
MuRS: Mutant Ranking and Suppression using Identifier
Templates

Zimin Chen∗

zimin@kth.se
KTH Royal Institute of Technology

Sweden

Małgorzata Salawa
magorzata@google.com

Google
Switzerland

Manushree Vijayvergiya
manushree@google.com

Google
Switzerland

Goran Petrović
goranpetrovic@google.com

Google
Switzerland

Marko Ivanković
markoi@google.com

Google
Switzerland

René Just∗

rjust@cs.washington.edu
University of Washington

USA

ABSTRACT

Di�-based mutation testing is a mutation testing approach that only

mutates lines a�ected by a code change under review. This approach

scales independently of the code-base size and introduces test goals

(mutants) that are directly relevant to an engineer’s goal such as

�xing a bug, adding a new feature, or refactoring existing func-

tionality. Google’s mutation testing service integrates di�-based

mutation testing into the code review process and continuously

gathers developer feedback onmutants surfaced during code review.

To enhance the developer experience, the mutation testing service

uses a number of manually-written rules that suppress not-useful

mutants—mutants that have consistently received negative devel-

oper feedback. However, while e�ective, manually implementing

suppression rules requires signi�cant engineering time.

This paper proposes and evaluates MuRS, an automated ap-

proach that groups mutants by patterns in the source code under

test and uses these patterns to rank and suppress future mutants

based on historical developer feedback on mutants in the same

group. To evaluateMuRS, we conducted an A/B testing study, com-

paringMuRS to the existing mutation testing service. Despite the

strong baseline, which uses manually-written suppression rules,

the results show a statistically signi�cantly lower negative feed-

back ratio of 11.45% forMuRS versus 12.41% for the baseline. The

results also show thatMuRS is able to recover existing suppression

rules implemented in the baseline. Finally, the results show that

statement-deletion mutant groups received both the most positive

and negative developer feedback, suggesting a need for additional

context that can distinguish between useful and not-useful mu-

tants in these groups. Overall, MuRS is able to recover existing

suppression rules and automatically learn additional, �ner-grained

suppression rules from developer feedback.

∗Work done at Google.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3613901

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Mutation Testing, Developer Feedback, Code Review

ACM Reference Format:

Zimin Chen, Małgorzata Salawa, Manushree Vijayvergiya, Goran Petrović,

Marko Ivanković, and René Just. 2023. MuRS: Mutant Ranking and Suppres-

sion using Identi�er Templates. In Proceedings of the 31st ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA.

ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3611643.3613901

1 INTRODUCTION

Software testing is an essential part of software development that

validates and veri�es the software under test. A well tested program

is an indication of a reliable program [13]. But how do we assess

whether a program is well tested? One way is to use mutation

testing [1], which systematically introduces small changes into the

program and checks whether the program’s tests detect the changes.

Mutation testing has been widely studied [8] and sees increasing

adoption in industry [2, 19].

Mutation testing systematically applies mutation operators that

create program variants called mutants. Each mutant di�ers from

the original program by a small change such as a changed literal,

a changed operator, or a deleted statement. Even a small number

of mutation operators, when systematically applied to an entire

program, can generate vast numbers of mutants, and evaluating all

of them is computationally expensive [23]—prohibitively so for an

industry-level code base. To solve this problem, di�-based mutation

testing [19] incrementally mutates, during code review, only source

code lines that are a�ected by the code change under review.

Google has successfully deployed di�-based mutation testing

for a code base that sees more than 40 000 code commits per day

to more than a billion lines of code [19]. The corresponding code-

review tool o�ers an option for authors and reviewers to provide

feedback for mutants surfaced during code review (see Figure 1).

If a reviewer clicks the “Please �x” button, the code-review tool

auto-generates a review comment, asking the author to resolve the

mutant. Additionally, both authors and reviewers can click “Thumbs

up” or “Thumbs down” to give positive or negative feedback for

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1798

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6673-6438
https://orcid.org/0009-0003-4904-7109
https://orcid.org/0009-0006-3957-5399
https://orcid.org/0000-0002-8056-7431
https://orcid.org/0000-0002-8548-6008
https://orcid.org/0000-0002-5982-275X
https://doi.org/10.1145/3611643.3613901
https://doi.org/10.1145/3611643.3613901
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3613901&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA Zimin Chen, Małgorzata Salawa, Manushree Vijayvergiya, Goran Petrović, Marko Ivanković, and René Just

a surfaced mutant. The negative feedback ratio is regularly mea-

sured and serves as an indicator for e�ective false positives [22]. To

lower that ratio, the existing mutation testing service implements

a number of static suppression rules that prevent mutants that are

likely to receive negative feedback from being surfaced or even

generated, and it prioritizes mutation operators based on the his-

torical e�ectiveness of the mutants they generate. Over the years,

the manually developed suppression and prioritization rules have

reduced the negative feedback ratio from over 80% to well below

15% [19]. However, manually implementing rules is labor-intensive,

the rules require regular maintenance, and prioritization based on

mutation operators may be too coarse-grained.

This paper presentsMuRS (MutantRanking & Suppression) that

aims to tackle these problems and further reduce the negative feed-

back ratio. MuRS uses identi�er templates—an abstraction over the

uni�ed di� between the mutant and the original program. Speci�-

cally, MuRS takes, for a given mutant, the uni�ed di� and replaces

(1) literals with their type names (e.g., int or String) and (2) identi-

�ers with IDENTIFIER.MuRS optionally preserves the most common

literals and identi�ers, using a con�gurable vocabulary size. Simi-

larly, the number of context lines in the uni�ed di� considered when

building identi�er templates is another hyper-parameter. MuRS

then groups all historical mutants and aggregates their developer

feedback by identi�er template. The aggregated feedback for each

identi�er template is then used to rank and suppress newly gener-

ated mutants. The intuition behind this approach is that mutants

whose identi�er templates have largely received positive feedback

should be ranked highly, whereas mutants whose identi�er tem-

plates have received negative feedback should be ranked lower

or suppressed altogether. MuRS scales very well to a large code

base: our analyses computed millions of identi�er templates on a

machine with commodity hardware and only 16 GB of RAM.

We conducted an A/B testing study to evaluate MuRS’ perfor-

mance, randomly assigning 50% of code reviews at Google during

the evaluation period to the experiment group (MuRS) and all other

code reviews to a control group (existing mutation testing service).

During the evaluation period, a total of 666 143 mutants surfaced

across the �ve languages supported byMuRS (Python, Java, C++,

Go, and TypeScript). The key results are as follows:

• The overall negative feedback ratio for the experiment group

is 11.45%, which is statistically signi�cantly lower than the

negative feedback ratio of 12.41% for the control group.

• The correlation coe�cient (Kendall’s Tau-b) betweenMuRS’s

ranking score and the ranked mutants’ perceived usefulness

(developer feedback) is 0.2615, which indicates a moderate

correlation. Further, the top 50% of ranked mutants only con-

tain 16.39% of mutants with negative feedback. This suggests

that MuRS’s ranking of mutants e�ectively decreases the

likelihood of surfacing not-useful mutants.

• When applied to all surfaced mutants in the control group,

MuRS would have suppressed 49% of mutants that received

negative feedback, and it would have suppressed 12% of

mutants that received positive feedback. This means that,

when deployingMuRS, choosing a suppression threshold in-

volves a trade-o� between correctly suppressing not-useful

mutants, which waste engineers’ time, and incorrectly sup-

pressing useful mutants, which likely lead to additional tests.

Figure 1: A mutant surfaced in the code review tool. A re-

viewer can click “Please �x”, indicating that the author

should resolve the mutant. Both author and reviewers can

click “Thumbs up” and “Thumbs down” to give feedback.

• For all supported languages, the identi�er templates that re-

ceive the most controversial feedback (i.e., the most positive

and the most negative feedback) are all statement removal

mutants. Prior research has found that statement removal

mutants are coupled with real faults more often than other

types of mutants [10]. This �nding suggests that although

statement removal mutants are useful in general, further

investigation is necessary to identify the speci�c subset of

statement removal mutants that are not useful.

We additionally performed a retrospective analysis, investigating

what identi�er templatesMuRS would have learned and scored at

di�erent points in the past six years. A manual analysis of the most

common identi�er templates that consistently received negative

feedback showed that MuRS is able to recover suppression rules

implemented in the existing mutation testing service.

2 TERMINOLOGY

This section de�nes the terminology used throughout the paper:

• Changelist: A set of changes made to the code base, which

are submitted for review (similar to a merge request).

• Snapshot: A speci�c point in time, capturing the state of a

changelist as it evolves during the code review process. Each

changelist has one or more snapshots.

• Generated mutants: All mutants generated by the muta-

tion testing service.

• Surviving mutants: Mutants that are not detected by any

of the existing tests—a subset of all generated mutants.

• Surfaced mutants: Mutants displayed in the code review

tool—a subset of surviving mutants. The number of surfaced

mutants is limited to avoid overwhelming developers.

• Positive feedback: A surfaced mutant receives positive

feedback when the “Please Fix” or “Thumbs Up” button is

clicked in Figure 1; we deem such mutants useful.

• Negative feedback: A surfaced mutant receives negative

feedback when the “Thumbs Down” button is clicked in

Figure 1; we deem such mutants not useful.

1799

MuRS: Mutant Ranking and Suppression using Identifier Templates ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

3 MUTATION TESTING AT GOOGLE

Integrating mutation testing into a large code base, like Google’s,

poses signi�cant challenges related to scalability and work�ow

integration. Generating and testing all possible mutants is com-

putationally infeasible, and reporting all surviving mutants to de-

velopers would be overwhelming. To overcome these challenges,

Google’s mutation testing service implements di�-based mutation

testing: it only generates mutants for the lines of code that have

been changed in a given changelist. It also implements arid node

detection and probabilistic mutation-operator selection to surface

mutants that developers mostly consider useful in practice [19].

In Figure 2, “Mutation Testing Service” illustrates the entire pro-

cess, from submitting a changelist for code review to surfacing

mutants as �ndings in the code review tool. A detailed report [19]

provides a comprehensive description of the mutation testing ser-

vice. This section provides a high-level overview:

(1) A developer submits a changelist for code review.

(2) The mutation testing service identi�es all changed lines that

are covered by at least one test.

(3) The mutation testing service builds the abstract syntax tree

of each a�ected �le and marks arid nodes that are not eligible

for mutation. Mutating arid nodes produces non-actionable

mutants, such as String mutations in logging statements, for

which developers justi�ably would not write tests.

(4) The mutation testing service uses probabilistic mutation-

operator selection that prioritizes mutation operators based

on their historical performance until at most one mutant is

generated for each a�ected line. The historical performance

is computed for each mutation operator and programming

language, which is relatively coarse grained.

(5) The mutation testing service identi�es surviving mutants by

executing the existing tests against each generated mutant.

(6) The mutation testing service surfaces a random sample of

surviving mutants in the code review tool, based on per �le

and per changelist thresholds.

MuRS aims to address two limitations of the current mutation

testing service, related to the implementation of arid nodes (step 3)

and the probabilistic mutation-operator selection (step 4). While

arid-node detection is e�ective, it currently requires human e�ort

to identify and implement a static rule for suppressing a certain

group of mutants. This implementation is speci�c to each program-

ming language and must be manually maintained as the code base

evolves. As for probabilistic mutation-operator selection, the prob-

lem is that the selection is coarse-grained and context-agnostic.

Currently, the mutation testing service implements �ve mutation

operators: AOR (Arithmetic operator replacement), LCR (Logical

connector replacement), ROR (Relational operator replacement),

UOI (Unary operator insertion), and SBR (Statement block removal).

However each mutation operator corresponds to a number of possi-

ble mutations, such as replacing addition with subtraction, division,

or multiplication. In contrast, MuRS considers the actual mutation

and the code before and after as additional context.

4 MURS: MUTANT RANKING & SUPPRESSION

MuRS aims to reduce the negative feedback ratio of surfaced mu-

tants. The negative feedback ratio is de�ned as the number of

Table 1: The attributes collected in theData Collection stage.

Attribute Explanation

CL The changelist ID

Filename The name of the mutated �le

Di� The di� between the original �le and the mutant

in uni�ed format with # context lines

PosFeedList A list of type boolean (one per snapshot) indicat-

ing whether a mutant received a positive feedback

at that snapshot

NegFeedList A list of type boolean (one per snapshot) indicat-

ing whether a mutant received a negative feed-

back at that snapshot

KilledList A list of type boolean (one per snapshot) indicat-

ing whether a mutant was killed at that snapshot

surfaced mutants with negative feedback divided by the total num-

ber of surfaced mutants with positive or negative feedback.

MuRS implements a template-based approach for �ve languages

(C++, Java, Go, Python and TypeScript) that ranks and suppresses

mutants based on historical developer feedback. It consist of two

phases, as shown in the upper part of Figure 2:

(1) Template Generation: During this phase,MuRS generates

identi�er templates from all past mutants, associating each

identi�er template with a list of metrics such as number and

type of received feedback, and number of times it was gen-

erated and killed. This phase is intended to run periodically

to collect identi�er templates with all statistics until that

point in time and store them in a database. The time interval

for template re-computation can be chosen based on needs

and resource constraints, balancing data freshness with an

acceptable resource consumption. In our case, this phase

runs every two months.

(2) Ranking & Suppression: During this phase, MuRS uses

the latest identi�er templates stored in a database to rank

and suppress mutants in production. Speci�cally, it uses the

list of metrics to represent the past performance associated

with each identi�er template to rank and suppress surviving

mutants that match an identi�er template.

There are di�erent ways to generate the identi�er templates

and to rank and suppress mutants. Sections 4.1 and 4.2 discuss

these con�guration options in detail, and section 4.3 describes the

con�guration that we chose based on a preliminary evaluation. All

of MuRS’ identi�er templates can be stored in a lookup table in

memory, using less than 16GB of RAM.

4.1 Template Generation

Template Generation consists of three stages, as shown in Figure 2:

(I) Data Collection: Gather all previously generated mutants

along with their associated attributes (see Table 1).

(II) Template Creation: Create identi�er templates for all pre-

viously generated mutants.

(III) Template Aggregation: Aggregate mutants with the same

identi�er templates.

1800

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA Zimin Chen, Małgorzata Salawa, Manushree Vijayvergiya, Goran Petrović, Marko Ivanković, and René Just

Figure 2: Mutation Testing Service (bottom) shows the end-to-end work�ow from submitting a changelist for code review to

surfacing mutants as code �ndings in the code review tool: (1) A changelist is submitted for review by a developer. Red and

green dots indicate that a line is (not) covered by existing tests. A green, red, or black line indicates that it is added, removed,

or unchanged, respectively. (2) Lines that are both changed and covered are identi�ed. (3) Arid nodes, which are not eligible

for mutation, are marked with ‘A’. (4) Mutation operators are applied in order to generate at most one mutant per changed

line. (5) Test cases are run and surviving mutants are identi�ed. (6) A random subset of surviving mutants are surfaced as code

�ndings.MuRS, is added between (5) and (6): it ranks and suppresses survivingmutants as opposed to randomly sampling from

all surviving mutants. MuRS consists of two phases, Template Generation and Ranking & Suppression. Template Generation

consists of three stages: (I) Historical mutants and their feedback are collected. (II) Identi�er templates are generated for each

mutant. (III) Mutants are grouped by identi�er template and feedback scores are aggregated. (IV) The identi�er templates are

stored in a database. Ranking & Suppression consists of two stages: (V) The aggregated feedback score is retrieved from the

database for each surviving mutant’s identi�er template. (VI) Surviving mutants are ranked and suppressed based on their

feedback score.

4.1.1 Data Collection. In this stage, MuRS gathers mutants and

their attributes from a database of all previously generated mutants.

MuRS then collects various attributes (Table 1) for each mutant and

assigns two kinds of labels to each mutant, based on said attributes:

Perceived feedback and Killed status.

Perceived feedback represents a mutant’s usefulness as perceived

by developers. It is derived from PosFeedList and NegFeedList:

• Perceived useful: PosFeedList contains at least one True

and NegFeedList is all False.

• Perceivednot-useful: PosFeedList is all False andNegFeedList

contains at least one True.

• Mixed feedback: Both PosFeedList and NegFeedList contain

at least one True.

• No feedback: Both PosFeedList and NegFeedList only con-

tain False.

Killed status is a label representing whether a mutant was killed

(or not) throughout the code review. It is derived from KilledList:

• Always killed: All entries in KilledList are True.

• Never killed: All entries in KilledList are False.

• Eventually killed: The KilledList is a sequence of False,

followed by a sequence of True, which means that a mutant

survived up to a certain point in the code review process

and was consistently killed afterwards.

• Mixed killed: None of the above conditions are met. This

can happen when the entries in KilledList alternate between

False and True.

At the end of this stage, each mutant is assigned an appropriate

Perceived feedback and Killed status label.

4.1.2 Template Creation. In this stage,MuRS generates identi�er

templates for all labeled mutants based on the Di� attribute.

We de�ne an abstraction, which we refer to as an identi�er tem-

plate, over the di� (in uni�ed format) between the original and

the mutated code. This abstraction is line-based and removes com-

ments from the code before processing the di�, including context

1801

MuRS: Mutant Ranking and Suppression using Identifier Templates ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

def is_even(x) :

− return x % 2 == 0

+ return x % 2 != 0

def is_odd(x) :

Listing 1: An example of a mutant in Python.

lines (where applicable). Note that this abstraction is only one point

in the design space and a limitation is that it only matches syn-

tactic similarities but disregards semantic similarities. We chose

this abstraction because it is relatively fast to compute and allows

for quick inference, even in the presence of millions of mutants.

The template’s speci�city can be controlled using di�erent abstrac-

tion levels and various parameters, which we subsequently explain

using the mutant in Listing 1 as a running example.

Abstraction levels that we explored are:

• Original code template: Use each changed line as is.

− return x % 2 == 0

+ return x % 2 != 0

• Typed template: Replace all literals with their correspond-

ing type name, and identi�ers with IDENTIFIER. For instance,

integer literals are replaced with INT. However, all keywords

such as while, for and return are kept.

− return IDENTIFIER % INT == INT

+ return IDENTIFIER % INT != INT

• Indexed typed template: Similar to Typed template, but

index each type name. This means that each name is followed

by a number, in order of appearance, to di�erentiate between

identi�ers of the same type. For example, the two integers, 2

and 0, are replaced with INT_0 and INT_1, respectively.

− return IDENTIFIER % INT_0 == INT_1

+ return IDENTIFIER % INT_0 != INT_1

Identi�er template parameters that we explored are:

• Context size: The number of lines preceding and succeed-

ing the mutated line(s). Larger context sizes lead to more

speci�city, because more context lines are included and the

corresponding identi�er template matches fewer, but more

speci�c types of mutants. The following identi�er template

corresponds to an Indexed typed template with a context

size of 1.

def IDENTIFIER_0(IDENTIFIER_1):

− return IDENTIFIER_1 % INT_0 == INT_1

+ return IDENTIFIER_1 % INT_0 != INT_1

• Vocabulary size: The number of the most common variable

names and literals to keep without abstraction. Larger vocab-

ulary sizes lead to more speci�city. For example, if numpy is

part of the vocabulary, mutants in the context of the iden-

ti�er numpy can be ranked and suppressed di�erently than

similar mutants in other contexts. The following identi�er

template corresponds to an Indexed typed template with a

vocabulary containing x, but not containing 2 and 0.

− return x % INT_0 == INT_1

+ return x % INT_0 != INT_1

4.1.3 Template Aggregation. Similar mutants result in the same

identi�er template, depending on the abstraction level and identi-

�er template parameters. In this stage,MuRS aggregates all labeled

identi�er template instances—counting the number of Perceived

feedback and Killed status labels. Perceived feedback: PU, PNU, MF,

and NF count perceived useful, perceived not-useful, mixed feed-

back and no feedback; Killed status: AK, NK, EK, and MK count

always killed, never killed, eventually killed and mixed killed.

All identi�er templates and their corresponding counters are

then stored in a database, shown as (IV) in Figure 2. These identi�er

templates are then used to populate a lookup table and e�ciently

rank and suppress mutants in the Ranking & Suppression phase.

4.2 Ranking & Suppression

Ranking & Suppression consumes the pre-computed identi�er tem-

plates and their associated counters, as derived from the Template

Generation phase, to rank and suppress mutants. For example, a

mutant whose identi�er template has a high PU count may be con-

sidered more useful than one whose identi�er template has a low

PU count, and hence should be ranked higher. Similarly, a mutant

whose identi�er template has a high PNU count may be considered

not useful, and hence should be suppressed. Mutant ranking and

mutant suppression are two independent procedures, as the former

only gives a relative ordering between mutants and the highest

ranked mutant may still not be worth surfacing to a developer.

4.2.1 Ranking. MuRS ranks identi�er templates and matching mu-

tants based on a usefulness score, which comprises two distinct

scores: (1) the developer-feedback score, derived from the Perceived

feedback label, and (2) the killed score, derived from the Killed status

label. MuRS ranks the identi�er templates based on the developer-

feedback score, and breaks ties based on the killed score.

We explored two de�nitions for the developer-feedback score:

• Usefulness score: The ratio of PU over PU+PNU: %*

%* +%#*
.

• Bayes usefulness score: It uses the Usefulness score and

the average Usefulness score across all identi�er templates:

F ∗ Usefulness score + (1 −F) ∗ Average Usefulness score

where the weight F is de�ned as %* +%#*

%* +%#* +< and< is the

average of %* + %#* across all identi�er templates. Com-

pared to the Usefulness score, this score accounts for noise

when %* + %#* is low—that is, when there is insu�cient

feedback from developers for a given identi�er template.

We also explored two de�nitions for killed score:

• Kill-ratio score: The ratio of mutants killed over mutants

generated for a given identi�er template.

• Kill-counter score: It is a tuple with (AK, EK, MK, NK)

counters. The ordering between the counters is based on

their correlation with the developer feedback.

Since there are 2 developer-feedback scores and 2 killed scores,

there are 4 di�erent combinations of usefulness scores.

1802

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA Zimin Chen, Małgorzata Salawa, Manushree Vijayvergiya, Goran Petrović, Marko Ivanković, and René Just

Table 2: Hyper-parameter tuning forMuRS. Mutants on the

left are surfaced without using MuRS. Mutants on the right

are surfaced using MuRS with a speci�c hyper-parameter

setting that suppresses mutant C. In this case, the original

negative feedback ratio is 2

4
= 0.5, and it is 1

3
≈ 0.33 forMuRS.

The best hyper-parameter setting is the one that achieves

the lowest negative feedback ratio.

Original MuRS

Mutant Label Mutant Label

A Positive feedback A Positive feedback

B No feedback B No feedback

C Negative feedback D Negative feedback

D Negative feedback

4.2.2 Suppression. MuRS aims to suppress mutants that are likely

to receive negative feedback.When designing the suppress function,

we chose to implement the following two desired properties:

(1) If a mutant’s identi�er template is not in the database (i.e.,

the mutant has not been encountered before), that mutant

will not be suppressed. This allows for gathering feedback

for new identi�er templates.

(2) Mutant suppression should be conservative and driven by

developer feedback. Since suppressing an identi�er template

means that any associated mutant will be suppressed, we

conservatively opted to suppress mutants only based on ex-

plicit developer feedback—that is, the PU and PNU counters.

We explored the following three suppression functions:

• No suppression: Do not suppress any mutants. This is

added as an experimental control.

• Average threshold: Suppress mutants whose Usefulness

score is lower than the average Usefulness score across all

identi�er templates.

• Probabilistic: Use the p-value of the z-test to probabilis-

tically suppress mutants, as the Usefulness score follows

a normal distribution. For example, if the z-score of a mu-

tant’s Usefulness score is −1, then the corresponding p-value

is 0.1587: the mutant will be suppressed with probability

? = 1 − 0.1587 = 0.8413. This suppression function is only

applied when the Usefulness score is lower than the average

Usefulness score across all identi�er templates.

At the end of Ranking & Suppression, MuRS has ranked all gen-

erated mutants and suppressed mutants that are likely to receive

negative feedback. At this point, the mutation testing service con-

tinues to surfacing non-suppressed mutants as �ndings in the code

review tool.

4.3 Hyperparameter Tuning

MuRS’s design space involves �ve dimensions: (1) template type

(original code template, typed template or indexed typed template),

(2) vocabulary size (0, 1000, 5000, or 10000), (3) context size (0 or 1),

(4) ranking function (4 combinations of developer-feedback score

and killed score), and (5) suppression function (no suppression,

average threshold, or probabilistic).

We conducted a preliminary evaluation of all possible hyperpa-

rameter settings using historical mutants. Speci�cally, we used the

mutants generated before July 2022 to generate identi�er templates

and computed the hypothetical negative feedback ratio for each

hyperparameter setting on the mutants generated in July 2022. We

then selected the setting with the lowest ratio. The example in

Table 2 illustrates how the hypothetical negative feedback ratio

is calculated. On the left we have mutants with their labels. Note

that we have the labels because they have already been generated

and shown to developers. On the right is an example of how one

setting might rank and suppress the mutants, where mutant C is

suppressed. In this example, the original negative feedback ratio

is 2

4
= 0.5, the hypothetical negative feedback ratio for MuRS is

1

3
≈ 0.33. The best hyperparameter setting is the one that achieves

the lowest hypothetical negative feedback ratio.

The hyperparameter tuning identi�ed the following setting as

the best: (1) Indexed type template, (2) vocabulary size = 0, (3)

context size = 0 (4) Bayes usefulness score with kill-counter

score, and (5) Probabilistic suppression function. We consis-

tently used this hyperparameter setting to answer our research

questions in section 5.

5 EVALUATION METHODOLOGY

To evaluateMuRS, we compared the current mutation testing ser-

vice, which randomly selects = mutants and surfaces them as code

�ndings in the code-review tool, to an enhanced variant, which sur-

faces the top-=mutants after ranking and suppressing mutants with

MuRS (see Figure 2). Note that both variants use existing optimiza-

tions, such as arid-node suppression and probabilistic mutation-

operator selection [19]. Moreover, the mutation testing service

limits the number of surfaced mutants during code review to avoid

overwhelming developers: it surfaces at most three mutants per �le

and at most ten mutants per changelist. We kept these thresholds

constant for both variants.

We followed a standard A/B testing methodology for changelists

subject to mutation by the mutation testing service: each changelist

was randomly assigned to the experiment group with probability

? = 0.5; all other changelists formed the control group. Regardless of

group, eachmutant that surfaced in the code review tool was subject

to developer feedback (i.e., positive feedback, negative feedback,

or no feedback at all). The A/B testing allowed us to answer the

following two research questions:

RQ1 DoesMuRS decrease the overall negative feedback ratio?

RQ2 IsMuRS’s ranking associated with developer feedback?

The existing mutation testing service has been deployed for over

seven years, with domain experts manually developing arid-node

heuristics to suppress mutants that will likely receive negative

feedback [19]. The majority of these heuristics were implemented

early during development and deployment, others were added over

time in response to user feedback. Considering historical mutant

data, we additionally answered the following research question:

RQ3 Do templates identi�ed byMuRS as not-useful correspond

to suppression rules developed by domain experts?

At a high level: RQ1 uses an extrinsic evaluation and determines

whetherMuRS can improve mutant suppression over a manually

1803

MuRS: Mutant Ranking and Suppression using Identifier Templates ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

tuned baseline; RQ2 uses an intrinsic evaluation and determines

the degree to which MuRS’s ranking of mutants is correlated with

their perceived usefulness. RQ3 uses case studies and determines

whether MuRS’s templates and their usefulness statistics can be

linked to manually developed suppression rules.

5.1 RQ1: DoesMuRS Decrease the Overall
Negative Feedback Ratio?

During the A/B testing evaluation period1, 666 143 mutants sur-

faced across 84 827 changelists. For the control group, 365 542 mu-

tants surfaced for 45 210 changelists. For the experiment group,

300 601 mutants surfaced for 39 618 changelists. For each group

we computed the overall negative feedback ratio and compared

the results. Additionally, we conducted a two-sample hypothesis

test and computed the e�ect size, which quanti�es the magnitude

of the di�erence. Speci�cally, we used the chi-square test of inde-

pendence [17], testing the null hypothesis that developer feedback

is independent of group association (i.e., experiment vs. control

group). We set the signi�cance threshold to 0.05. We also computed

the odds ratio [6] (e�ect size) and its 95% con�dence interval.

5.2 RQ2: IsMuRS’s Ranking Associated with
Developer Feedback?

The mutation testing service may generate more surviving mutants

than can be surfaced in the code-review tool. Thus, it is important

to rank mutants that are likely to receive positive feedback higher.

To determine to what extentMuRS succeeds in properly ranking

mutants, we computed the rank of all surfaced mutants in the

control group and correlated that rank with the mutants’ received

feedback. Speci�cally, we computed Kendall’s Tau-b (accounting

for expected ties in the dichotomous feedback variable) between

MuRS’s ranking score and developer feedback. We again set the

signi�cance threshold to 0.05. We repeated the same analysis for

all mutants in the experiment group. Additionally, we computed

the ratios of mutants that already received positive or negative

feedback that would have been suppressed in the control group,

investigating the trade-o� between suppressing not-useful mutants

while retaining useful ones.

5.3 RQ3: Do Templates Identi�ed byMuRS as
Not-useful Correspond to Suppression
Rules Developed by Domain Experts?

We wished to better understand whether identi�er templates with

consistent not-useful feedback are linked to existing suppression

rules in the mutation testing service. Since not-useful mutants can

no longer be observed once a suppression rule is implemented, we

resorted to historical mutant data to determine whetherMuRS, if

applied prior to suppression, would have identi�ed and suppressed

said mutants. Speci�cally, we compiled a data set with all surfaced

mutants generated since 2017. For each mutant, we computed the

corresponding identi�er template and aggregated template data

per month. We then performed a case study on a sample of 10

1Due to industry con�dentiality reasons, we cannot disclose the exact time range, but
it was a span of multiple weeks starting in July 2022.

Table 3: Mutants with feedback during A/B testing.

Positive Negative Total

Experiment group 9688 1253 10 941

Control group 11 233 1592 12 825

Total 20 921 2845 23 766

templates that produced a su�ciently large number of mutants and

consistently received negative feedback.

6 EVALUATION RESULTS

This section presents the results for our three research questions.

6.1 RQ1: DoesMuRS Decrease the Overall
Negative Feedback Ratio?

During the A/B testing evaluation period, a total of 23 766 mutants

received developer feedback. Table 3 shows the distribution among

the two groups and positive vs. negative feedback. The negative

feedback ratio for mutants in the experiment group is 11.45% (1253

out of 10 941 mutants). In contrast, the negative feedback ratio for

mutants in the control group is 12.41% (1592 out of 12 825mutants).

The Chi-squared test of independence for the two variables in

Table 3 yields a p-value of 0.0242. Since this value is lower than

our prede�ned signi�cance threshold of 0.05, we can reject the null

hypothesis. Thismeans that the observed di�erences in feedback are

not independent of the group—that is, the lower negative feedback

ratio of 11.45% in the experiment group is statistically signi�cant.

The odds ratio for the contingency table in Table 3 is 0.91. This

means that a mutant in the experiment group has a lower chance

of receiving negative feedback than a mutant from the control

group. The 95% con�dence interval for the odds ratio is (0.84, 0.99)

is strictly smaller than 1, which is consistent with the observed

statistical signi�cance.

6.2 RQ2: IsMuRS’s Ranking Associated with
Developer Feedback?

As shown in Table 3, the control group had 12 825 mutants with

feedback, and the experiment group had 10 941.

For the control group, the rank correlation coe�cient (Kendall

Tau-b) betweenMuRS’s usefulness score and the developer feed-

back is 0.2658 (? < 0.0001). For the experiment group the correla-

tion coe�cient is 0.2615 (? < 0.0001). These coe�cients suggest a

weak to moderate correlation and there is no signi�cant di�erence

between the control and experiment groups.

Figure 3 displays the cumulative number of mutants with neg-

ative feedback among the top x% ranked mutants in the control

group. The top 50% of the ranked mutants only contain 16.39% (261

out of 1592) of all mutants that received negative feedback. The

negative feedback ratio for the top x% mutants is shown in Figure 4.

It reveals that the negative feedback ratio remains around 4% for

the top half of the ranked mutants, but it steadily increases to 12%

when including all mutants. Both �gures suggest that higher ranked

mutants are less likely to receive negative feedback.

Figure 4 shows a trade-o�: while aggressive mutant suppression

(e.g., the bottom 40% of ranked mutants) might lower the negative

1804

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA Zimin Chen, Małgorzata Salawa, Manushree Vijayvergiya, Goran Petrović, Marko Ivanković, and René Just

Figure 3: Accumulated number of not-useful mutants

among the top x % ranked mutants in the control group.

Figure 4: Negative feedback ratio for top x % rankedmutants

in the control group.

feedback ratio to about 6%, it would likely suppress useful mutants

aswell.We determined howmanymutants with positive or negative

feedback would have been suppressed in the control group. Since

suppression is probabilistic, we computed the expected values:

• 772.4159 out of 1592 mutants with negative feedback (49%)

would have been suppressed. Since these mutants indeed

received negative feedback, they are correctly suppressed.

• 1338.1659 out of 11 233mutants with positive feedback (12%)

would have been suppressed. Since these mutants received

positive feedback, they are incorrectly suppressed.

6.3 RQ3: Do Templates Identi�ed byMuRS as
Not-useful Correspond to Suppression
Rules Developed by Domain Experts?

Figure 5 shows the results of applyingMuRS to all mutants surfaced

since mid 2017 and �ltering the resulting set of identi�er templates

C
P

P
G

O
JA

V
A

P
Y

T
H

O
N

T
Y

P
E

S
C

R
IP

T

2018 2020 2022

Year

T
e

m
p

la
te

s

End Year 2017 2018 2021 2022 2023

Figure 5: Sampled not-useful templates for which at least 50

live mutants surfaced per month on average.

such that each retained template (1) corresponds to at least 50 sur-

faced mutants per month on average and (2) consistently received

negative feedback (i.e., its PU counter is 0 and its PNU counter is

strictly greater than 0). This �ltering step retains templates whose

mutants MuRS would suppress with very high probability (su�-

cient feedback and consistently negative feedback). Each row in this

plot corresponds to a retained template and each dot corresponds to

a month during which a template was observable. A line connects

multiple months of the same template, indicating the overall time

period a template was observable.

From the identi�er templates in Figure 5, we sampled 10 tem-

plates for manual inspection. We arbitrarily sampled two templates

per language that were no longer observable after 2019. Since most

suppression rules were added during initial development of the

mutation testing service for mutants that received strong negative

feedback, MuRS should recover this information in the form of

templates that correspond to said not-useful mutants. Our manual

analysis resulted in two key insights.

First, for most identi�er templates, we were able to identify a

corresponding suppression rule in the existing mutation testing

service that suppresses the corresponding mutants. As one concrete

example, the following GO template corresponds to not-useful

mutants of a common error-handling pattern:

1805

MuRS: Mutant Ranking and Suppression using Identifier Templates ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

−if GO_IDENTIFIER_0 != GO_IDENTIFIER_1 { return

GO_IDENTIFIER_0 }

This template corresponds to statement removal mutants that delete

if err != nil { return err }. Since these statements are ubiq-

uitous but the mutants are not generally worth testing, the negative

developer feedback provided a very strong signal for suppression.

Second, the identi�er templates are �ner-grained than the exist-

ing suppression rules, meaning that the identi�er templates only

correspond to a subset of the mutants that are suppressed by the

existing rules. As an example, the following Java template refers to

speci�c mutations in annotations:

−@JAVA_IDENTIFIER_0(JAVA_IDENTIFIER_1 = JAVA_IDENTIFIER_2.

JAVA_IDENTIFIER_3, JAVA_IDENTIFIER_4 = true)

+@JAVA_IDENTIFIER_0(JAVA_IDENTIFIER_1 = JAVA_IDENTIFIER_2.

JAVA_IDENTIFIER_3, JAVA_IDENTIFIER_4 = !(true))

This template corresponds to mutants that change a boolean at-

tribute of an annotation from true to !(true). Annotations in Java

provide metadata or compiler directives, or are used for meta pro-

gramming. Common examples include the@Override annotation,

which indicates that a subclass method is overriding a parent class

method, the@Deprecated annotation, which indicates that amethod

is deprecated, or the @Test annotation for JUnit tests. However,

annotations are rarely, if ever, subject to (unit) testing. The clear

negative sentiment of developers towards these mutants prompted

the addition of a suppression rule, which in contrast to the identi�er

template, suppresses mutations in annotations more generally.

In addition to the 10 sampled identi�er templates, we also in-

spected templates with positive and mixed feedback. Below are two

concrete examples.

Among the C++ templates, the mutants corresponding to the

following template are considered useful by many developers:

−} else if (CPP_IDENTIFIER_0 == CPP_IDENTIFIER_1) {

+} else if (true) {

This template captures mutants that replace a relational operator in

the condition of an else if statement with the constant value true.

The following Python template has both the highest total PU

and PNU count:

−PYTHON_ID_0(PYTHON_ID_1)

This template captures mutants that remove a function call with a

single argument. Just et al. found that statement deletion mutants

are often associated with real faults, more so than other types of

mutants [10]. Therefore, it is not surprising that many of these mu-

tants are considered useful. At the same time, there are likely many

function calls that match this pattern that are not worth testing.

One common class of function calls that matches this pattern are

telemetry statements, e.g. log(id). Developers typically do not

consider these to be directly impacting user experience and are less

interested in testing them speci�cally. Templates like this are the

most controversial (controversy = %* ∗ (1 − %*) ∗ (%* + %#*)).

By computing the controversy score for all identi�er templates,

we found that the most controversial templates for Python, Java,

C++, Go, and TypeScript are all statement removal mutants. One of

the reasons is that statement removal mutants represent 68% of all

mutants [19], which makes them also more likely to receive more

feedback. This observation calls for more research to understand

the di�erences between useful statement removal mutants that are

associatedwith real bugs and not-useful statement removal mutants.

For example, future research can inform additional context that

should be considered to distinguish these.

6.4 Discussion

It is important to put the results in perspective when assessing

their practical signi�cance. First, we are comparing MuRS against

a strong baseline, which employs many suppression heuristics that

have lowered the negative feedback ratio from over 80%, during

initial development, to well below 15% now. Second, reducing the

negative feedback ratio even by 1% substantially reduces negative

interactions across all developers. While each individual negative

interaction has a small cost, the total cost reduction across tens of

thousands of developers that participate in the code review process

multiple times per day is signi�cant. Third, the negative feedback ra-

tio is a metric derived from developer feedback, which is subjective.

A mutant can receive negative feedback for many reasons—some

mutants represent infeasible test goals, others are simply not worth

satisfying [16, 20]. While many not-useful mutants consistently

receive negative feedback, others receive no or even inconclusive

feedback. For example, the very same mutant can receive di�erent

feedback from the author and reviewers during a code review. As

a result, the lower bound for the negative feedback ratio is very

likely greater than zero. Our baseline is already approaching a ratio

in the single digits, and the true lower bound, and thus the best

possible result, could be anywhere between 0% and 10%.

MuRS suppresses about 50% mutants with negative feedback, at

the cost of suppressing about 12% mutants with positive feedback.

One of the reasons whyMuRS does not suppress more not-useful

mutants is that the corresponding identi�er templates have not yet

received enough negative feedback, and as a result the suppression

function conservatively retains them. Indeed, we have observed

that about 80% of all templates correspond to at most ten surfaced

mutants—that is, the templates are too speci�c. We conjecture that

this speci�city is also the reason why the best setting for the vocab-

ulary and context sizes are both 0 (see subsection 4.3). Increasing

either size would make the identi�er templates even more speci�c,

grouping even fewer syntactically similar mutants. At the same

time, the current templates do not consider enough context to re-

tain all useful mutants and to disambiguate mutants with mixed

feedback—that is, the templates are too generic. We leave a deeper

investigation and possible re�nements for future work.

An alternative mutant suppression approach can use static rules

to prevent mutants from being generated in the �rst place (e.g.,

mutations of logging statements). The existing mutation testing

service already implements this using arid nodes, which are AST

nodes that are identi�ed through pattern matching and that are

never mutated. While e�ective, MuRS o�ers several advantages

over the arid node approach. It automatically creates an identi�er

template that is used to suppress a particular type of mutant, elimi-

nating the need for manual implementation of static rules. In fact,

we have discovered multiple identi�er templates that correspond to

our existing static rules, demonstrating thatMuRS is able to recover

1806

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA Zimin Chen, Małgorzata Salawa, Manushree Vijayvergiya, Goran Petrović, Marko Ivanković, and René Just

these rules. Overall, bootstrapping mutant suppression with arid-

node heuristics and using MuRS to automatically learn additional,

�ner-grained suppression rules is e�ective.

7 RELATED WORK

The closest related work on industry-scale mutation testing is Beller

et al.’s study of mutation testing at Facebook [2]. They also focused

on di�-based mutation testing, but a key di�erence is that their

approach uses semi-automatic learning on common Java bug pat-

terns to create few mutation operators that yield mostly useful

mutants by design. In contrast, our approach uses a prede�ned set

of mutation operators and suppresses not-useful mutants. The two

approaches could potentially be combined for greater e�ect.

7.1 Mutant Selection and Prioritization

A number of studies have shown that a small percentage of mutants

are su�cient, that there is substantial redundancy among generated

mutants, and that many generated mutants are not useful [5, 14, 18].

We refer the reader to the literature review by Pizzoleto et al. for

more comprehensive related work [21], especially PG-1 (Reducing

the number of mutants) and PG-5 (Avoiding the creation of certain

mutants) mentioned in the paper for the closest related work re-

garding mutation selection or prioritization.

Gopinath et al. compared multiple strategies for reducing the

number of mutants against random sampling [7]. They found that

none of the strategies yield an e�ective advantage larger than 5%,

when compared with random sampling. Given the result, they warn

against adopting mutant reduction techniques without adequate

reason. In an industrial context, however, a 1% reduction in mu-

tants with negative feedback could be worthwhile (it saves valuable

developer time) as long as mutants with positive feedback are re-

tained.

Brown et al. introduced an approach that extracts mutation op-

erators from the revision history of software projects [3]. The ap-

proach is based on the observation that if a commit corrects a bug,

then its reversal is potentially introducing a bug, making it a viable

mutation operator. Using this approach, they mined mutation oper-

ators from the revision history of the top-50 most forked C projects

on GitHub. Their �ndings showed that mutants generated from

the mined mutation operators were just as challenging to kill as

mutants generated using traditional mutation operators. However,

the mined mutation operators exhibited greater diversity in the

types of changes than traditional mutation operators.

7.2 Mutant Usefulness

Just et al. studied the degree to which program context, de�ned

over the abstract syntax tree, is correlated with a mutant’s expected

usefulness [11]. In this work, usefulness was termed mutant util-

ity and measured along three dimensions: equivalence, triviality,

and dominance. The results showed that mutant utility is context-

dependent: the same mutation may lead to a high-utility mutant in

one context but not necessarily in another.

Kaufman et al. proposed test completeness advancement proba-

bility (TCAP) as a measure to de�ne how useful a mutant is [12].

TCAP is a probability that if a mutant is presented as a test goal,

it will elicit a test to improve the test completeness. Evaluated on

9 projects from the Defects4J benchmark [9], they concluded that

TCAP can be predicted from program context and that TCAP-based

mutant prioritization improves test completeness faster than the

previous state-of-the-art, which is random prioritization.

MuRS and its evaluation di�er from prior work in two key as-

pects. First, MuRS uses an abstraction over the di�, which encodes

both the mutation and the surrounding context. Second, mutant

usefulness is derived from developer feedback as opposed to from

test or mutant characteristics.

7.3 Di�-Based Mutation Testing

Cachia et al. focused on industrial adoption of mutation testing,

and suggested incremental mutation testing that limits the scope

of mutation testing to the changed code [4]. In their evaluation,

they found that incremental mutation testing reduced the number

of generated mutants and the execution time of mutation testing.

Ma et al. studied the relationship between commit-aware and tra-

ditional mutation testing [15]. They found that the commit-aware

mutation score and the traditional mutation score are only weakly

correlated, and that mutants from traditional mutation testing have

a 30% lower chance of revealing faults introduced by the commit.

8 CONCLUSIONS

This paper presentsMuRS, an approach designed to enhance the

user experience of mutation testing by reducing the negative feed-

back ratio of mutants surfaced during code review. MuRS ranks

and suppresses newly generated mutants based on identi�er tem-

plates that group similar mutants and aggregate historical developer

feedback for said mutants.

Based on an A/B testing study, we found that the negative feed-

back ratio forMuRS (11.45%) is statically signi�cantly lower, com-

pared to a manually tuned baseline. The results also show that

mutants higher ranked by MuRS have a lower probability of re-

ceiving negative feedback. Additionally, we observe that MuRS

would have suppressed about 50% of not-useful mutants but also

12% of useful mutants in the control group, highlighting a trade-o�.

Finally, we identi�ed statement deletion mutants as the type of mu-

tants whose identi�er templates frequently receive both positive

and negative feedback. Going forward, we aim to investigate what

distinguishes useful statement deletion mutants from not-useful

ones despite their syntactical similarities w.r.t. identi�er templates.

Furthermore, we would like to understand whetherMuRS should

apply di�erent abstractions for the mutated lines vs. context lines.

One important aspect of MuRS in an industrial setting is its

lower cost of development and maintenance, compared to manu-

ally implementing suppression rules. Our results provide evidence

thatMuRS produces identi�er templates that correspond to static

suppression rules implemented in the past, but future work should

further evaluate to what extentMuRS can fully replace suppression

rules or to what extent the two approaches are complementary.

REFERENCES
[1] Allen T Acree, Timothy A Budd, Richard A DeMillo, Richard J Lipton, and

Frederick G Sayward. 1979. Mutation Analysis. Technical Report. Georgia Inst of
Tech Atlanta School of Information And Computer Science.

[2] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What it would take to use mutation
testing in industry—a study at facebook. In International Conference on Software

1807

MuRS: Mutant Ranking and Suppression using Identifier Templates ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 268–277. https:
//doi.org/10.1109/ICSE-SEIP52600.2021.00036

[3] David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps. 2017.
The Care and Feeding of Wild-Caught Mutants. In Proceedings of the Joint
Meeting of the European Software Engineering Conference and the Symposium
on the Foundations of Software Engineering (ESEC/FSE) (ESEC/FSE 2017). As-
sociation for Computing Machinery, New York, NY, USA, 511–522. https:
//doi.org/10.1145/3106237.3106280

[4] Mark Anthony Cachia, Mark Micallef, and Christian Colombo. 2013. Towards
incremental mutation testing. Electronic Notes in Theoretical Computer Science
(ENTCS) 294 (2013), 2–11. https://doi.org/10.1016/j.entcs.2013.02.012

[5] Yiqun T. Chen, Rahul Gopinath, Anita Tadakamalla, Michael D. Ernst, Reid
Holmes, Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the
Relationship Between Fault Detection, Test Adequacy Criteria, and Test Set Size.
In Proceedings of the International Conference on Automated Software Engineering
(ASE). 237–249. https://doi.org/10.1145/3324884.3416667

[6] Ronald A Fisher. 1935. The logic of inductive inference. Journal of the royal
statistical society 98, 1 (1935), 39–82. https://doi.org/10.2307/2342435

[7] Rahul Gopinath, Iftekhar Ahmed, Mohammad Amin Alipour, Carlos Jensen,
and Alex Groce. 2017. Mutation reduction strategies considered harmful. IEEE
Transactions on Reliability 66, 3 (2017), 854–874. https://doi.org/10.1109/TR.2017.
2705662

[8] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering (TSE) 37, 5 (2010),
649–678. https://doi.org/10.1109/TSE.2010.62

[9] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA). 437–440.
https://doi.org/10.1145/2610384.2628055

[10] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in soft-
ware testing?. In Proceedings of the Symposium on the Foundations of Software
Engineering (FSE). 654–665. https://doi.org/10.1145/2635868.2635929

[11] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility from
Program Context. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). 284–294. https://doi.org/10.1145/3092703.3092732

[12] Samuel J Kaufman, Ryan Featherman, Justin Alvin, Bob Kurtz, Paul Ammann, and
René Just. 2022. Prioritizing mutants to guide mutation testing. In Proceedings of
the International Conference on Software Engineering (ICSE). 1743–1754. https:
//doi.org/10.1145/3510003.3510187

[13] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. 2015. Code coverage
and test suite e�ectiveness: Empirical study with real bugs in large systems. In
IEEE International Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 560–564. https://doi.org/10.1109/SANER.2015.7081877
[14] Bob Kurtz, Paul Ammann, Je� O�utt, Márcio E Delamaro, Mariet Kurtz, and Nida

Gökçe. 2016. Analyzing the validity of selectivemutationwith dominatormutants.
In Proceedings of the Symposium on the Foundations of Software Engineering (FSE).
571–582. https://doi.org/10.1145/2950290.2950322

[15] Wei Ma, Thomas Laurent, Miloš Ojdanić, Thierry Titcheu Chekam, Anthony
Ventresque, and Mike Papadakis. 2020. Commit-aware mutation testing. In
International Conference on Software Maintenance and Evolution. IEEE, 394–405.
https://doi.org/10.1109/ICSME46990.2020.00045

[16] A Je�erson O�utt and Jie Pan. 1997. Automatically detecting equivalent mutants
and infeasible paths. Software Testing, Veri�cation and Reliability (JSTVR) 7, 3
(1997), 165–192. https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-
STVR143>3.0.CO;2-U

[17] Karl Pearson. 1900. X. On the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it can
be reasonably supposed to have arisen from random sampling. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50, 302
(1900), 157–175. https://doi.org/10.1080/14786440009463897

[18] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does
mutation testing improve testing practices?. In Proceedings of the International
Conference on Software Engineering (ICSE). 910–921. https://doi.org/10.1109/
ICSE43902.2021.00087

[19] Goran Petrovic, Marko Ivankovic, Gordon Fraser, and René Just. 2021. Practical
mutation testing at scale: A view from Google. IEEE Transactions on Software
Engineering (TSE) (2021). https://doi.org/10.1109/TSE.2021.3107634

[20] Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René Just. 2018.
An industrial application of mutation testing: Lessons, challenges, and research
directions. In Proceedings of the International Conference on Software Testing,
Veri�cation and Validation Workshops (ICSTW). 47–53. https://doi.org/10.1109/
ICSTW.2018.00027

[21] Alessandro Viola Pizzoleto, Fabiano Cutigi Ferrari, Je� O�utt, Leo Fernandes, and
Márcio Ribeiro. 2019. A systematic literature review of techniques and metrics
to reduce the cost of mutation testing. Journal of Systems and Software (JSS) 157
(2019), 110388. https://doi.org/10.1016/j.jss.2019.07.100

[22] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from building static analysis tools at Google. Communica-
tions of the ACM (CACM) 61, 4 (2018), 58–66. https://doi.org/10.1145/3188720

[23] W Eric Wong and Aditya P Mathur. 1995. Reducing the cost of mutation testing:
An empirical study. Journal of Systems and Software (JSS) 31, 3 (1995), 185–196.
https://doi.org/10.1016/0164-1212(94)00098-0

Received 2023-05-18; accepted 2023-07-31

1808

https://doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://doi.org/10.1145/3106237.3106280
https://doi.org/10.1145/3106237.3106280
https://doi.org/10.1016/j.entcs.2013.02.012
https://doi.org/10.1145/3324884.3416667
https://doi.org/10.2307/2342435
https://doi.org/10.1109/TR.2017.2705662
https://doi.org/10.1109/TR.2017.2705662
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1145/3510003.3510187
https://doi.org/10.1145/3510003.3510187
https://doi.org/10.1109/SANER.2015.7081877
https://doi.org/10.1145/2950290.2950322
https://doi.org/10.1109/ICSME46990.2020.00045
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1109/TSE.2021.3107634
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1016/j.jss.2019.07.100
https://doi.org/10.1145/3188720
https://doi.org/10.1016/0164-1212(94)00098-0

	Abstract
	1 Introduction
	2 Terminology
	3 Mutation Testing at Google
	4 MuRS: Mutant Ranking & Suppression
	4.1 Template Generation
	4.2 Ranking & Suppression
	4.3 Hyperparameter Tuning

	5 Evaluation Methodology
	5.1 RQ1: Does MuRS Decrease the Overall Negative Feedback Ratio?
	5.2 RQ2: Is MuRS's Ranking Associated with Developer Feedback?
	5.3 RQ3: Do Templates Identified by MuRS as Not-useful Correspond to Suppression Rules Developed by Domain Experts?

	6 Evaluation Results
	6.1 RQ1: Does MuRS Decrease the Overall Negative Feedback Ratio?
	6.2 RQ2: Is MuRS's Ranking Associated with Developer Feedback?
	6.3 RQ3: Do Templates Identified by MuRS as Not-useful Correspond to Suppression Rules Developed by Domain Experts?
	6.4 Discussion

	7 Related Work
	7.1 Mutant Selection and Prioritization
	7.2 Mutant Usefulness
	7.3 Diff-Based Mutation Testing

	8 Conclusions
	References

