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Abstract—Various proxy metrics for test quality have been
defined in order to guide developers when writing tests. Code
coverage is particularly well established in practice, even though
the question of how coverage relates to test quality is a matter of
ongoing debate. Mutation testing offers a promising alternative:
Artificial defects can identify holes in a test suite, and thus provide
concrete suggestions for additional tests. Despite the obvious
advantages of mutation testing, it is not yet well established in
practice. Until recently, mutation testing tools and techniques
simply did not scale to complex systems. Although they now
do scale, a remaining obstacle is lack of evidence that writing
tests for mutants actually improves test quality. In this paper
we aim to fill this gap: By analyzing a large dataset of almost
15 million mutants, we investigate how these mutants influenced
developers over time, and how these mutants relate to real faults.
Our analyses suggest that developers using mutation testing write
more tests, and actively improve their test suites with high quality
tests such that fewer mutants remain. By analyzing a dataset of
past fixes of real high-priority faults, our analyses further provide
evidence that mutants are indeed coupled with real faults. In
other words, had mutation testing been used for the changes
introducing the faults, it would have reported a live mutant that
could have prevented the bug.

Index Terms—mutation testing, code coverage, fault coupling

I. INTRODUCTION

Testing is an essential part of software development, and
software developers need guidance in how much testing they
need to do, and where to add more tests. Various proxy metrics
for test suite quality have been defined over time with the aim to
provide this guidance. Out of these, code coverage is probably
best established in practice: Executing code is a prerequisite
for revealing faults, code coverage can be easily visualized,
for example by highlighting covered lines in a different color
than uncovered lines, coverage is cheap to compute, and it is
well supported by commercial-grade tools [1].

There are, however, downsides to coverage: Quantifying code
quality based on code coverage alone leads to questionable
estimates, whose general utility and actionability are a matter
of controversy in the research community [2]–[4]. Coverage-
adequate test suites, which satisfy all test goals, are not the
norm nor should they be. In practice, developers only satisfy
a fraction of the test goals, but adequate thresholds for code
coverage ratios are inherently arbitrary and a matter of much
debate [5], [6]. Code coverage is also easily fooled, as it only
determines whether code has been executed, regardless of how
well its behavior has been checked.

These downsides are overcome by mutation testing [7],
[8]: A test suite is evaluated on a set of systematically

generated artificial faults (mutants). Any surviving mutant
that is not detected by the test suite constitutes a concrete
test goal, pointing out possible ways to improve the test suite.
While the idea of mutation testing is appealing, adoption in
practice has long been hampered by scalability issues: Even
simple programs may result in large numbers of mutants.
Performing traditional mutation testing, which evaluates all
possible mutants, for a large code base is impracticable. For
example, at Google, 500,000,000 tests are executed per day,
gate-keeping 60,000 code changes. However, as a result of
decades of research on mutation testing, it is now possible to
apply mutation testing even at such scale [9], [10].

While the computational challenges should no longer prevent
adoption in practice, there remains uncertainty about whether
the expected benefits of showing mutants to developers mani-
fest: For a large system many mutants can be produced, yet
only few of these can be shown to developers. Do developers
actually improve their test suites when shown these mutants,
and do tests written for these mutants have the potential to
help prevent real faults? In this paper, we aim to shed light on
these questions of central importance.

Using a dataset of almost 15 million mutants, created in
industrial software projects at Google over a duration of six
years, we investigate the effects of showing these mutants as
test goals to developers. In particular, we aim to answer the
following research question:

• RQ1 Effects on testing quantity. How does continuous
mutation testing affect how much test code developers
produce?

Our data shows that developers working on projects exposed
to mutation testing over a longer period of time tend to
write more tests for their code (Section III-C). This raises
an immediate follow-up question: Are they writing good tests?

• RQ2 Effects on testing quality. How does continuous
mutation testing affect the survivability of the mutants on
a project?

Our data shows that the tests that developers add when
exposed to mutants are effective: The more mutants they act
on, the fewer mutants survive for new changes over time as
the effectiveness of their test suites improves (Section III-D);
the additional tests written improve the test suite’s ability to
detect mutants beyond the ones for which they were written.

Naturally, this leads to the next question: Are tests that
are effective at detecting mutants also effective at detecting



real faults? Mutants are worth writing test cases for only if
they are coupled with real software faults, i.e., test suites that
detect mutants would also detect real faults. The third research
question is centered around this issue:

• RQ3 Fault coupling. Are reported mutants coupled with
real software faults? Can tests written based on mutants
improve test effectiveness for real software faults?

Using a dataset of historical faults and fixes, our data shows
that had mutation testing been used for the fault-introducing
changes, it would have reported a live mutant that is killed by
tests in the fault-fixing change (Section IV-C). It is thus likely
that mutants, had they been reported, could have prevented the
fault by guiding the developers to investigate the mutants and
write tests for them.

Finally, one of the reasons that modern mutation testing
systems scale is that they do not generate and analyze all
possible mutants—only a small sample. In particular, in our
dataset developers were never shown more than one mutant
per line of code. This leads to the fourth research question:

• RQ4 Mutant redundancy. Are the mutants generated
for a given line redundant? Is it sufficient in practice to
select a single mutant per line?

Our data shows that most mutants share a majority fate
(Section IV-D). If a single mutant is killed in a line, most
likely all mutants in that line will be killed. Conversely, if
a single mutant survives in a line, most likely all mutants
in that line will survive. This backs the intuition and design
choices behind Google’s mutation testing system, in particular
the practice of generating only a single mutant per line.

Overall, our results, for the first time, provide strong evidence
that mutants are coupled with real faults that matter in practice,
and that showing mutants as test goals to developers leads to
them writing more and better tests.

II. MUTATION TESTING AT GOOGLE

Traditionally, mutation testing is performed by generating all
viable mutants for a software under test, and then running its
test suite in an attempt to kill those mutants, i.e., to have at least
one test that fails on the mutant code. The output of this process
is the mutation score (i.e., the ratio of killed mutants), a higher-
is-better measure. Considering the scale of software systems at
Google, this traditional approach is computationally infeasible.
Even if it were feasible, the mutation score itself is difficult to
act on by developers. As a consequence, mutation testing at
Google has evolved compared to the traditional approach [9].

Google’s mutation testing system currently supports 10
programming languages: C++, Java, Go, Python, TypeScript,
JavaScript, Dart, SQL, Common Lisp, and Kotlin. This section
describes the main distinguishing features of the mutation
testing system, and we refer an interested reader to a full
description of the system for further details [10].

The key difference at Google is that mutation testing is
integrated into the code review process: Developers send
their code changes for code review in form of changelists. A
changelist is subject to various static and dynamic analyses that

produce code findings, which are reported to the developer and
the reviewers assigned to that changelist. An example analysis
is line coverage, which is reported at the level of the changed
files as well as the actual code changes. Mutation testing is
integrated as another such finding: A selection of mutants within
the changed code of a changelist, which are not killed by the
existing tests, are shown as findings. These live mutants thereby
serve as concrete test goals, which a developer can satisfy by
adding tests. To avoid cognitive overload, no more than seven
mutants are reported per file in a changelist. Reviewers can
mark findings as particularly important by clicking on the
corresponding ‘Please fix’ link, and developers can provide
feedback about findings that are not actionable using a ‘Not
useful’ link. Developers can update the changelist based on
findings and reviewer comments. Once the reviewers approve,
a changelist is submitted (merged) into the main source tree.

Mutating only changed code is key to reducing the com-
putational costs, but further optimizations are necessary to
make mutation testing feasible and actionable. First, mutants
are only generated in lines that are covered by tests, since
lack of coverage is already reported by the coverage anal-
ysis. Second, only one mutant is generated per line. Third,
in order to increase the chances of generating productive
mutants [11], suppression rules filter out code that cannot result
in productive mutants (e.g., logging statements). The developer
feedback informs these heuristics for mutant productivity.
Finally, after applying the suppression rules, an important
and technically challenging aspect is the choice of mutation
operator to generate a mutant for a given line. Our mutation
system implements five mutation operators: AOR (Arithmetic
operator replacement), LCR (Logical connector replacement),
ROR (Relational operator replacement), UOI (Unary operator
insertion), and SBR (Statement block removal). The mutation
system selects a mutation operator for a given line based on
historical information on whether mutants in similar context
survived and whether developers thought they were productive.
If a mutation operator is not applicable to a line, another one
is chosen, until one mutant in the line is generated.

Many individual software projects are developed at Google,
and each project can opt-in to use the mutation testing system.
When mutation testing is enabled for a project, each changelist
in review for that project will be analyzed for mutants, and live
mutants will be reported to the changelist author and reviewers.
Over time, the same files may be mutated repeatedly whenever
they are part of a changelist under review. The mutation
system does not offer manual invocations or project-level
analyses—only the change-based approach. Hence, developers
only observe live mutants that are reported during code review.

Mutation testing has been deployed at Google for more
than six years, and some projects have been rolled in since
the beginning, while many joined over time. There have now
been more than 15 million mutants generated, and hundreds of
thousands of analyzed changelists, providing a suitable dataset
for analyzing the long-term effects of mutation testing on the
developers working on a project employing it.



III. LONG TERM EFFECTS OF MUTATION TESTING

A core assumption of mutation testing is that mutants are
actionable test goals, and that reporting them has the desired
effect on developers: They augment their test suites, and
generally improve their testing practices over time. We therefore
wished to study whether developers exposed to mutants write
more tests, and whether these tests improve the test suite quality
beyond simply covering additional code. Thus, in this section
we focus on the effects that mutants have on the tests developers
write, and aim to answer the first two research questions:

• RQ1 Effects on testing quantity. How does continuous
mutation testing affect how much test code developers
produce?

• RQ2 Effects on testing quality. How does continuous
mutation testing affect the survivability of the mutants on
a project?

To answer these research questions, we performed a longi-
tudinal study that fully integrates mutation-based testing into
the software-development process. Our study employs a direct
intervention to form a treatment group (developers who act on
mutants) and uses a control group (developers who use only
code coverage).

A. Datasets

Although we are interested in how mutation testing affects
developers, focusing on individual developers for analysis is
difficult: Developers tend to multi-task, either working on a
side project, maintaining an older code base, or still partially
working on their previous engagement. Different codebases
tend to differ greatly in their testing quality, especially when
comparing side projects, older projects, and new engagements.
Thus, instead of considering the behavior of individual devel-
opers we consider individual files of source code. We created
two datasets of files: One dataset based on files subjected to
mutation testing and, as baseline, one dataset based on files
subjected to only code coverage analysis.
Mutant dataset Google has used mutation testing since
2014. At the time of this writing, a total of 14,730,562 mutants
have been generated for 662,584 code changes in 446,604 files.
Our mutant dataset contains all of them. For each mutant, the
dataset contains information about the mutation operator, the
programming language of the mutated file, the code location,
and the results of mutation testing (i.e., whether the mutant
was killed and whether a reviewer requested a test for it).
Coverage dataset As a baseline for comparison, we ran-
domly sampled code changes from projects that did not use
mutation testing, but had line coverage calculation enabled,
within the same period of time. In total, the sample resulted
in 8,788,791 code changes with 3,398,085 files.

B. Methodology

1) RQ1: We are interested in understanding the effects of
mutants on tests written for the mutated code. Therefore, for
each file we need to quantify the amount of testing related to
that file. For each code change, we identified the edited test

files that correspond to that change, using the build system.
However, the raw number of edited lines of test code is not a
reliable measure because of differing programming languages,
testing styles, categories of tests and the specifics of testing
and mocking frameworks. For example, in a table-based testing
approach, a test case may only consist of a single line of code,
whereas an equivalent test case, possibly including harness
code, can easily span tens or hundreds of lines. Therefore,
we quantify the amount of testing using the number of test
hunks—the changed code hunks in the edited test files. Hunks
are groups of differing lines (edited or added) that intersperse
sequences of lines in common.

In addition, we measure the exposure for each file in a
code change, computing the number of times the file has been
changed and had a code finding reported before the change
under analysis. Code findings are reported mutants for the
mutant dataset and code coverage results for the coverage
dataset. For example, if a change edits a file for the 10th

time, but in the previous 9 times mutants were reported only
in 3 instances, the exposure would be 3 for that change.
This measure captures the exposure of developers to mutants:
The more often mutants had been reported in a file, the
more exposure the authors and reviewers developing that file
collectively had to mutation testing.

In order to answer RQ1, we evaluate the number of test
hunks for each file over the file’s exposure. If developers get
accustomed to mutation testing and act on mutants to improve
the test suite, we expect the number of test hunks to be larger
for mutation than for the baseline. Further, we expect a positive
relationship between exposure and number of test hunks. Since
we do not expect that relationship to be linear and to show some
saturation, we rely on rank statistics. Specifically, we quantify
the effect size using Spearman’s rank correlation coefficient
rs. In addition, we compute the number of test hunks for
individual changelists, considering two timestamps: (1) when
code findings are initially reported to the developer during code
review and (2) when the changelist is approved and submitted.
If code findings are actionable, we expect an increase in the
number of test hunks, after reporting the findings.

2) RQ2: RQ1 is concerned with testing quantity, but not
quality. Writing more tests does not necessarily improve the
quality of a test suite. For example, tests written simply for
the sake of increasing code coverage tend to be ineffective at
detecting faults [6]. In particular, if mutation testing generally
improves test suite quality, then we expect to observe several
effects: First, reported mutants should be killed by additional
tests while a changelist is in code review; second, over time,
the ratio of mutants (generated for a new changelist) that are
already killed by the existing tests should increase; third, fewer
mutants should see ‘Please fix’ requests by the reviewers.

As a proxy measurement of test quality, we use mutant
survivability, i.e., the probability of a generated mutant being
killed. The mutant survivability for a file in a code change is
calculated as the ratio of surviving mutants to the total number
of generated mutants for that file. A lower mutant survivability
indicates a higher test suite quality. We compute the mutant



Fig. 1: Test hunks changed per file as exposure to reported
mutants vs. line coverage increases.
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Fig. 2: Test hunks changed per changelist after initially
reporting mutants vs. line coverage. The median is 1 for
mutation and 0 for coverage. Outliers (12% outside of ±1.5
times the interquartile range) are not shown for clarity.

survivability for each file in the mutant dataset over the exposure
of the mutated file. If the tests added due to mutation testing
lead to an improvement of the test suite quality, then we expect
a negative correlation between exposure and survivability, i.e.,
the tests should become more effective at killing mutants over
time—even for mutants that are generated later for newly added
or changed code. If tests are strictly added to kill reported
mutants, we expect no correlation because survivability should
remain fairly constant.

We further compare the number of live mutants first reported
to the developer with the final number of live mutants when
the changelist is submitted. If mutants are actionable test goals,
we expect that the number of live mutants at submission time
is lower than the number of originally reported mutants as a
result of the additional tests added by the developer.

In the code review system, reviewers can request developers
to write tests for mutants they consider important. If developers
improve their test suites over time, we would expect the ratio of
such requests (for all reported mutants) to gradually decrease.
Therefore, we also compute the ratio of requested fixes for
mutants over exposure.

C. RQ1: Effects on testing quantity

Figure 1 shows the number of changed hunks of test code,
normalized by the number of files in the change, over exposure

to code findings. This figure shows the estimated central
tendency (mean) and corresponding confidence interval. Note
that the confidence intervals get wider for higher levels of
exposure for mutation because the number of files with such
high levels in the mutant dataset decreases. This means that
accurately fitting a trend for higher levels of exposure and
identifying saturation is challenging. However, there is a clear
signal for the mutant dataset: (1) The number of test hunks is
larger than that for coverage. (2) The larger the exposure,
the more test hunks are changed on average. Spearman’s
rank correlation between exposure and the average number of
changed test hunks is rs = 0.9 (p < .001). In contrast, Figure 1
shows no signal for the coverage dataset. In fact, there is a
weak negative correlation between exposure and the average
number of changed test hunks (rs = −0.24, p < .001). These
results suggest that mutation testing has a positive long-term
effect on testing quantity.

Figure 2 shows the number of test hunks changed in the
changelist between the initial state (when a developer sends it
for review) and the final state (when it passes the code review
and is submitted). The median number of changed test hunks for
mutation is 1, while for coverage it is 0. The difference between
mutation and coverage is statistically significant (Wilcoxon
Rank Sum Test, p < .001), and remains significant when
normalized for changelist size. This suggests that mutants are
actionable and guide developers in writing additional tests.

RQ1: As exposure to mutation testing increases, developers
tend to write more tests.

Alternative Hypotheses While our study uses an inter-
ventional design and a substantial dataset, it is not a fully
randomized controlled experiment. Hence, we account for
possible confounding factors, which might also explain the
increase in testing quantity. Specifically, we explored and
rejected three alternative hypotheses.

1) Dispersed coverage dataset: The mutant dataset contains
all changes that were subject to mutation testing, whereas
the coverage dataset contains only a sample of changes
that were subject to code coverage analysis. As a result, the
coverage dataset may miss individual changes to individual
files. We downsampled the mutant dataset to make it as
dispersed as the coverage one and repeated our analysis.
The results led to the same conclusions for RQ1: There is a
strong positive relationship (rs = .82, p < 0.001) between
exposure and testing quantity, increasing our confidence
that the trend for the mutant dataset is indeed linked to
mutation testing and that the absence of that trend in the
coverage dataset is not an artifact of random sampling.

2) Changelist size: Coverage analysis can be done on
virtually any code change, while mutation testing has
some preconditions. In order for a mutant to be reported
for a code change, that change must contain covered
source code, and the covered source code must contain
code elements for which mutants are not suppressed
by the mutation system’s suppression rules. It is thus
expected that on average the mutant dataset contains larger



Fig. 3: Files changed as exposure to mutants increases.

Fig. 4: Files changed as exposure to line coverage increases.

changelists than the coverage dataset—largely due to
differences in the lower tails. If additional test hunks were
just the by-product of larger changelists, then we would
expect normalizing for the changelist size to uncover this
fact, which it did not (neither on a per-file nor on a
per-changelist basis).
Changes to individual files are part of code changes of
varying sizes. To ensure that any effects observed are
not a result of differences in the number of changed
files, Figure 3 and Figure 4 show the number of files
changed by a changelist that contains an exposed files, as
a function of exposure. The plots suggest that the numbers
of affected files is not positively correlated with exposure
for the mutant dataset; indeed the number of affected
files tends to slightly decrease over time for both datasets
(rs = −0.26 for the mutant dataset and rs = −0.34 for
the coverage dataset).
Overall, the results show that it is very unlikely that the
changelist size as a function of exposure confounds the
observed effects.

3) Tests for code coverage: Developers who received mutant
information also received coverage information, which
could confound our results. In order to determine whether
developers wrote tests for the reported mutants or simply
to increase code coverage for their changelists, we

0 1 2 3 4 5 6
Live surfaced mutants

Review

Submit

Fig. 5: Number of surfaced mutants that are live at the beginning
of the code review (Review) and at the end of the code review
(Submit). The median is 1 for Review and 0 for Submit. Outliers
(11% outside of ±1.5 times the interquartile range) are not
shown for clarity.

Fig. 6: Mutant survival rate as exposure to mutants increases.

analyzed the differences in code coverage for the changed
code between the initial review state and the final submit
state and correlated it with exposure. The results show that
code coverage is largely stable over time: For the coverage
dataset, there is a negligible correlation with exposure
(rs = −0.02, p < 0.001); for the mutant dataset, there
is a weak negative correlation (rs = −0.17, p < 0.001).
This makes it unlikely that developers exposed to mutants
wrote tests to increase code coverage. Rather, they wrote
tests to kill the reported mutants.

D. RQ2: Effects on testing quality

Figure 5 shows the difference between the number of
reported live mutants at the beginning of the code review
(Review), when code findings are initially surfaced, and at
end of the code review (Submit). Submitted changelists have
significantly fewer live mutants, which confirms that tests added
by developers in response to mutants indeed succeed at killing
these mutants.

If additional tests for a changed file improve overall test
suite quality, then future changes to the same file should see
fewer surviving mutants. Figure 6 shows the probability of a
mutant to survive over time as files are mutated over and over
again: The more mutants a file sees, the more likely it is that
the already existing tests (incl. those written for the submitted



Fig. 7: Fix requested rate as exposure to mutants increases.

change) kill those mutants. There is a negative relationship
(rs = −0.50, p < .001) between exposure and survivability of
mutants. These results suggest that developers not only write
more tests when exposed to mutation testing, the tests they
write indeed improve test suite quality.

As a further indication that developers write good tests,
Figure 7 shows the ratio of reported mutants for which the
reviewers request developers to write tests. The results show
that, in the beginning, reviewers ask for a larger ratio of the
reported mutants to be killed than later (rs = −.34, p < .001).
This corroborates that developers write better tests, such that
the surviving mutants represent less critical issues or futile test
goals and reviewers have to request fewer changes related to
reported mutants.

RQ2: As exposure to mutation testing increases, developers
tend to write stronger tests in response to mutants.

Alternative Hypotheses While we observe that developers
write tests that kill reported mutants, it is theoretically possible
that they write minimal tests that are simple and purely focused
on killing mutants, as opposed to tests they would write
otherwise. However, two general observations and two analyses
suggest that this is not the case. First, this is unlikely in
principle: Code reviews are a safety net and minimal, change-
detector tests would not pass code review. Second, anecdotally
from manually inspecting numerous tests written for mutants
over the past six years, we did not observe any unique features
of such tests. Third, our analysis of mutant redundancy (Sec-
tion IV-D) shows that most mutants generated for the same line
are killed by the tests developers write. Since multiple mutants
related to conditional or relational operators would require
distinct tests to be killed (e.g., testing boundary conditions in
a conditional statement), this suggests that developers do not
write minimal tests focused on a single mutant. Finally, the
increasing number of test hunks and the decreasing survivability
(Section III-C) support the conclusion that developers write
more tests than would be necessary to detect individual,
reported mutants. In summary, we did not find evidence
that developers write minimal tests for reported mutants.

IV. FAULT COUPLING

The coupling effect is a foundational assumption underlying
mutation testing: Simple faults are coupled to more complex
faults in such a way that a test suite that detects simple faults is
sensitive enough to likely detect complex faults as well. Since
mutants represent simpler faults, compared to more complex
real world faults [12], [13], it is important to assess whether
and to what extent the coupling effect can be observed for
mutation testing of real-world software systems. In particular,
mutants are only suitable test goals that are worth satisfying if
they are coupled to real software faults.

Recall that our mutation testing system only surfaces a single
mutant per line because evaluating all mutants is prohibitively
expensive and reporting all live mutants to a developer in an
actionable way is impracticable. However, we also observed that
developers get accustomed to mutation testing in two ways.
First, they use and interpret mutants as concrete guides to
improve their code and corresponding test suites, as opposed to
merely writing a minimal test per test goal (mutant). Second,
they write stronger tests in response to, or anticipation of,
mutants that are generated and surfaced.

We hypothesize that most mutants per line share the same
fate and that it is thus sufficient to surface only one of them.
Specifically, we hypothesize that if a developer writes a test
suite based on one surfaced mutant in a given line, then that test
suite will detect most of the mutants that could be generated
for that line. Conversely, if a surfaced mutant in a given line
survives, then most mutants that could be generated for that line
will survive. Testing this hypothesis is important to determine
whether the assumed coupling effect holds for mutation testing
systems that rely on sampling representative mutants.

This section answers the remaining two research questions:

• RQ3 Fault coupling. Are reported mutants coupled with
real software faults? Can tests written based on mutants
improve test effectiveness for real software faults?

• RQ4 Mutant redundancy. Are the mutants generated
for a given line redundant? Is it sufficient in practice to
select a single mutant per line?

A. Dataset

In order to evaluate whether mutants are coupled to bugs
that matter in practice, we mined our source-code repository
and obtained a set of bugs that had a high priority for being
fixed. For each bug, the subsequent coupling analysis evaluated
mutation testing on the buggy and fixed source-code version
of that bug. Specifically, we automated the following analysis:

1) Find explicit bug-fixing changes in the version control
history (Section IV-A1).

2) Analyze changes and retain suitable bugs (Section IV-A2).
3) Generate mutants and perform mutation testing on both

the buggy and the fixed version of the code (Section IV-B).
4) Analyze the mutation testing results and identify fault-

coupled mutants (Section IV-C).



1) Change Selection: We mined our source code repository
for changes that explicitly fix high-priority bugs. Bugs are
assigned a priority class by developers, and high-priority bugs
are expected to be fixed quickly. Our selection approach
did not filter for change size or other code-related attributes.
This was a conscious design decision to obtain an unbiased
sample, spanning multiple programming languages, projects,
code styles, etc. Our selection step resulted in 1765 candidate
bugs, suitable for our coupling analysis.

We limited the selection to changes that fixed a bug in
the last six months. This temporal restriction increases the
chances of being able to build the source code and reproduce a
bug—the underlying build infrastructure guarantees that recent
source code can be built. Furthermore, we limited the selection
to changes authored by a developer, and hence changes that
are subject to code review. The selection was not limited to
changes for which mutation testing was not enabled. Precisely
determining when a bug was introduced and whether mutation
testing was enable for that project at that time is extremely
difficult. To approximate the ratio of bugs that were introduced
while mutation testing could have been enabled, we determined
the ratio of bug-fixing changes for which mutation testing was
enabled. Overall, mutation testing was enabled for 10.8% of
bug-fixing changes in our final dataset.

We rely on developers’ change descriptions and labeling to
identify bug fixes. While bug hygiene is imperfect and not all
of these bugs are necessarily bugs encountered in the field,
all of the change descriptions explicitly claimed to fix a high-
priority bug, making it very unlikely that the change in fact
does not.

2) Change Filtering: To establish the coupling between
mutants and bug fixes, we need to parse and build the code,
mutate it, and evaluate affected tests against each mutant. This
means that the source code in question needs to be correctly
configured, buildable, and the number of tests to be executed
needs to be reasonable.

Mutant generation is non-trivial and carries a hidden cost.
For example, our mutation system uses the Clang compiler
front end for the AST analysis and manipulation of C++ code.
This requires indexing the compilation unit with the build
system to prepare the transitive closure of included headers
and the set of Clang arguments that are mandated by the
project-under-mutation’s configuration. A common example is
code that runs on specialized architecture, or requires additional
virtualization libraries, which is unknowable given just the file,
and the file is not analyzable without it. The additional cost
of indexing all C++ compilation units is relatively small, but
still accounts for a large resource expenditure overall.

While the total number of generated mutants is comparatively
low due to our mutant suppression and reduction strategies,
the sheer number of required test target executions renders
this coupling analysis as very expensive. A test target defines
a set of tests at the build system level. A test target can be
a single test file or a test suite (i.e., collection of test files)—
each potentially containing hundreds or thousands of individual
tests. This variance comes from how the build system is used,
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Fig. 8: Number of test targets for all candidate bugs.
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Fig. 9: Number of test targets and number of mutants for all
retained bugs.

and differs from project to project. In a large project with
complex dependencies, any change to a widely used core
library will easily require millions of tests to be executed, each
of which has the said library in the transitive closure of its
dependencies, and all of which have to be evaluated. Failure
to evaluate all test targets, as is the norm, inevitably leads
to inaccuracies of reported live mutants and would decrease
developers’ confidence in mutation testing.

Given the challenges above and our 1765 candidate bugs,
we automatically filtered:

• 41 bugs for which a project configuration failure prevented
us from building the buggy or fixed source code version,
rendering them unsuitable for our analysis.

• 222 bug fixes for which the project configuration exhibited
a substantial dependency chain with a very large number
of associated test targets. Including these bugs would
have made our analysis computationally infeasible. We
empirically determined a threshold of 500 test targets
(each usually containing many tests) as our filter criterion.
Figure 8 shows the distribution of the number of test
targets for all 1765 candidate bugs—indicating that bugs
with more than 350 test targets are outliers.

Our final dataset contains 1502 retained bugs. Table I shows
further characteristics of these bugs, and Figure 9 shows their
distribution of number of test targets and number of mutants.
In total, our coupling analysis involves 1502 bugs, almost 400
thousand mutants, and over 33 million test target executions.
We performed the coupling analysis over a prolonged period
of time because of the huge amount of processing power
required for the dependency analysis, mutagenesis, and test
target executions.



TABLE I: Characteristics of the 1502 retained bugs.

BUGS TEST TARGETS AFFECTED FILES AFFECTED LINES

COUNT RATIO MEDIAN MEAN MEDIAN MEAN MEDIAN MEAN

C++ 736 49.0% 12 35.0 3 4.8 52 174.7
Java 501 33.4% 22 42.5 3 4.9 50 263.3
Python 180 12.0% 10 30.7 2 3.5 24 83.6
Go 85 5.7% 5 22.2 3 3.6 41 516.9

Total 1502 100.0% 13 36.2 3 4.6 46.5 212.7

B. Methodology

Incremental mutation testing is substantially different from
the traditional approach. Lines are selectively mutated based on
the structure of the code, mutator operators are probabilistically
picked and tried out, and most potential mutants are discarded
because reporting too many mutants during code review would
be too visually daunting and likely have a negative effect on
developers’ perception of mutation testing.

In order to evaluate whether the mutants our mutation system
generates are coupled with the 1502 high-priority bugs that
we retained, we had to modify the system to generate multiple
mutants per line and to evaluate all of them. This turned out
to be very expensive even for a manageable number of bugs,
validating our intuition that the traditional approach would
not scale to an environment with thousands of changes per
day. Note that we kept the notion of suppressing unproductive
mutants [11], which represent futile test goals, in the modified
system, and hence did neither generate nor evaluate them.

For each bug in our dataset, we automatically executed the
following steps:

1) Run dependency analysis and determine all test targets
affected by the bug-fixing change.

2) Using the buggy source code version, generate all possible
mutants for all lines that are affected by the bug-fixing
change.

3) Using the fixed source code version, generate all possible
mutants for all lines that are affected by the bug-fixing
change.

4) Determine the set of fault-coupled mutants.
In line with prior work [14], we measure fault-coupling as

follows: Given a test suite with at least one fault-triggering
test, a buggy source code version, and a fixed source code
version, a mutant is coupled to a fault (through the triggering
tests) if (1) that mutant exists in the buggy and the fixed
source code version and (2) that mutant is only detected by the
triggering tests. In other words, a fault-coupled mutant is live
in the buggy but killed in the fixed source code version: Had
mutation testing been run on the buggy source code version, a
mutant would have been reported in the lines affected by the
fixing change, and the test accompanying the fix kills it.

C. RQ3: Fault coupling

This research question is concerned with whether mutation
testing would have reported a live mutant on the change
introducing the bug—a live mutant that is subsequently killed
by a bug-triggering test. Reporting that mutant would have had
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Fig. 10: Number of mutants coupled to each of the 1502 bugs,
grouped by programming language of the bug fix. 4% of all
bugs (51 to 485 coupled mutants) are ommitted for clarity.

a good chance of preventing the bug being introduced in the
first place.

1) Coupled Faults: We found that for 1043 (70%) of the
bugs, mutation testing would have reported a fault-coupled
mutant in the bug-introducing change. Recall that each bug-
introducing change was covered by the existing tests, suggesting
that code coverage had exhausted its usefulness.

RQ3: Mutants are coupled with 70% of high-priority bugs,
for which mutation testing would have reported a live,
fault-coupled mutant on the bug-introducing change.

It is interesting to note that when a bug is coupled to a
mutant, it is usually coupled to more than one, as seen in
Figure 10. This observation is consistent with the finding that
the majority of mutants, generated for a given line, share the
same fate (Section IV-D).

The statement block removal (SBR) mutation operator, being
the most prolific one, generated most of the coupled mutants
(Figure 11). The distributions of number of coupled mutants
are consistent across all languages (Figure 10). In contrast,
the distribution of coupled mutants across mutation operators
is different for Go (Figure 11). Given the relatively small
sample size of Go bugs, it is possible that this observation
is an artifact of the sample size or that Go bugs have indeed
different coupling characteristics.
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2) Non-coupled Faults: Recall that 459 out of 1502 (30%)
bugs were not coupled to any of the generated mutants. We
randomly sampled 50 of the non-coupled bugs for manual
inspection. For each bug, we determined the reason for the
absence of fault coupling, following the classification of Just
et al. [14]: weak mutation operator, missing mutation operator,
no such mutation operator.
Weak mutation operator (14/50) While focusing our
analysis on the weaknesses of the four mutation operators
employed by our mutation system, two patterns emerged. First,
the SBR mutation operator currently does not mutate statements
that affect control flow, including return, continue, and break
statements. The reason is that mutating these statements is
more likely to cause compilation issues or infinite loops.
Given the occurrences of these statements in our bug data set,
however, it seems worthwhile to strengthen the SBR mutation
operator to mutate them, employing additional heuristics
or program analyses to avoid invalid mutants. Second, the
SBR mutation operator does not delete variable declarations
because these mutants would not compile. However, a variable
declaration with a (complex) initializer should be mutated, e.g.,
by replacing the initializer with a constant value.
Missing mutation operator (13/50) Recall that our set of
mutation operators and the corresponding suppression rules
are intentionally chosen to make mutation testing scalable and
the number of surfaced mutants manageable. Nonetheless, we
considered a broad set of mutation operators, regardless of
their costs, to determine whether additional mutation operators
would generate mutants that are coupled to the bugs in our data
set. We noticed that identifier-based bugs [15] are a nontrivial
portion in our randomly selected set of non-coupled bugs. While
prior work demonstrated that mutation operators that target
identifiers have the potential to increase fault coupling [16],
[17], the same work also showed that these mutation operators
can easily quadruple the number of mutants. We leave a deeper
investigation into heuristics and program analyses to tame these
mutation operators for future work.
No such mutation operator (23/50) Similar to the findings
of Just et al. [14], we observed a number of non-coupled
bugs for which no obvious mutation operator exists. Examples
include very subtle, yet valid changes to configurations or

environments, for which general-purpose mutation operators
are not applicable. Similarly, bugs in higher-level specifications
or protocols are outside of the scope of mutation testing. In
other words, mutation testing is effective in guiding testing to
assess whether an algorithm is correctly implemented but not
whether the correct algorithm is implemented.

3) Discussion: While we desire higher fault coupling (to
prevent more bugs), we also have a competing incentive to show
only productive mutants and not overwhelm the developers.
Generating more mutants would almost certainly increase fault
coupling, but at what cost? If 1% more coupling means 100%
more mutants, or worse 100% more unproductive mutants, then
this is undesirable: Developers would likely abandon mutation
testing because of too many “false positives”. It is possible that
fault coupling can be increased without increasing the ratio of
unproductive mutants by adding additional suppression rules
tailored to additional mutation operators.

Fault coupling is a valid measure if tests written for mutants
are similarly effective as those that are written for other
objectives. Section III provided evidence that this is indeed
the case. Further, we count on code authors to push back on
introducing tests to kill unproductive mutants, and we count on
reviewers to push back on low quality tests, specifically written
to kill mutants. Anecdotally, we often see both code authors
and reviewers pushing back on a mutant because the kind of
test that would kill it is considered low quality or even harmful.
Over the past six years, we have observed that code authors
do not blindly use mutants as test goals. Rather, they reason
about their usefulness and report unproductive mutants so that
we can improve suppression rules. Overall, we have no reason
to believe that tests written for the mutants are substantially
different from other tests.

D. RQ4: Mutant redundancy

Our mutation testing system rests on the assumption that
generating and evaluating multiple mutants in the same line is
not necessary. The primary reason for this is that we do not
compute the mutation score but rather report mutants as test
goals and direct developers’ attention to the mutated piece of
code—any one productive mutant is sufficient for the latter. A
secondary reason is the expectation that mutants for a given
line are highly redundant.

We tested our hypothesis about mutant redundancy by
analyzing the mutant data from our data set of retained bugs.
Since we generated all possible mutants for that data set, we
can reason about redundancy. Specifically, we looked at the
testing outcomes of mutants in lines for which multiple mutants
were generated. We calculated the ratio of the majority event
for each line—that is, the ratio of mutants in the majority
group sharing the same fate (live or killed). This allows us to
capture both cases when most mutants are killed and when
most mutants are not; the closer the majority fate is to 100%,
the higher the redundancy. The rationale for validating our
hypothesis is twofold. First, the results can inform mutant
sampling strategies. Second, the results from our coupling
analysis translate to our own mutation system only if the
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majority fate is high on average—that is, if picking a single
mutant per line is indeed sufficient.

Figure 12 shows the distribution of the mutant majority fate
for all lines that have at least to mutants. Given that more
than 90% of all lines have a mutant majority fate of 100%, we
conclude that the generated mutants are highly redundant and
that generating and reporting at most a single mutant per line
is a valid optimization.

RQ4: Mutants are heavily redundant. In more than 90% of
cases, either all mutants in a line are killed, or none are.

V. THREATS TO VALIDITY

Construct validity is concerned with the chosen proxy
measures and whether these accurately measure the concept of
interest. To address this concern, we relied on proxy measures
accepted in the literature, where applicable. Given that there
are no comparable studies on the long-term effects of mutation
testing, we had to make two notable choices. First, we measure
exposure to mutants as the number of times mutants are
surfaced during code review, on a per-file basis. We argue
that this is a valid proxy for exposure because (1) both
authors and reviewers have exposure to mutants during the
code review process and (2) code review usually involves
peer review of project members, and hence this measure
captures the exposure of a development team to mutation
testing. Second, we measure testing effort as the number of
changed test hunks (as opposed to the raw lines of code). This
was a concious choice because lines of code do not generalize
across programming languages or testing paradigms. Finally,
we consistently employed baselines for comparisons, and the
results not only show a signal for mutation testing but also the
absence of a signal for the coverage-testing baseline.

Internal validity is concerned with how well our study
design isolates variables of interest and whether it accounts for
possible confounding. To address this concern, we relied on an
interventional study design and tested alternative hypotheses for
all reported observations, which our study suggests are linked
to mutation testing, thereby increasing confidence in our results.
For example, when quantifying how exposure to mutants affects
testing effort, we considered possible confounding effects, such

as number of affected files and an increase in code coverage.
Our explorations of alternative hypotheses all led to the same
conclusions. It is, however, possible that we missed other
confounding effects.

External validity is largely concerned with generalizability
and how well the reported results translate to other development
environments. Our study reports on data and observations
from a single company. However, our study involves tens of
thousands of developers and many different projects, which we
believe are representative of a larger population. Furthermore,
contemporary code review is ubiquitous and used by software
engineers at other companies and in open-source projects.

VI. RELATED WORK

While mutation testing has seen growing interest in research
and practice, reports of actual deployments and studies of its
efficacy and long-term effects are very rare in the literature.
Indeed, we are not aware of any studies that investigate the
long-term effects of mutation testing on test quality, test
quantity, and developer behavior. This section describes the
prior work most closely related to ours, focusing on industrial
case studies, studies that compare the characteristics of mutants
and real faults, and existing empirical evidence that suggests
that mutation testing is likely effective in practice.
Industrial case studies Ahmed et al. reported on a case
study, performing mutation analysis with 3169 mutants for
a Linux Kernel module, with subsequent analysis of 380
surviving mutants [18]. The study aimed at reducing the com-
putational costs of performing mutation analysis on complex
software systems, and it concluded that “mutation testing can
and should be more extensively used in practice”.

Delgado-Pérez et al. reported on a case study, performing
mutation analysis with 2509 mutants for 15 functions (ranging
from 10 to 63 lines of code) of different firmware modules [19],
with subsequent manual analysis of 154 surviving mutants. This
study focused on the computational costs and human effort
for identifying equivalent mutants and developing a mutation-
adequate test suite by extending a coverage-adequate one. The
study concluded that “mutation testing can potentially improve
fault detection compared to structural-coverage-guided testing”.

In prior work, we reported on the scalable mutation testing
system deployed at Google [9], as well as on challenges
associated with applying mutation testing in practice [11].
In this prior work, we addressed the computational costs
of applying mutation testing at scale, with a key focus on
the identification and elimination of unproductive mutants—
mutants that developers consider non-actionable test goals
(similar to false positive warnings in static analysis). In other
words, we identified mutants that can but should not, and in
practice will not, be detected to avoid ineffective tests that
negatively affect testing time and maintainability.

In contrast to the three industrial case studies above, our
work differs in two ways. First, it reports on a longitudinal,
interventional study that spans six years of development and in-
volves more than 14 million mutants, reporting on the effects of
mutation testing on test quantity and quality. Second, it reports



on whether critical real faults are coupled to mutants—whether
mutation testing has the potential to prevent those faults.

Very recently, an industrial application of mutation testing
at Facebook [20] applied complex mutation operators learned
from past bug-inducing changes. These operators achieve higher
survival rates at the cost of being applicable to smaller parts of
the codebase. These learned mutation operators could offer an
alternative approach to taming the number of mutants. Similar
to our mutation testing system, Facebook’s system provides
information to developers during code review.

Fault coupling and fault characteristics A number of
empirical studies showed that mutants are coupled to real
faults and that mutant detection is positively correlated with
real fault detection [14], [21]–[24]. The same studies also
showed limitations and that about 27% of real faults were not
coupled with commonly generated mutants. Brown et al. [25]
and Allamanis et al. [16] aimed at narrowing this gap with their
work on wild-caught mutants and tailored mutants, respectively.
Both approaches employ semantics-related mutations (e.g.,
replacing identifiers with similar, type-compatible alternatives)
and have the potential to further improve fault coupling.
However, the improved fault coupling comes at a cost of
significantly more mutants. For example, replacing function
calls with all type-compatible alternatives more than quadrupled
the number of mutants. Gopinath et al. analyzed the relationship
between mutants and real faults from a different viewpoint.
Specifically, they compared the complexity and distributions
of mutants and real faults [12]. Their analyses showed that
a typical real fault is more complex in terms of syntactical
tokens and that real faults are rarely equivalent to mutants
generated by traditional mutation operators.

The observed positive correlations between mutant detection
and real fault detection on the one hand and the different
characteristics of mutants and real faults on the other hand,
motivated, in part, our work on studying the long-term effects
of mutation testing and its efficacy in practice.

Mutant characteristics Other researchers have addressed
the notion that some mutants are more valuable than others,
including stubborn mutants (Yao et al. [26]), difficult-to-kill
mutants (Namin et al. [27]), dominator mutants (Kurtz et
al. [28] and Ammann et al. [29]), and surface mutants (Gopinath
et al. [30]). While these definitions are useful in a research
context (e.g., to study redundancy among mutants), they are
not directly relevant to a developer in practice. For example, a
difficult-to-kill mutant may still be unproductive [9], and hence
writing a test for it would be undesirable.

Mutant sampling Prior work examined whether guided
mutant sampling is more effective than random mutant sampling
for similar numbers of mutants. Acree [31] and Budd [32]
independently concluded that a test suite developed to detect a
randomly selected 10% of mutants is almost as effective as a
test suite that detects all of the mutants. Wong and Mathur [33]
reached similar conclusions, finding that randomly sampling
mutants beyond 10% yields marginal improvements. Zhang et
al. [34] compared guided mutant sampling and random mutant

sampling and also found no appreciable difference in their
performance. Gopinath et al. [35] expanded this investigation,
using a large body of open-source software, again finding
that random mutant sampling performs as well as any of the
considered guided mutant sampling strategies.

In line with prior results, our mutation approach samples
very few mutants to make mutation testing applicable at scale.
Our results confirm that the set of mutants, generated with
traditional mutation operators, is indeed highly redundant and
that small sampling ratios are sufficient. Moreover, our results
show that multiple mutants generated for the same line of code
virtually always share the same fate in practice, implying that
surfacing one mutant per line is sufficient. This observation is
consistent with Zhu et al.’s work [36] that also supports the
selection of representative mutants.

VII. CONCLUSIONS

The idea of mutation testing was introduced more than four
decades ago, and in all this time research revolved mainly
around problems of scalability. All along, research was based
on the fundamental assumption that mutants are meaningful
and actionable test goals which lead to positive effects. This
assumption, however, has not been evaluated until now.

We have implemented and deployed a mutation testing
system capable of scaling to very large software. Developers
are shown only a fraction of the possible mutants, by limiting
the number of mutants and suppressing mutants assumed
to be unproductive test goals. This paper uses long-running
production data of this system in order to validate the central
assumption underlying mutation testing for the very first time.

Our results show that developers working on projects with
mutation testing write more tests on average over longer periods
of time, compared to projects that only consider code coverage.
Mutants are effective test goals: Developers exposed to mutants
write more, effective tests in response to them.

Since the ultimate goal is not just to write tests for mutants,
but to prevent real bugs, we investigated a dataset of high-
priority bugs and analyzed mutants before and after the fix with
an experimental rig of our mutation testing system. In 70% of
cases, a bug is coupled with a mutant that, had it been reported
during code review, could have prevented the introduction of
that bug. Finally, we also validated our approach of generating
a single mutant per line: For the vast majority of lines, either all
mutants in a line are killed, or all survive. Therefore, generating
a single mutant per line is a valid optimization.

This paper finally provides evidence that mutants are
indeed meaningful and actionable test goals. Considering
that this insight emerges at a time where robust, industry-
strength mutation tools appear for more and more programming
languages, we hope that mutation testing will see a substantial
boost in industrial adoption, leading to better software quality.
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[9] G. Petrović and M. Ivanković, “State of mutation testing at Google,” in
Proceedings of the International Conference on Software Engineering—
Software Engineering in Practice (ICSE SEIP), May 2018.
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