
Using Non-Redundant Mutation Operators and Test Suite Prioritization
to Achieve Efficient and Scalable Mutation Analysis

René Just
Dept. of Computer Science and Engineering

University of Washington
rjust@cs.washington.edu

Gregory M. Kapfhammer
Dept. of Computer Science

Allegheny College
gkapfham@allegheny.edu

Franz Schweiggert
Dept. of Applied Information Processing

Ulm University
franz.schweiggert@uni-ulm.de

Abstract—Mutation analysis is a powerful and unbiased
technique to assess the quality of input values and test oracles.
However, its application domain is still limited due to the fact
that it is a time consuming and computationally expensive
method, especially when used with large and complex software
systems. Addressing these challenges, this paper makes several
contributions to significantly improve the efficiency of mutation
analysis. First, it investigates the decrease in generated mutants
by applying a reduced, yet sufficient, set of mutants for
replacing conditional (COR) and relational (ROR) operators.
The analysis of ten real-world applications, with 400,000 lines
of code and more than 550,000 generated mutants in total,
reveals a reduction in the number of mutants created of up to
37% and more than 25% on average. Yet, since the isolated
use of non-redundant mutation operators does not ensure that
mutation analysis is efficient and scalable, this paper also
presents and experimentally evaluates an optimized workflow
that exploits the redundancies and runtime differences of
test cases to reorder and split the corresponding test suite.
Using the same ten open-source applications, an empirical
study convincingly demonstrates that the combination of non-
redundant operators and prioritization leveraging information
about the runtime and mutation coverage of tests reduces the
total cost of mutation analysis further by as much as 65%.

I. Introduction
Mutation analysis is a well-known test adequacy criterion

for assessing various testing and debugging techniques,
including, for instance, approaches for test oracles, test
data generation, or fault localization. Compared with test-
ing techniques that rely on various code coverage criteria,
mutation analysis is rather expensive because of the fact
that many mutated versions of the analyzed program have
to be executed. With regard to the costs of mutation analysis,
several approaches have been proposed that try to either
reduce the number of generated mutants or to speed-up the
analysis process (cf. [8], [14]). However, the runtime of
mutation analysis on large and complex software systems
is still quite long, sometimes even prohibitively so.

Addressing the challenge of applying mutation analysis to
real-world programs, this paper investigates the potential for
efficiency improvements due to non-redundant mutation op-
erators. Furthermore, it presents and evaluates an optimized
process for mutation analysis that notably reduces its run-
time. Overall, this paper makes the following contributions:

• An evaluation of the reduction of generated mutants
by employing non-redundant COR and ROR operators
on ten real-world applications. Ranging from 3,000 to
more than 110,000 lines of code, the analyzed programs
collectively contain 400,000 lines of code and more
than 550,000 generated mutants. Applying the non-
redundant mutation operators reduces the number of
generated mutants by 26% to 410,000 mutants in total.

• An investigation of the test suite characteristics of real-
world applications that enable runtime improvements.

• A presentation and visualization of an optimized muta-
tion analysis workflow that is based on reordering and
splitting test suites to exploit the identified redundancies
and runtime differences of test cases.

• An empirical study that evaluates the presented ap-
proach on the same ten real-world applications. By
utilizing the non-redundant mutation operators, the op-
timized workflow reduces the total runtime by 30% on
average for the remaining set of 410,000 mutants.

Since this paper focuses on the efficiency of mutation
analysis, Section II introduces this technique. Section III
investigates the savings in terms of generated mutants by
applying only a sufficient and non-redundant set of mutations
for the ROR and COR mutation operator. Next, Section IV
investigates characteristics of existing test suites for real-
world applications and Section V presents an approach
for significant efficiency improvements by exploiting mu-
tation coverage and test runtime information. Thereafter,
Section VI empirically evaluates the approach and discusses
threats to validity. Section VII describes related work and
Section VIII concludes the paper and presents future work.

II. Background onMutation Analysis
Originally proposed by Budd [2] and DeMillo et al. [3],

mutation analysis seeds small syntactical changes, called
mutants, into a system under test (SUT). These mutants are
generated by applying mutation operators that define certain
transformations on the SUT where each transformation leads
to one mutant. The use of mutants enables the assessment
of various testing and debugging techniques with regard to
their ability to detect or locate the mutants. Throughout this

paper, we refer to a mutant that is reached and executed by
a given test case as covered mutant. Intuitively, a test case
has to cover a certain mutant in order to be able to detect it.
If a test eventually reveals the injected fault caused by the
executed mutant, then the corresponding mutant is said to
be killed. Consequently, a mutant that is not killed is called
live. Finally, a mutant is deemed to be equivalent if it cannot
be killed due to semantic equivalence to the original version.

It is important to note that mutation analysis is not feasible
without proper tool support. Several mutation testing tools
and frameworks have been developed to support a variety of
programming languages [8]. This paper employs MAJOR,
a mutation testing framework for the Java programming
language that uses conditional mutation to reduce the cost
of generating and executing mutants [9], [11].

III. Non-RedundantMutation Operators
Subsumed mutants lead to redundancies in the generated

set of mutants and thus affect the efficiency of mutation
analysis and misrepresent the mutation score [10]. Offutt
et al. [13] and Namin et al. [16] empirically investigated
the correlations between mutation operators and statistically
determined a subset of mutation operators that is sufficient in
terms of the accuracy of the mutation score. Yet, they consid-
ered the mutation operators with their original definitions to
be atomic — meaning that an operator was either excluded
or applied with all defined replacements or insertions.

More recently, Kaminski et al. [12] investigated redun-
dancies in the ROR mutation operator and proposed a non-
redundant version for this operator by means of a subsump-
tion hierarchy. Additionally, we revealed redundancies in the
COR and UOI mutation operators and showed a sufficient set
of mutations for these operators in our prior research [10].
In that previous work, we also examined the reduction of
generated mutants in real-world applications by means of a
small case study focusing on ROR, COR, and UOI.

Based on the strong evidence given in this past case study,
this paper empirically investigates the actual improvement
when only applying the non-redundant versions of the muta-
tion operators for a larger set of applications, thus extending
and verifying these prior results. To ensure that this paper
is self-contained, Sections III-A and III-B briefly survey the
prior results on non-redundant operators (cf. [10], [12]).
A. Non-Redundant ROR Operator

The ROR mutation operator replaces all binary relational
operators (i.e. ==,!=,<,<=,>,>=) with both all valid alter-
natives and the special operators true and false. Accord-
ing to the subsumption hierarchy established by Kaminski
et al., the following three replacements per operator are
sufficient when mutating relational operators [12]:

<= �=⇒ <,==,true < �=⇒ <=,!=,false
>= �=⇒ >,==,true > �=⇒ >=,!=,false
== �=⇒ <=,>=,true != �=⇒ <, >,true

Therefore, the sufficient set of three out of seven possible
mutations yields a reduction of 57%.

B. Non-Redundant COR Operator
Generally, the COR mutation operator replaces an expres-

sion a <op> b, where a and b denote boolean expressions
or literals and <op> is one of the logical connectors && or ||.
With regard to binary conditional operators, valid mutations
belong to one of the following three categories:

1) Apply conditional operator
• Apply logical connector AND: a && b
• Apply logical connector OR: a || b
• Apply equivalence operator: a == b
• Apply exclusive OR operator: a != b

2) Apply special operator
• Evaluate to left hand side: lhs
• Evaluate to right hand side: rhs
• Always evaluate to true: true
• Always evaluate to false: false

3) Insert unary boolean operator
• Negate left operand: !a <op> b
• Negate right operand : a <op> !b
• Negate expression: !(a <op> b)

By employing only the following sufficient four out of ten
possible mutations, the reduction of the number of mutants
generated for the conditional operators is 60%:

&& �=⇒ lhs,rhs,==,false
|| �=⇒ lhs,rhs,!=,true

C. Empirical Evaluation
Given the sufficient sets for relational and conditional op-

erators, the number of ROR and COR mutants is decreased
by 57% and 60%, respectively. However, the total reduction
of all generated mutants depends on the ratio of ROR and
COR to all other mutants (cf. [10]). In order to investigate
the actual decrease of all generated mutants for real-world
programs, we analyze the applications described in Table I.
It is important to note that this table’s data about the test size
and runtime reflects the characteristics of the existing JUnit
test suites provided and released with the corresponding
application. Throughout the analysis, we use the following
mutation operators supported by MAJOR:
• Operator Replacement Binary (ORB): Replace all oc-

currences of arithmetic (AOR), logical (LOR), shift
(SOR), conditional (COR), and relational (ROR) op-
erators with all valid alternatives.

• Operator Replacement Unary (ORU): Replace all oc-
currences of unary operators with all valid alternatives.

• Unary Operator Insertion (UOI): Insert unary boolean
operators to negate boolean expressions.

• Literal Value Replacement (LVR): Force literals to take
a positive value, a negative value, and zero. Addition-
ally, all reference initializations are replaced by null.

Table II shows the decrease in the number of generated
mutants when applying the sufficient set of mutations for
the ROR, COR, and UOI mutation operators. The exclusion

Table I
Investigated case study applications

Application Version Source files LOC* Test runtime* Test classes Test methods Test LOC* Mutants

trove GNU Trove 3.0.2 691 116,750 15.2 25 544 13,279 116,991
chart jFreeChart 1.0.13 585 91,174 27.3 353 2,130 48,026 92,000
itext iText 5.0.6 408 76,229 8.4 26 75 1,612 160,891
math Commons Math 2.1 408 39,991 76.2 234 2,169 41,906 81,577
time Joda-Time 2.0 156 27,139 13.8 123 3,855 51,901 32,380
lang Commons Lang 3.0.1 99 19,495 14.1 101 2,039 32,699 33,065
jdom JDOM 2beta4 131 15,163 30.4 78 1,723 22,194 15,616
jaxen Jaxen 1.1.3 197 12,440 12.1 78 699 8,514 10,247
io Commons IO 2.0.1 100 7,908 17.4 48 309 13,608 9,901
num4j Numerics4j 1.3 73 3,647 1.8 63 218 5,273 7,234

total 2,848 409,936 1,181 14,385 239,012 559,902
*Test runtime in seconds and lines of code as reported by sloccount (non-comment and non-blank lines)

Table II
Decrease in the number of generated mutants

All mutants Reduced Set Decrease

trove 116,991 72,959 -37.6%
chart 92,000 68,519 -25.5%
itext 160,891 126,781 -21.2%
math 81,577 66,787 -18.1%
time 32,380 23,781 -26.6%
lang 33,065 21,074 -36.3%
jdom 15,616 10,800 -30.8%
jaxen 10,247 7,132 -30.4%
io 9,901 7,319 -26.1%
num4j 7,234 5,437 -24.8%

total 559,902 410,589 -26.7%

of the redundant mutants yields a significant improvement
for all applications, with a total decrease of 26.7% and a
range between 18.1% for math and 37.6% for trove. Since
redundant mutants also misrepresent the mutation score [10],
it is strongly advisable to apply only the non-redundant
sets of the ROR and COR mutants. Interestingly, the UOI
operator is subsumed by the sufficient set of COR mutants,
and hence also redundant. This paper’s approach to efficient
mutation analysis always uses the non-redundant operators.

IV. Efficient and ScalableMutation Analysis
By employing the non-redundant versions of the ROR and

COR operators, we could decrease the number of generated
mutants by almost 27% in total, as shown in Table II. How-
ever, the remaining number of mutants, which is 410,000 for
all of the investigated applications, is still substantial. There-
fore, we focus on further runtime improvements that do not
rely on the reduction of mutants. This section makes several
motivating observations concerning mutation coverage, the
differences in test runtime, and the redundancies in a test
suite. Ultimately, these insights lead to an optimized work-
flow that performs test suite prioritization and splitting.

A. Mutation Coverage
As already mentioned in Section II, a test case has to

cover a mutant in order to be able to kill it. Generally, the
following three conditions have to be fulfilled to ultimately
detect mutants as well as real faults (cf. [17]):

1) Execution: The mutated code must be covered, mean-
ing that it has to be reached and executed.

2) Infection: The execution of the faulty code segment
has to change the internal state of the program.

3) Propagation: The infected internal state must be prop-
agated to the output in order to be detectable.

While the first two conditions are necessary, the last one
is sufficient to kill a mutant. Besides, the last condition can
be generalized to oracles that are not output-based. In this
case, the infected internal state has to be propagated to a state
that is observable by the test oracle (cf. [7]). An example
for such an observable state is the violation of contracts.

Since the first condition is necessary, it implies that if
a mutant is not covered it cannot be killed. As a conse-
quence, mutants that are not covered can be excluded and
marked alive without execution. Utilizing this implication
can significantly reduce the number of executions, especially
if a test suite exhibits poor mutation coverage. Nevertheless,
it is important to note that the mutation coverage has to
be determined at runtime. Employing a code coverage tool
for this purpose and mapping the covered statements and
branches to mutants is feasible, but rather laborious, since
code coverage tools are not designed for this purpose.

More advanced mutation analysis systems that encode
all mutants within the original program can provide the
mutation coverage information at runtime by means of
additional code instrumentation (e.g., [6], [11]). MAJOR,
the mutation system used in this paper, gathers the mutation
coverage information efficiently at runtime. For performance
reasons, it only records the mutation coverage if and only if
the original, which means the unmutated version of the SUT,
is executed (cf. [9], [11]). Due to the overhead incurred by
determining the mutation coverage, this feature is disabled
during the execution of mutants.

For all of the investigated applications, Table III shows the
number of generated and covered mutants plus the ratio of
covered-to-generated mutants. The results exhibit a notable
divergence between the applications, ranging between 8.2%
for trove and 94.7% for num4j, with a mutation coverage of

Table III
Ratio of covered to generated mutants

Generated mutants Covered mutants

trove 72,959 6,016 (8.2%)
chart 68,519 35,659 (52.0%)
itext 126,781 16,521 (13.0%)
math 66,787 59,195 (88.6%)
time 23,781 18,971 (79.8%)
lang 21,074 19,112 (90.7%)
jdom 10,800 9,519 (88.1%)
jaxen 7,132 4,419 (62.0%)
io 7,319 4,170 (57.0%)
num4j 5,437 5,149 (94.7%)

total 410,589 178,731 (43.5%)

Table IV
Estimated overhead in hours for evaluating uncovered mutants

Uncovered mutants Test runtime Overhead

trove 66,943 15.2 sec 282.6 h
chart 32,860 27.3 sec 249.2 h
itext 110,260 8.4 sec 257.3 h
math 7,592 76.2 sec 160.7 h
time 4,810 13.8 sec 18.4 h
lang 1,962 14.1 sec 7.7 h
jdom 1,281 30.4 sec 10.8 h
jaxen 2,713 12.1 sec 9.1 h
io 3,149 17.4 sec 15.2 h
num4j 288 1.8 sec 0.1 h

43.5% in total. The reason for the extremely low mutation
coverage for the trove application is that it contains a lot of
generated source files, of which not all are tested by the test
suite. Overall, the coverage results indicate a considerable
potential for runtime improvements by excluding uncovered
mutants from the mutation analysis (cf. [15]).

Due to the necessary conditions to detect a fault, a test
suite cannot kill a mutant that it does not cover. Hence,
a mutation analysis process that does not employ coverage
information would have to execute the entire test suite for all
of the uncovered mutants. In order to estimate the overhead
originating from uncovered mutants, that is running the
mutation analysis without coverage information, we use the
test suite’s runtime and the number of mutants that are not
covered by the corresponding test suite. Table IV shows
the corresponding results for all applications. In this table,
the overhead of the first three applications, which is more
than ten days, is huge because of the fact that an enormous
number of mutants is not covered. Even though the mutation
coverage for the math application yields an acceptable ratio
of 88.6%, the overhead of 160 hours caused by the long test
runtime is still prohibitive. It is important to state that the
total runtime of a mutation analysis process would include
the estimated overhead and additionally the runtime neces-
sary to analyze all covered mutants. Thus, mutation analysis
for large real-world applications is not feasible without
mutation coverage information. Therefore, we always exploit
this coverage information in the subsequent analyses.

test suite

class#1

method#1 ...

... ... class#m

... method#n

L
ow

er
ov

er
he

ad

H
igher

precision

Figure 1. Different levels of granularity in JUnit test suites

B. Precision of the Mutation Coverage
A test suite of JUnit tests is typically a hierarchical

composition of test classes containing several test methods.
Regarding such a composed test suite, as visualized in
Figure 1, there are three different levels of granularity at
which the mutation coverage can be measured. The highest
one, with a coarse granularity, is the test suite level at
which the mutation coverage determines which mutants are
covered by the entire test suite. Considering the individual
test classes, or even test methods, provides a finer level of
granularity, leading to a higher precision in terms of the
mutation coverage measure. However, executing test meth-
ods independently incurs a much higher overhead caused by
additional class loading and, moreover, the instantiation and
initialization of the corresponding test classes and the SUT.

Tables V and VI show the differences in the total runtime
and the number of covered mutants when executing the test
suite at the class and method level. For all applications, the
maximum number of mutants covered by a single test class
is clearly lower than the number of mutants covered by the
entire test suite, as indicated by the sixth column of Table V.
Thus, a mutation analysis process should always operate at
minimum at the class level. The average numbers of covered
mutants in the last column show that certain mutants have
to be covered several times since the product of the average
number and the number of tests is greater than the total
number of covered mutants given in Table III.

At the method level, the number of covered mutants is
in turn lower than the class level for almost all of the
applications — and yet, the results are divergent. While
io and lang exhibit a significant reduction, the maximum
number of covered mutants for itext remains unchanged.
Moreover, the average coverage per method is even higher
for itext and jaxen, thus indicating that there are a lot of
methods that cover numerous mutants. This result again
implies a remarkable overlap in terms of the mutation
coverage. Generally, the method level provides the most
precise mutation coverage information. However, running
the test methods independently leads to a higher overhead
in terms of runtime, as previously stated. As shown in the
fourth column of Table VI, some applications such as trove,
math, io, and num4j exhibit a moderate overhead compared
to the runtime at the class level in Table V. In contrast,
time, jdom, and jaxen incur a significant increase in runtime.
Hence, the results clearly document the existing tradeoff

between precision and runtime overhead.

Table V
Precision of mutation coverage and total runtime at class level

Covered per class
Mutants Tests Runtime Min Max Avg

trove 6,016 25 15.2 sec 41 2,150 954
chart 35,659 353 27.3 sec 1 4,702 665
itext 16,521 26 8.4 sec 94 9,537 3,906
math 59,195 234 76.2 sec 1 5,957 769
time 18,970 123 13.8 sec 37 6,032 3,011
lang 19,112 101 14.1 sec 1 2,437 310
jdom 9,519 78 30.4 sec 1 3,715 777
jaxen 4,419 78 12.1 sec 1 3,769 1,895
io 4,170 48 17.4 sec 1 2,474 134
num4j 5,149 63 1.8 sec 18 654 195

Table VI
Precision of mutation coverage and total runtime at method level

Covered per method
Mutants Tests Runtime Min Max Avg

trove 6,016 544 16.8 sec 2 1,053 516
chart 35,659 2,130 80.2 sec 1 3,599 293
itext 16,521 75 18.3 sec 70 9,537 4,861
math 59,195 2,169 138.8 sec 1 3,606 381
time 18,970 3,855 335.4 sec 1 4,939 1,636
lang 19,112 2,039 43.5 sec 1 780 87
jdom 9,519 1,723 127.1 sec 1 3,418 362
jaxen 4,419 699 60.9 sec 1 2,847 2,156
io 4,170 309 19.7 sec 1 598 68
num4j 5,149 218 3.2 sec 4 654 100

C. Overlap of the Mutation Coverage
The previous section showed that the investigated ap-

plications exhibit an overlap in the coverage of mutants.
Therefore, we measure this overlap of the individual test
classes. Due to the combinatorial explosion of pairwise
comparisons between individual test classes, we focus on
relating test classes to their encapsulating test suite and
define the overlap O(ti,T) of a certain test class ti with its
corresponding test suite T as follows:

Definition 1. Overlap O(ti,T) ∈ [0, 1], ti ∈ T

O(ti,T) B

1, |Cov(ti)| = 0
|Cov(ti)∩Cov(T\ti)|

|Cov(ti)|
, |Cov(ti)| > 0

In this definition, the set T denotes a test suite containing
all its test classes tx, meaning that T := ∪tx. Without loss
of generality, the definition assumes that the test class ti,
of which the overlap is determined, is an element of the
set T . Moreover, the operator |s| represents the cardinality
of the set s and the function Cov provides the set of mutants
covered by the corresponding set of test classes. Intuitively,
this overlap metric describes the similarity of a test class to
all other test classes within the same test suite.

Figure 2 illustrates the distribution of the overlap for all
analyzed applications using a box-and-whisker plot, where
the thick line in the middle represents the median. The
box itself shows the distribution of the data between the
upper and lower quartile, thus including 50% of the data. By

trove chart itext math time lang jdom jaxen io num4j

0

20

40

60

80

100

T
es

t
ca

se
 o

v
er

la
p

 i
n

 %

Figure 2. Coverage overlap distribution of the individual test classes related
to the corresponding test suite for all investigated applications

excluding the outlier values, the lower and upper whiskers
denote the minimum and maximum value, respectively.
The extreme values themselves are visualized by means
of the circles beyond the whiskers. Within the plot, two
exceptional patterns can be identified. On the one hand,
there are applications such as jaxen and time, where even the
minimum overlap of the outlier values is at least 50% and
the median is almost 100%. On the other hand, the median
of the overlap is only 75% for applications such as num4j
and lang. Moreover, these programs contain test classes that
have no overlap at all, indicated by an overlap value of 0%.

Recalling the three conditions for killing a mutant, a high
overlap of the mutation coverage does not imply that the
test cases within the test suite are highly redundant since
the mutation coverage only refers to the execution condition.
However, the probability of killing a mutant is much higher
if the mutant is covered by several test classes.

D. Runtime of Test Cases

Intuitively, the runtime of a test suite has an essential
impact on the total time needed for the mutation analysis
because every covered, and yet not killed, mutant has to be
evaluated by executing the test suite. As previously men-
tioned, regarding the test suite at the class or method level
leads to more precise mutation coverage information, which
reduces the number of mutants that have to be evaluated for
a certain test. Nevertheless, a very long-running test case
can still result in a prolonged mutation analysis, even for
a small number of covered mutants. Hence, the number of
covered mutants and the runtime of the individual test cases
are the determining factors for the total runtime.

Therefore, we investigate how the individual test classes
collectively form the total runtime of the corresponding test
suite. The runtime distribution of the individual test classes
for all analyzed applications is again visualized by means
of box-and-whisker plots in Figure 3. The extremely thin
boxes and the short, if existing, whiskers clearly indicate
that most of the test classes have a short runtime of less
than 1 second. Even though the majority of the test classes
have a rather low runtime, there are a few extreme values for
which the runtime differs by an order of magnitude. Thus,
for all applications, Table VII additionally shows the number
of test classes, along with both the cumulative runtime and

trove chart itext math time lang jdom jaxen io num4j

0

5

10

15

20

T
es

t
cl

as
s

ru
n

ti
m

e
in

 s
ec

o
n

d
s

Figure 3. Runtime distribution of the individual test classes

Table VII
Cumulative runtime and extremum of all test classes

Test classes Cumulative* Extremum*

trove 25 15.2 4.6 (30.3%)
chart 353 27.3 10.2 (37.4%)
itext 78 8.4 2.5 (29.8%)
math 234 76.2 19.8 (26.0%)
time 123 13.8 5.7 (41.3%)
lang 101 14.1 4.8 (34.0%)
jdom 78 30.4 18.9 (62.2%)
jaxen 78 12.1 0.9 (7.4%)
io 48 17.4 13.6 (78.2%)
num4j 63 1.8 0.2 (11.1%)
*Runtimes reported in seconds

the extremum of all test classes. This table demonstrates
that the outlier values constitute a substantial proportion,
sometimes even most, of the total runtime. For instance, in
consideration of a total number of 353 test classes for the
chart application, the test class with the longest runtime of
10.2 seconds forms more than 37% of the total runtime.

E. Visualizing the Overlap and Runtime
In order to examine the correlation between the runtime

and the mutation coverage overlap of the tests, we use
scatter plots to visualize the overlap in conjunction with
the individual test runtime. Due to the large number of
analyzed applications, and to avoid a confusing set of
diagrams, we focus on the two identified overlap patterns as
representatives for all of the chosen applications. Figure 4
shows the plot for time, an application representative of those
with high overlap, while Figure 5 gives the plot for num4j
as a representative of those applications with a distinctive
distribution in the coverage overlap.

Within the scatter plots, every data point indicates that
the mutant on the vertical axis is covered by the test class
or test classes on the horizontal axis. Intuitively, the plot
visualizes a matrix representing a mutant-covered-by-test-
class map. Since the introduced overlap metric is a measure
for the similarity of each data line to all others, the plot for
time clearly reveals that there is indeed a substantial overlap
for almost all of the test classes. In contrast to this obvious
overlap, the plot for num4j reveals that only a fourth of the
mutants are overlapped by several test classes.

Besides the overlap, the plots visualize the runtime of the
individual test classes. The test runtime in milliseconds is

 0 5000 10000 15000 20000 25000

Index of mutant

 0

 20

 40

 60

 80

 100

 120

In
d

ex
 o

f
te

st
 c

la
ss

 i
n

 o
ri

g
in

al
 t

es
t

su
it

e

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Figure 4. Mutation coverage with corresponding runtime for time

longest runtime

 0 1000 2000 3000 4000 5000 6000

Index of mutant

 0

 10

 20

 30

 40

 50

 60

 70

In
d
ex

 o
f

te
st

 c
la

ss
 i

n
 o

ri
g
in

al
 t

es
t

su
it

e
 0

 50

 100

 150

 200

 250

Figure 5. Mutation coverage with corresponding runtime for num4j

color coded by means of the gray-scale palette that is aligned
to the right of the scatter plot. According to the chosen gray-
scale gradient, the darker the color of a data line, the longer
is the runtime of the corresponding test class. Both plots
manifest that long-running tests, represented by the dark data
lines, have a notable overlap with a lot of short-running tests.
Moreover, when considering the original ordering of the tests
for num4j, the test class with the longest runtime is placed
before many of the overlapping short-running test classes.
As a consequence, the long-running test has to be executed
for all covered, and yet not killed, mutants — even though
those mutants are also covered by test classes with a much
shorter runtime. Since the results from the other applications
conform to these observations, the characteristics of these
plots suggest that a reordering according to the runtime
could significantly improve the mutation analysis process.

V. OptimizedMutation AnalysisWorkflow
We now present an optimized mutation analysis workflow

based on the observations and evidence given in the previous
Section IV, which can be summarized as follows:
OBS 1. The mutation coverage is 43.5% on average and
ranging between 8.2% and 94.7%.
OBS 2. Analyzing the mutation coverage on the class or
method level is much more precise. However, executing the
test methods independently incurs a significant overhead.
OBS 3. Most tests within a test suite have a notable overlap
with all remaining tests in terms of mutation coverage.
OBS 4. The runtime of individual test classes within a test
suite differs, sometimes even by an order of magnitude.

Compile
mutants

Instrumented
program

Execute
test suite

Runtime of
test cases

Original
test suite

Mutation
coverage

Prioritize
test cases

Reordered
test suite

Mutation
analysis

Figure 6. Optimized mutation analysis process that exploits mutation coverage and runtime information of test cases

OBS 5. Long-running tests have an essential overlap with
many short-running tests but the investigated existing JUnit
test suites are not ordered according to runtime.

A. Gather Mutation Coverage Information
Due to the fact that a lot of mutants are not covered by

the test suite, we exploit the mutation coverage information
provided by MAJOR’s driver [11]. A program instrumented
by MAJOR reports the coverage information to the driver if
and only if the unmutated version is executed and the corre-
sponding flag is enabled. This condition is crucial since gath-
ering the coverage information involves method calls and
incurs a notable overhead (cf. [9]). Hence, determining the
coverage information during the mutation analysis process
would significantly increase the total runtime. Depending on
the level of granularity, the coverage information is cached
for each test class or test method.

B. Estimate Test Runtime and Prioritize Test Cases
Given the overlap of the individual tests and the runtime,

which differs significantly, the runtime is estimated for every
test method and entire class by executing the original ver-
sion. Attempting to produce a runtime approximation that is
as precise as possible, this step executes the original version
of the program without enabling the mutation coverage.

Next, based on the runtime results, the tests are sorted
in descending order to ensure that the long-running tests
will be executed last. This prioritization strategy is based
on the assumption that unit tests have no dependencies, and
hence the order is irrelevant. Even though this assumption is
also specified for unit testing frameworks such as JUnit, we
verify that reordering the tests does not break the test suite
by executing the unmutated version with the prioritized test
suite. In order to increase the confidence in the test’s inde-
pendence, a randomized order of the tests is also executed.

C. Threshold-based Splitting of Test Classes
In light of the tradeoff between precision of the mutation

coverage on the one hand and runtime overhead on the
other hand, we present two hybrid approaches. Extracting
test methods with an exceptionally long runtime or split-
ting entire long-running test classes seems to be the most
promising. Therefore, we define the following two hybrid
approaches that represent both kinds of splitting strategies.

Class-hybrid: Extract an individual test method from its
corresponding test class if and only if the runtime of the pre-
initialized test method is greater than a given threshold thm.

Method-hybrid: Split a test class into its individual test
methods if and only if the total runtime of the pre-initialized
test class is greater than a given threshold thc.

With regard to the threshold parameters that are used
in both approaches, we determine an appropriate value by
taking into account the average initialization time of a test
class for thm and the mean number of test classes within
a test suite for thc. Additionally, based on the observation
that the test suites of all applications exhibit a significant
mutation coverage overlap, the overhead of executing a test
method separately should not exceed 100% of its runtime.
For instance, the average initialization time of a test class
ranges between 10 and 50 milliseconds for all applications.
Thus, a threshold thm of 50 milliseconds ensures that an in-
dividual test method is not extracted if its runtime is smaller
than the initialization time of the enclosing test class.

D. Complete Mutation Analysis Workflow
Integrating the individual steps into a complete workflow

leads to the optimized mutation analysis process that is
illustrated in Figure 6. Generally, this process consists of
three individual but consecutive phases:

1) Mutant generation phase that generates and compiles
all mutants into the system under test.

2) Preprocessing step that gathers the mutation coverage
and test case runtime information.

3) Mutation analysis with reordered and potentially split
test suite employing the mutation coverage.

The dashed line within the diagram indicates that the
threshold for the splitting strategy is estimated based on the
mutation coverage overlap. It is important to note that we do
not calculate the overlap of every test method with its test
class but rather use the overlap of the test classes within a
corresponding test suite. The splitting strategy may be more
effective with an accurate overlap value for test methods
within their encapsulating test classes. However, we leave
the investigation of this matter open for future work.

VI. Empirical Evaluation

To empirically evaluate the workflow shown in Figure 6,
we implemented it in MAJOR’s analysis component [9],
[11] that extends the Apache ant build system. With regard
to the performance evaluation, of particular interest are the
runtime improvements due to reordering and splitting and
the variation in efficiency due to differences in the coverage
overlap and the effectiveness of the test suite. Table VIII

Table VIII
Runtimes for different prioritization and splitting strategies

*Original *Method-level *Method-hybrid1 *Class-level *Class-hybrid2 Mutation score

trove 107.81 41.68 (-61.3%) 44.93 (-58.3%) 55.96 (-48.1%) 36.89 (-65.8%) 66.6%
chart 608.60 950.55 (56.2%) 564.14 (-7.3%) 270.40 (-55.6%) 309.88 (-49.1%) 36.3%
itext 644.43 1381.51 (114.4%) 1127.25 (74.9%) 627.89 (-2.6%) 674.18 (4.6%) 24.0%
math 793.19 394.60 (-50.3%) 388.39 (-51.0%) 674.73 (-14.9%) 381.10 (-52.0%) 79.1%
time 504.44 1182.61 (134.4%) 559.62 (10.9%) 470.03 (-6.8%) 410.59 (-18.6%) 85.7%
lang 42.75 27.58 (-35.5%) 23.31 (-45.5%) 29.93 (-30.0%) 19.11 (-55.3%) 74.2%
jdom 120.53 135.53 (12.4%) 189.08 (56.9%) 117.42 (-2.6%) 105.01 (-12.9%) 83.4%
jaxen 343.40 1773.15 (416.4%) 1521.79 (343.2%) 338.51 (-1.4%) 357.16 (4.0%) 43.6%
io 5.72 5.64 (-1.5%) 4.11 (-28.1%) 4.83 (-15.5%) 4.35 (-23.9%) 78.0%
num4j 2.54 2.12 (-16.5%) 1.95 (-23.1%) 1.99 (-21.6%) 1.94 (-23.5%) 68.1%

avg 56.9% 27.3% -19.9% -29.2% 63.9%
*Runtimes reported in minutes; 1Threshold thc = 500 milliseconds; 2Threshold thm = 50 milliseconds

reports the runtimes for the complete mutation analysis when
employing the different reordering and splitting strategies for
all applications. To better visualize the results, the fastest
approach is highlighted for every application.

In order to minimize any potential side effects, all analyses
were performed on a single machine1 that did not take
advantage of parallelization. Additionally, we measured the
real runtime instead of CPU time due to the fact that most
analyzed applications are not CPU-bound. Hence, the CPU
time is much lower and does not adequately reflect the time
needed to perform the entire mutation analysis.

Within the table, Original denotes the mutation analysis of
the test suite without any prioritization or splitting. Method-
level and Class-level describe the results for sorting and
executing the test suite at the method level and class level,
respectively. The runtime results for the two suggested
approaches, namely Method-hybrid and Class-hybrid, are
shown in the corresponding columns. The last column of
Table VIII additionally shows the mutation score since the
effectiveness of the investigated test suites is also a crucial
factor. It is important to consider the mutation score because
the prioritization technique is based on the assumption that
a test suite kills a certain number of mutants, and hence the
number of live mutants decreases over time. Furthermore,
a mutant is always killed by the fastest test case that can
detect it within the sorted test suite. Thus, if the mutation
score is extremely low, reordering will only yield a marginal
improvement since the entire test suite has to be executed
for the majority of the mutants.

When analyzing the entire test suite at the method level,
meaning that every test method is executed independently,
the two identified overlap patterns give distinction to the
results. The runtime for the applications itext, time, and
jaxen, which have a huge overlap, is increasing dramatically
due to the incurred overhead. Yet, applications with a
lower overhead such as trove and math yield a considerable
runtime decrease of up to 61.3%.

1Commodity GNU/Linux workstation with Intel Xeon CPU @2.4GHz,
16GB of RAM, and kernel version 2.6.32-5-amd64.

The Method-hybrid approach reduces the number of in-
dividual test methods by only splitting long-running test
classes. Due to the reduction, this approach improves the
runtime for all applications but cannot compensate for the
huge overhead of itext, time, and jaxen.

Sorting the test suite at the class level according to the
runtime of the individual test classes yields an improvement
for all of the applications due to the existing overlap between
test classes and the divergent runtimes of the individual
tests. Ranging between 1.4% for jaxen and 55.6% for chart,
sorting at class level yields an average decrease of almost
20%. The improvement for jaxen is relatively low for two
reasons. The runtime of the individual test classes is very
homogeneous with a maximum of only 900 milliseconds and
furthermore the mutation score is only 43.6%.

By additionally employing the splitting of the Class-
hybrid approach, the runtime can be considerably reduced
even further for most of the applications. With a speedup of
65.8% for trove and an average improvement of 29.2% for
all applications, this approach yields the best results overall.
However, the necessary runtime increases by approximately
4% for two applications, namely itext and jaxen. The reason
is again the low mutation score in conjunction with the huge
overlap of the individual test classes. For instance, some
long-running test methods of itext cover exactly the same
number of mutants as the entire, enclosing test class. Hence,
the extraction of such methods introduces a higher overhead
without increasing the precision of the mutation coverage.

For the math and itext applications, the diagrams in Fig-
ure 7 visualize the mutation analysis process using the orig-
inal test suite and the Class-hybrid approach, which is the
most efficient approach for all applications. Within these dia-
grams, the upper plot illustrates the runtime of the individual
test cases and the lower plot depicts the ratio of analyzed-to-
covered mutants. This lower-is-better ratio decreases if mu-
tants covered by a certain test are already killed, and hence
will not be executed again. Additionally, the width of the
boxes exhibits the time needed to execute the corresponding
test for all of the covered, and yet not killed, mutants.

 0
 5
 10
 15
 20

Original (math)

 0

 5

 10

 15

T
es

t
ru

n
ti

m
e

in
 s

ecClass-hybrid (math)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

R
at

io
 o

f
an

al
y

ze
d

-t
o

-c
o

v
er

ed
 m

u
ta

n
ts

Total runtime in minutes

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

Total runtime in minutes

 0

 1

 2

 3

Original (itext)

 0

 1

 2

 3

T
es

t
ru

n
ti

m
e

in
 s

ecClass-hybrid (itext)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700

R
at

io
 o

f
an

al
y
ze

d
-t

o
-c

o
v
er

ed
 m

u
ta

n
ts

Total runtime in minutes

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700

Total runtime in minutes

Figure 7. Visualization of the complete mutation analysis process using the Class-hybrid approach

With regard to the original test suite of the math applica-
tion, the test class with the longest runtime is placed in the
middle and the time necessary to execute this individual test
class for all covered mutants is a considerable proportion
of the total runtime of the complete process. Furthermore,
the ratio of analyzed-to-covered mutants is still 60%. By
means of the Class-hybrid approach, this long-running test
class is split, so that the methods with a runtime larger than
the threshold are extracted and the resulting set of individual
tests is sorted. Accordingly, the last individual test possesses
the longest runtime which is, however, with 16 seconds,
smaller than the entire long-running test class from which it
has been extracted. Given the coverage overlap of the tests
and a mutation score of almost 80%, the ratio of analyzed-
to-covered mutants is rapidly decreasing, and hence the
extracted long-running test method is only executed for
approximately 10% of the covered mutants.

An example of an application with both an extremely low
mutation score and a better-ordered original test suite is itext,
for which Figure 7 illustrates the mutation analysis process.
The runtime characteristics of the other applications conform
to these two examples, and thus are not separately depicted.

As with every empirical study, it is crucial to discuss
the threats to validity. The representativeness of the cho-
sen applications might be a potential threat to external
validity. However, we controlled this threat by examining
programs that differ significantly in their size, complexity,
and operation purpose. Starting with an initial set of the five
applications math, time, lang, io, and num4j, we improved
the generalizability by successively adding new applications
with varying operation purposes and originations from dif-
ferent developer communities. While adding more programs

to the empirical study, we could identify the two exceptional
overlap patterns to which all of the investigated applications
can be related. Therefore, we judge that the reported results
are meaningful and indeed transferable to other applications.

Relying on the sufficient set of mutation operators could
be a threat to internal validity. Different or additional oper-
ators may affect the improvement results due to differences
in the mutation coverage overlap and the mutation score.
However, the applied operators are frequently used in the
literature, and thus provide comparable results [14], [16].
Moreover, the investigated test suites exhibit a significant
divergence with regard to the mutation score and therefore
the study also examines boundary cases.

A threat to construct validity could be a defect in the
chosen mutation testing framework. Since we employed the
framework to conduct previous experiments [9], [10] without
encountering any problems and we also verified the results
for example programs in a manual fashion, we judge that
the implementation worked correctly.

VII. RelatedWork
Considering the efficiency of mutation analysis, several

approaches proposed in the literature belong to one of
three categories: do fewer, do smarter, and do faster [8],
[14]. Do fewer approaches employ selective or sampling
strategies to reduce the number of generated mutants by
either (randomly) selecting a subset of all generated mutants
or by reducing the number of applied mutation operators.
Namin et al. [16], as well as Offutt et al. [13], determined
a sufficient set of mutation operators that can be applied
without a major loss of information.

Concerning this relationship between reduction and accu-
racy, the utilization of non-redundant mutation operators is

a special case of a do fewer approach since the exclusion
of subsumed mutants even increases the accuracy of the
mutation score (cf. [10]). As already stated in Section III,
Kaminski et al. established a subsumption hierarchy for a
non-redundant ROR mutation operator [12] and we identi-
fied a non-redundant set of mutations for the COR and UOI
operators in our prior work [10].

While do smarter methods exploit distributed or multi-
core systems to parallelize the mutation analysis, do faster
approaches aim at improving the efficiency without reduc-
tion or parallelization. Even though this paper’s optimized
workflow belongs to the group of do faster techniques, it
can nevertheless be combined with sampling or selective
approaches and it also can be easily parallelized to fully
utilize the computational power of current machines.

To the best of our knowledge, this paper is the first
to employ test suite prioritization to achieve efficient and
scalable mutation analysis. However, a wide variety of
software testing techniques leverage mutation analysis. For
instance, Elbaum et al. use mutation testing tools to support
the reordering of a test suite according to the fault exposing
potential of a test case [5]. Finally, both Andrews et al.
and Do and Rothermel use mutation analysis to empirically
evaluate test suite prioritization techniques [1], [4].

VIII. Conclusions and FutureWork

This paper makes several contributions that address the
challenges associated with achieving efficient and scalable
mutation analysis. By leveraging existing definitions of non-
redundant COR and ROR mutation operators, an empirical
evaluation shows that the reduced, yet sufficient, sets of COR
and ROR mutants also result in a significantly decreased
total number of generated mutants. Drawing on several
observations concerning the characteristics of real-world
test suites, this paper also presents an optimized mutation
analysis process that exploits mutation coverage and test
runtime information. Empirically evaluated on ten open-
source applications with 410,000 lines of code and 550,000
generated mutants in total, the suggested approach reduces
the runtime by up to 65% and 30% on average. Overall,
this paper convincingly demonstrates that mutation analysis
is indeed applicable to large programs, and hence ready for
a transfer and a wider integration into industry.

Since the proposed splitting approaches are parameterized
with a threshold that is currently determined with a heuristic
based on the test class initialization time, we will conduct
further experiments to compare our approaches with the
optimally sorted test suite. It is important to note that the
identification of this suite implies a tremendous computa-
tional expense since every test case has to be executed for
every covered mutant to identify the fastest test cases that not
only cover but also kill the mutants. Additionally, we plan
as part of our future work to implement a splitting approach
that also takes into account the mutation coverage overlap

at the method level. A splitting technique that extracts long-
running test methods, when the precision of the mutation
coverage adequately increases, might be more sensitive to
test suites that exhibit a substantial overlap.

Because of the promising results achieved by employing
the non-redundant versions of the COR and ROR mutation
operators, we are currently investigating redundancies in the
mutation set for replacing arithmetic operators (AOR). Since
AOR mutants also constitute a significant proportion of all
generated mutants, a reduction would noticeably increase the
efficiency of mutation analysis. Combining the techniques
presented in this paper with our future work will result
in a complete, efficient, scalable, and thoroughly-studied
framework for the mutation analysis of Java programs.

References

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In Proc. of the 27th
ICSE, 2005.

[2] T. A. Budd. Mutation Analysis of Program Test Data. PhD
thesis, Yale University, 1980.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on
test data selection: Help for the practicing programmer. IEEE
Comp., 11(4), 1978.

[4] H. Do and G. Rothermel. On the use of mutation faults in
empirical assessments of test case prioritization techniques.
IEEE Trans. on Soft. Engin., 32(9), Sept. 2006.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Trans. on
Soft. Engin., 28(2), 2002.

[6] G. Fraser and A. Arcuri. Evosuite: Automatic test suite
generation for object-oriented software. In Proc. of the 8th
ESEC/FSE. ACM, 2011.

[7] G. Fraser and A. Zeller. Mutation-driven generation of unit
tests and oracles. In Proc. of the 19th ISSTA, 2010.

[8] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. IEEE Trans. on Soft. Engin.,
37(5), 2011.

[9] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using
conditional mutation to increase the efficiency of mutation
analysis. In Proc. of the 6th AST, 2011.

[10] R. Just, G. M. Kapfhammer, and F. Schweiggert. Do
redundant mutants affect the effectiveness and efficiency of
mutation analysis? In Proc. of the 7th Mutation, 2012.

[11] R. Just, F. Schweiggert, and G. M. Kapfhammer. MAJOR:
An efficient and extensible tool for mutation analysis in a
Java compiler. In Proc. of the 26th ASE, 2011.

[12] G. Kaminski, P. Ammann, and J. Offutt. Better predicate
testing. In Proc. of the 6th AST, 2011.

[13] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An experimental determination of sufficient mutant operators.
ACM Trans. on Soft. Engin. and Method., 5(2), 1996.

[14] J. Offutt and R. H. Untch. Mutation 2000: Uniting the
orthogonal. In Proc. of Mutation 2000, 2000.

[15] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation
testing by checking invariant violations. In Proc. of the 18th
ISSTA, 2009.

[16] A. Siami Namin, J. H. Andrews, and D. J. Murdoch. Sufficient
mutation operators for measuring test effectiveness. In Proc.
of the 30th ICSE, 2008.

[17] J. M. Voas. PIE: a dynamic failure-based technique. IEEE
Trans. on Soft. Engin., 18, 1992.

