload_1
1: ifle 8 (B2)

B1: 4: iload_1
5: iload_1
6: imul
7: istore_1

B2: 8: iload_1
9: ireturn

(b) Bytecode (m1 and m2
differ at instruction 1).

Setup Parameters in Table:
(= vt1-0 x)

B0:
iload_1: push to stack
(= (tail s1) s0)
(= (head s1) vt1-0)
ifle: set cond, pop stack
(= B0-cond (<= (head s1) 0))
(= s2 (tail s1))

B1:
iload_1: load x to stack
(= (tail s4) s3)
(= (head s4) vt1-1)
iload_1: load x to stack
(= (tail s5) s4)
(= (head s5) vt1-1)
imul: multiply, push
(= (tail s6) s3)
(= (head s6) (mul (head s4)

(head s5)))
istore_1: store to vt
(= vt1-2 (head s6))
implicit branch condition
(= B1-cond true)

B2:
iload_1: load x
(= (tail s8) s7)
(= (head s8) vt1-3)

(c) Block constraints

Was Block 0 executed?
(=> B0-executed?
(ite B0-cond
True Branch:
(and
Propagate to B2:
(= B2-executed? true)
(= vt1-3 vt1-0)
(= s7 s2))

False Branch:
(and
Propagate to B1:
(= B1-executed? true)
(= vt1-1 vt1-0)
(= s3 s2))))

Was Block 1 executed?
(=> B1-executed?
(ite B1-cond
(and
Propagate to B2:
(= B2-executed? true)
(= vt1-2 vt1-3)
(= s7 s6))))

Was Block 2 executed?
(=> B2-executed?
Set return value
(= ret (head s7)))

(d) Branching constraints

Fig. 1: Constraining a method from bytecode

A control flow graph (CFG) is a graph whose edges corre-
spond to branching information and whose nodes, called basic
blocks or just blocks, are maximal straightline sequences of
bytecode satisfying the following properties: (1) only the final
instruction may be a jump instruction, and (2) only the first
instruction of a block may be targeted by a jump instruction.

A block B may have either one or two successors. If
there are two successors then there is an associated boolean
condition cB such that the true successor is executed after B
when cB and the false successor is executed after B when
¬cB . If B has only one successor then Medusa sets cB to be
true and considers B’s only successor to be its true successor.

Medusa constrains blocks and edges separately, which
allows for the flexibility needed in constraint forking and
middle-out constraint generation.

C. Block Constraints
Recall our running example in Figure 1a. Medusa has gen-

erated the CFG, comprising blocks B0, B1, and B2. Figure 1b
shows the labelled bytecode, which reflects this partitioning.
Medusa then uses each of these blocks to generate constraints
of the call-stack state, shown in Figure 1c. The call-stack has
two types of state: the operand stack (opstack) and the variable
table (vartable). Note that Medusa does not track heap state.

To represent the JVM opstack at a point of execution as a
constraint, Medusa uses linked lists, which support operations
head and tail; vartable entries are represented as width-32 bit-
vectors. When pushing value x onto the opstack, represented
by linked list s, Medusa creates a new linked list instance s’

and generates the following constraints:
(and (= (head s’) x) (= (tail s’) s))

Each time Medusa pushes to or pops from the opstack it
introduces a static single assignment (SSA) variable to rep-
resent the newest version of the opstack. Likewise, whenever
Medusa stores a value to the vartable it introduces a new SSA
variable. Medusa names variables as follows: s2 represents the
third SSA linked list variable generated to track the opstack
(names are zero-indexed), while vt1-3 represents the fourth
SSA variable generated for the first vartable entry. Figure 1c
follows these conventions and is annotated for convenience.

Finally, each block has an execution bit to constrain control
flow. Medusa uses the notation executed-2? to denote the
value of the predicate “was Block 2 executed?”.

D. Edge Constraints

Medusa connects the generated block constraints by assert-
ing edge constraints based on the last instruction of each block.
If the last instruction is a conditional jump, as in B0, then
the head of the final opstack is used to compute a branching
condition. Otherwise the branching condition is set to true

to indicate that the block’s true successor is always taken.
Medusa then uses this condition to determine control flow and
propagate a block’s final state to its successor’s initial state.
Edge constraints take the following form:
(=> B-executed? (ite B-cond

(and (propagate B Bt) executed-Bt?)
(and (propagate B Bf) executed-Bf?)))

Bt and Bf are B’s true and false successors. In other words,
these constraints translate to: If B was executed and B’s
branching condition is true, propagate B’s state to its true
successor and set that successor’s execution bit to true.
Otherwise, if B was executed and B’s branching condition is
false, propagate B’s state to its false successor and set that
successor’s execution bit to true. Figure 1d shows the edge
constraints generated by Medusa for our example.

E. Checking Mutant Equivalence

To test for equivalence between a program p and a mutant
m, Medusa constrains the execution of both p and m, asserts
that their inputs are equal, and asserts that their outputs are
different. Continuing with our example, let m1-x be m1’s input
and m1-ret be m1’s return value. Then, to test if squarePos

and m1 are equivalent, Medusa asserts:
(and (= x m1-x) (not (= ret m1-ret))).

If the solver returns SAT , it has found a model witnessing
non-equivalence; if it instead returns UNSAT , it has proven
equivalence. The solver may also return UNKNOWN , e.g., if
it times out. For m1, the solver returns UNSAT while for m2, it
returns SAT , providing a model witnessing a difference (e.g.,
x:=-1). The provided model can be used for test generation.

IV. MEDUSA STRATEGIES

Medusa works on batches of mutants, and to take advantage
of this we introduce the notion of a strategy, allowing Medusa
to tailor its approach to the batch of mutants it is reasoning
about. This in turn allows Medusa to reuse some of its work
and apply different approaches to different types of mutants.

The naive strategy is the strategy that checks for equivalence
between program p and each of its mutants m using the
approach described in Section III-E. The naive strategy does
not reuse any of its work between mutants, recomputing p’s
constraints and all lemmas derived from p’s constraints for
each of p’s mutants.

The central SMT feature that enables work reuse is the
scope. Scopes may be pushed and popped in a LIFO fashion,
and an assertion is made into the most recently pushed scope.
The solver cannot produce a model violating this assertion
until that assertion’s scope is popped. Popping a scope clears
all assertions made in that scope as well as all lemmas
generated since it was pushed.

We get immediate performance gains by refactoring the
naive strategy to generate constraints for p only once, pushing
and popping a new scope to reason about each mutant. We
call this the caching strategy, and while it yields substantial
improvements, as detailed in Section VI, we can do better.

V. CONSTRAINT FORKING

Medusa has not leveraged the fact that it is working with
first-order mutants. To help refine queries to the SMT solver,
we define an atomic mutant to be a mutant with at most one
syntactic element changed. This definition implicitly depends
upon the program representation (i.e., source code, AST,
bytecode, CFG, etc.). Many first-order mutants result in atomic
CFG mutants, mutants in which at most one block may be
altered, no blocks are deleted, and all edges and their true/false
labels fixed. For instance, removing a short circuiting operator
removes a jump instruction and results in a non-atomic CFG
mutant, whereas negating a conditional alters the control flow
but not the CFG structure, and thus results in an atomic CFG
mutant.

Execution is identical between a program and a mutant
until a mutated block is reached. Hence, the beginning of
both executions can be modeled as the same constraints. To
capitalize on this, we propose the forking strategy.

First, Medusa generates Cp, the constraints for p, as well as
an identical copy Cm of Cp, which Medusa will use to constrain
mutants. Since the execution of p is always the same, Medusa
asserts Cp, but since the execution of each mutant is different,
Medusa does not immediately assert Cm.

Second, Medusa labels all blocks B1, . . . , BN such that
blocks precede their parents, and creates an empty stack
S of blocks. Then, Medusa iterates through all blocks
B1, B2, . . . , BN :

1) Push an SMT scope.
2) Push Bi onto S.
3) Assert Bi’s block and outgoing edge constraints in Cm.

> > >

B4 B′
4 B4 B4

B3 B2 B′
3 B′

2 B3 B2 B′
3 B′

2 B3 B2 B′
2

B1 B′
1 B1 B′

1 B1 B′
1

Fig. 2: Progression of the forking strategy. Mutated blocks are highlighted (red), and dashed lines represent forked constraints.
For each atomic CFG mutant of a block Bi, constraints are forked from Bi’s predecessor to the mutated block B′

i.

Medusa asserts that Cp and Cm’s return values are different.
Once this initial pre-pass is completed Medusa compares
mutant mi with p. While S is not empty:

1) Let B = S.pop().
2) Pop a scope, clearing B’s edge constraints in Cm.
3) For each mutated block B′ of B, do:

a) Push a scope.
b) Generate edge constraints from B′ into Cm.
c) Generate edge constraints from Cp to B′.
d) Call (check-sat) and, if SAT , call (get-model).
e) Pop the scope, clearing B′’s constraints.

Figure 2 illustrates three iterations of this process. Each
mutated block, highlighted in red, corresponds to multiple
atomic CFG mutants.

VI. EVALUATION

We evaluated Medusa on a Linux workstation with Intel
Xeon CPU at 2.2GHz and 100GB of RAM. Each execution
of Medusa was limited to one CPU and at most 2GB of RAM.

We evaluated Medusa on three subjects:

1) Tax: Computes the single-payer tax amount for a given
income.

2) TicTacToe: Checks the win condition for the Tic Tac
Toe game, including bounds checking on inputs.

3) Triangle: Classifies a given triangle into equilateral,
isosceles, scalene, or invalid.

We chose the above programs for their branching structure
since techniques such as loop unrolling and method inlining,
which Medusa could apply in a preprocessing step, tend to
result in a large amount of branching. (Real-world methods
often use language features such as references, method calls,
and loops that Medusa cannot yet reason about. Section VIII
addresses this applicability concern.)

We used MAJOR [13] to generate a total of 488 mutants
across all three subjects: 122 for Triangle, 267 for TicTacToe,
and 99 for Tax. Table I provides a breakdown of the three sub-
jects, including size in bytecode instructions, the total number
of mutants, and the total number of equivalent mutants.

We manually determined ground truth for mutant equiva-
lence. The naive and the caching strategies correctly calculated
equivalence for all mutants, and the forking strategy correctly
calculated equivalence for all atomic CFG mutants.

TABLE I: Summary of the three evaluation subjects. Insns
and Jmps give the total number of bytecode instructions and
the number of jump instructions. For All mutants and Atomic
CFG mutants, tot and equiv give the total number of mutants
and the number of equivalent mutants.

Subject Insns Jmps All mutants Atomic CFG mutants

tot equiv tot equiv

Tax 100 15 99 10 84 10
TicTacToe 171 49 267 23 98 19
Triangle 89 17 122 4 70 3

TABLE II: Run times (in seconds) and improvements for the
naive, caching (cache), and forking (fork) strategies. Run
times are averaged over five runs.

Subject Run times Improvements

naive cache fork cache fork
(vs. naive) (vs. naive)

Atomic CFG mutants

Tax 521 258 197 50.5% 62.2%
TicTacToe 17.9 16.5 13.9 7.8% 22.5%
Triangle 3.72 3.26 1.3 12.4% 65.1%

Non-atomic CFG mutants

Tax 410 185 — 54.9% —
TicTacToe 17 16.3 — 4.1% —
Triangle 2.34 2.16 — 7.7% —

All mutants*

Tax 504 247 195 51.0% 61.3%
TicTacToe 17.4 16.3 15.4 6.3% 11.5%
Triangle 3.13 2.79 1.67 10.9% 46.6%
∗For non-atomic CFG mutants, the forking strategy defaults to caching.

We computed the average run times of the naive, caching,
and forking strategies on all mutants per subject over five exe-
cutions. Table II summarizes the results and reports on the im-
provements in run time when using caching or forking in place
of the naive strategy. Improvements are calculated to be 100 ·
(tn−ts)/tn, where tn is the run time for the naive strategy, and
ts is the run time for the strategy being compared. In contrast
to the other subjects, Tax primarily uses floating point arith-
metic, which is likely the reason for its longer run times.

int gcd(int a, int b){
while (a != b)

if (a > b) a = a - b;
else b = b - a;

return a; }

int gcd_mut(int a, int b){
while (a != b)

if (a >= b) a = a - b;
else b = b - a;

return a; }

Fig. 3: Middle-out generation can help with loops

When restricted to atomic CFG mutants, forking improves
run time between 22.5% and 65.1%, and caching improves
run time between 7.8% and 50.5%. The improvements across
all mutants reflect this same pattern.

Both the naive and caching strategies took longer to de-
termine (non-)equivalence for atomic CFG mutants than they
did for other mutants. We conjecture that Medusa can more
easily reason about non-atomic CFG mutants, which often
involve changes in control flow structure such as the deletion
of a short-circuiting boolean operator. We leave a deeper
investigation open for future work.

VII. MIDDLE-OUT CONSTRAINT GENERATION

While mutant equivalence in the presence of loops is unde-
cidable, there are mutants whose equivalence is clear. Consider
gcd and its mutant gcd_mut in Figure 3. These are identical in
all but the relational operator in the if statement’s condition
and execution is altered only if a == b. In this case, the loop’s
body, whose execution is predicated on a != b, could not have
run, and we conclude that gcd_mut is equivalent.

Because of the presence of the while loop we cannot
fully generate constraints for gcd or gcd_mut. This motivates
middle-out constraint generation, where only part of a method
is constrained. The key idea is as follows: check if a block
and a mutated block are equivalent and if so conclude that
both methods are equivalent. Otherwise expand checking to the
immediate predecessors and successors and repeat. Continue
until equivalence is proven or until expansion cannot continue.

In our example we begin by constraining the mutated
blocks comprising the conditional a > b and mutation a >= b,
querying if there exists a tuple (a, b) that distinguishes the
two. Our solver returns SAT and we continue by constraining
the predecessors or the successors. For brevity we expand up,
generating constraints for a != b. We query if there exist a
tuple (a, b) such that a != b and a == b which is impossible,
hence our solver returns UNSAT .

VIII. ADDITIONAL TECHNIQUES

In addition to constraint-forking and middle-out constraint
generation, we propose several other techniques to increase
Medusa’s applicability.

Generalized Constraint Forking While the forking strat-
egy applies to atomic CFG mutants, we conjecture that most
first order mutants exhibit strong locality properties, even after
translation to the control flow graph, and that this fact may be
used to generalize the forking strategy.

Dynamic Loop Unrolling Loop unrolling is typically
implemented as a static analysis prepass, which is orthogonal
to our proposed methods. For example, Nica and Wotawa in-
crease nesting depth for the entire program if non-equivalence
was not proved and regenerate constraints from scratch [10].

We conjecture that dynamically unrolling loops by adding
new iterations to a loop as needed while querying the SMT
solver may increase applicability and efficiency. Dynamic loop
unrolling would generate constraints only for new iterations,
and only as needed; the remainder of the constraints would
remain intact, and any work done by the SMT solver up to
that point will be preserved. We expect dynamic loop unrolling
to pair nicely with middle-out constraint generation.

Exception Abstraction Given Java’s propensity for
NullPointerExceptions, Java code is often riddled with null
checks, and manually writing tests for these is tiresome.
Consider the three null checks in the nullCheck method below.

int nullCheck(Object a, Object b, Object c) {
if (a==null || b==null || c==null)
throw new Exception();

... }

Adequately testing this method requires one test per null
check. Even though this method contains heap allocation,
method invocation, and exception throwing, Medusacould
handle this and similar instances with an abstraction: in a
prepass it could recognize when an exception is created and
thrown and, instead of constraining the exact bytecode, emit
constraints for an exception-thrown bit. We call this process
of abstracting over exception handling exception abstraction.
The SMT solver can prove non-equivalence if it finds a model
in which one program throws and propagates an exception
but the other does not. However, due to the abstraction,
Medusa does not prove equivalence if both programs throw
an exception—one program may throw an IOException, while
the other may throw a NullPointerException.

Trivial Mutant Detection Just as equivalent mutants are
a burden for developers [14], non-equivalent mutants also
present a challenge. While many non-equivalent mutants are
easy to kill, creating tests that do so can be tedious, time-
consuming, and even unproductive [5]. One particular example
are trivial mutants: mutants that throw an exception every
time they are executed [15]. For instance, mutating a bounds
check from i<a.length to i<=a.length in a loop that accesses
the ith element of array a will always throw an exception;
such a mutant provides no value beyond simple code coverage
measures and should not be factored into the mutation score.
Employing SMT solvers along with exception abstraction to
aid in the detection of trivial mutants is promising future work.

Foldability In functional programming there is the notion
of a foldable function which takes a list of data xs, an accumu-
lator acc, and some combination function f, and recursively
applies f to both the head of xs and acc, “folding” the results
into the accumulator. An example of a foldable function is sum,
which may be written as sum xs = fold + 0 xs, where + is
the function that adds two integers. Given a foldable program
p xs = fold f acc xs and a mutant m of p of the form m xs

= fold f’ acc xs, it is easy to see that if f is equivalent to
f’ then m is equivalent to p.

Foldable functions are common, though Java’s syntax obfus-
cates this, and by recognizing them we will be able to reason
about language features that are not FO-definable. Consider

the clip method below, which maps non-negative numbers to
themselves and negative numbers to zero:
int[] clip(int[] a) {
int[] b = new int[a.length];
for (int i=0; i < a.length; ++i)
b[i] = a[i] < 0 ? 0 : a[i];

return b;
}

Each cell of the output array b depends upon precisely one cell
of a and on no other non-constant values. We may write b[i]

= f(a[i]), where f is the function f(x) = x < 0 ? 0 : x.
If we mutate this to f’(x) = x <= 0 ? 0 : x then this is an
equivalent mutant: the only input which yields a local state
infection is 0, but f(0) = f’(0). We conclude that both clip

and its mutant are equivalent, even though they operate on
arrays, which are not FO-definable.

IX. RELATED WORK

The problem of equivalent and redundant mutants has
been attacked from several angles [1], including static ap-
proaches [7], [8], [10], [11], [16], dynamic approaches [17]–
[19], and hybrid approaches [20]. This section discusses the
static approaches most closely related to ours.

DeMillo and Offutt [11] first identified reachability, infec-
tion, and propagation (RIP) as conditions for a mutant to
be non-equivalent. If any of these conditions fail, the mutant
is equivalent. Offutt and Pan [16] use constraint solvers to
statically reason about mutant equivalence, considering the
RIP model. They use heuristics to identify infeasible con-
straints in a mutation system to determine mutant equivalence.
While these approaches are sound, they were hampered by the
limited forms of constraints they could reason about. Access
to powerful SMT solvers allows Medusa to reason about more
complex constraints and improve over this seminal work.

Nica and Wotawa introduced EqMutDetect [10], which
uses the MINION constraint solver and improves over [16].
EqMutDetect unrolls a program’s loops, converts the program
to SSA form, and translates this form into constraints for the
solver. Medusa’s naive strategy is roughly equivalent to this
approach, modulo loop unrolling. This approach is sound for
loop free programs; soundness for looping programs is only
guaranteed for non-equivalent mutants. Medusa improves over
EqMutDetect with novel optimization strategies (caching and
forking) and additional features such as handling some object
references and restricted cases of method invocations (e.g.,
boxing and unboxing primitives).

Compiler techniques and optimizations have been applied to
the equivalent mutant problem in [21], [22], and more recently
in [23]. The latter applies trivial compiler equivalence (TCE) to
Java. TCE is predominately effective at identifying equivalent
mutants generated by the AOIS operator, which introduces
pre- and post-increment/decrement operators to variables. Due
to the high number of equivalent mutants generated by this
operator, it is not implemented in MAJOR.

X. CONCLUSION

This paper introduces Medusa, a framework that employs
constraint solving techniques to detect equivalent mutants, and

presents a prototype that can soundly reason about mutant
equivalence for a restricted set of methods. It also pro-
poses and details constraint forking and middle-out-constraint
generation, two new techniques to increase efficiency and
applicability of SMT-based equivalent mutant detection. This
paper further describes additional promising techniques, whose
implementation and evaluation is left open for future work.

Equivalent mutant detection is a hard problem but we are
convinced that significant progress is possible with the use
of modern SMT solvers, by taking advantage of structural
knowledge gleaned from the first-order mutation property and
by solving frequently occurring special cases.

REFERENCES

[1] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE TSE, vol. 37, no. 5, pp. 649–678, 2011.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in Proc. of ICSE, 2005, pp. 402–411.

[3] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?” in
Proc. of FSE, 2014, pp. 654–665.

[4] H. Coles, “Real world mutation testing,” Online, http://pitest.org, last
accessed January 2019.

[5] G. Petrović, M. Ivanković, B. Kurtz, P. Ammann, and R. Just, “An
industrial application of mutation testing: Lessons, challenges, and
research directions,” in Proc. of Mutation, 2018, pp. 47–53.

[6] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS.
Springer, 2008, pp. 337–340.

[7] B. K. Aichernig, E. Jöbstl, and M. Kegele, “Incremental refinement
checking for test case generation,” in Tests and Proofs, 2013, pp. 1–
19.

[8] E. Jöbstl, “Model-based mutation testing with constraint and smt
solvers,” Ph.D. dissertation, 2014.

[9] N. Tillmann and P. de Halleux, “Pex - white box test generation for
.net,” in TAP, vol. 4966. Springer Verlag, April 2008, pp. 134–153.

[10] S. Nica and F. Wotawa, “Using constraints for equivalent mutant
detection,” ArXiv e-prints, Jul. 2012.

[11] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data
generation,” IEEE TSE, vol. 17, no. 9, 1991.

[12] R. Grigore, “Java generics are turing complete,” in Proc of ACM
SIGPLAN, vol. 52, no. 1. ACM, 2017, pp. 73–85.

[13] R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler,” in Proc.
of ASE, 2011, pp. 612–615.

[14] B. Grün, D. Schuler, and A. Zeller, “The impact of equivalent mutants,”
in Proc. of Mutation, 2009, pp. 192–199.

[15] R. Just, B. Kurtz, and P. Ammann, “Inferring mutant utility from
program context,” in Proc. of ISSTA, 2017, pp. 284–294.

[16] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and
infeasible paths,” JSTVR, vol. 7, no. 3, pp. 165–192.

[17] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by
propagating and partitioning infected execution states,” in Proc. of
ISSTA, 2014, pp. 315–326.

[18] R. Gopinath, C. Jensen, and A. Groce, “Topsy-turvy: a smarter and
faster parallelization of mutation analysis,” in Proc. of ICSE, 2016, pp.
740–743.

[19] B. Wang, Y. Xiong, Y. Shi, L. Zhang, and D. Hao, “Faster mutation
analysis via equivalence modulo states,” in Proc. of ISSTA, 2017, pp.
295–306.

[20] R. Just, M. D. Ernst, and G. Fraser, “Using state infection conditions to
detect equivalent mutants and speed up mutation analysis,” in Proc. of
Dagstuhl Sem., vol. abs/1303.2784, 2013, arXiv:1303.2784.

[21] D. Baldwin and F. Sayward, Heuristics for Determining Equivalence of
Program Mutations, ser. Dept of CS: Research report, 1979.

[22] A. J. Offutt and W. M. Craft, “Using compiler optimization techniques
to detect equivalent mutants,” JSTVR, vol. 4, pp. 131–154, 1994.

[23] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. L. Traon, and M. Har-
man, “Detecting trivial mutant equivalences via compiler optimisations,”
IEEE TSE, vol. 44, no. 4, pp. 308–333, 2018.

