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Abstract—Mutation testing has been demonstrated to motivate
developers to write more tests when presented with undetected,
actionable mutants. To facilitate this effect, modern mutation
systems aim to generate and surface only actionable mutants—few
in numbers but highly valuable to the developer. This requires a
deeper understanding of the extent to which developers resolve
surfaced mutants and how: If they decide not to resolve an
undetected mutant, why not? On the other hand, if they do
resolve a mutant, do they simply add a test that detects it, or do
they also improve the code?

In order to answer these questions we compiled and analyzed
a dataset of 1,538 merge requests with corresponding mutants
surfaced during the code review phase. Our analysis reveals that
determining whether a mutant is indeed resolved during code
review is actually a non-trivial problem: for 64% of mutants, the
mutated code changes as the merge request evolves, requiring
dedicated techniques to precisely resurface the same mutants
and to discover which of them remain unresolved after a code
change. Overall, our analysis demonstrates that 38% of all
surfaced mutants are resolved via code changes or test additions.
Out of all mutants that are endorsed by a reviewer, 60% are
resolved and result in additional tests, code refactorings, and
improved documentation. Unresolved, yet endorsed, mutants
stem from developers questioning the value of adding tests for
surfaced mutants, later resolving mutants in deferred code changes
(atomicity of merge requests), and false positives (mutants being
resolved by tests not considered when creating the mutants, e.g.,
in integration test suites).

Index Terms—mutation testing, test efficacy, code quality, code
review, mutant resolution

I. INTRODUCTION

Mutation testing research has traditionally focused on the
relationship between a test suite’s mutant detection ratio and
its true efficacy in terms of detecting real faults. Mutants are
systematically seeded, artificial faults and while they are simpler
than real faults [1], empirical evidence shows that mutants are
adequate proxies for real faults and that mutant detection is
correlated with real-fault detection [2]–[4]. However the number
of mutants grows quickly with program size due to the fact that
almost every program statement can be mutated in multiple
ways. For example, an assignment of the form a = b + c
may be deleted altogether, or the right-hand-side operand may
be mutated to a constant value (e.g., a = 0) or a different
arithmetic operation (e.g., a = b - c).

As a result of the sheer number of possible mutants, practical
deployment of mutation testing tends to be more concerned

with the actionabililty of mutants when presented to developers
as test goals. Consequently, recent research has moved away
from studying mutant detection ratios as an adequacy measure
to studying the actionability of individual mutants. For example,
researchers at Google have pointed out that the vast majority
of generated mutants are not actionable in that they are either
unsatisfiable test goals or simply not worth satisfying [5],
[6]. Surfacing such mutants as program-analysis findings
effectively leads to false positives [7]. In response to this
challenge, Google’s mutation system relies on aggressive
mutant suppression to make mutation testing a viable approach
in practice, leading to long-term improvements in test quantity
and quality, far beyond improvements observed with surfacing
code coverage results [8]. Similarly, researchers at Facebook
addressed this challenge by using very few mutation operators
learned from past bug fixes to generate very few, yet mostly
actionable, mutants that can be surfaced to developers [9].

Industrial deployments of mutation testing are promising,
but they also present new analysis challenges, such as identi-
fying and surfacing few actionable mutants and consistently
resurfacing them as code changes. Furthermore, prior work
also suggests, but did not explore in detail, that even surfacing
equivalent mutants may be valuable. Equivalent mutants cannot
be detected by any test (unsatisfiable test goals) but may expose
bugs or otherwise undesirable code, and hence could lead to
meaningful code improvements. For example, Coles [10] argued
in a keynote that some equivalent mutants are valuable because
they expose ambiguity in the code. Similarly, Petrović et al. [6]
introduced the notion of productive mutants and argued that
equivalent mutants can be productive, if they advance code
quality, and that non-equivalent mutants can be unproductive,
if they represent test goals that lead to undesirable tests.

This paper aims to provide a better understanding of what
mutants developers ignore, what mutants they deem actionable,
and what actions they use to resolve them. Using a sample of
2,806 mutants, generated and surfaced to developers during
code review, we track whether and how these mutants were
resolved. This in itself turns out to be challenging: throughout
the code review process, both code and tests change and evolve,
and identifying just where a mutant should be resurfaced
after these changes is a difficult problem. As a result, we
implemented an approach to track mutants across changes,
and quantitatively and qualitatively analyzed how developers



resolve mutants. Specifically, this paper answers the following
four research questions:
RQ1 How often do code locations of surfaced mutants change

as code evolves? Can these changes be accurately tracked?
RQ2 How often are surfaced mutants resolved?
RQ3 Is mutant resolution associated with changes to both

code and tests?
RQ4 What actions do developers take to resolve mutants?

The key results of the quantitative and qualitative analyses are:
RA1 The code location of 64% of all surfaced mutants changes

during code review. Tree-based diffing can track such
changes, with an accuracy of over 99%.

RA2 Overall, 38% of all surfaced mutants and 60% of please-
fix mutants are resolved during code review. Please-fix
mutants are resolved more than twice as often as not-useful
mutants.

RA3 Merge requests with resolved surfaced mutants have a
significantly higher probability of change to both code
and tests, compared to merge requests with unresolved or
non-surfaced mutants. The effect is stronger for tests than
for code.

RA4 The most common action for mutant resolution is
additional testing, followed by code refactorings, and in-
depth discussion about code relevance (in particular for
statement-deletion mutants). The most common reasons
for a lack of observed resolution are developers question-
ing the actionability of a mutant and deferred action (i.e.,
mutant resolution in a subsequent merge request).

This paper contributes a deeper understanding of mutant
resolution in practice, and can inform the development and
deployment of future mutation testing systems.

II. PRELIMINARIES

Our study focuses on mutation testing applied during code
review. This section provides an overview of the considered
use case and defines terms used throughout the paper.

A. Contemporary Code Review

Contemporary code review [11] is a quality assurance
technique in which at least one person other than the author of
the code manually inspects source code changes before they are
merged into the codebase. It is used by companies of all sizes
as well as open source projects [12], [13]. A 2018 study found
that, in Google’s industrial setting, developers are generally
happy with the code review process: all 44 surveyed developers
agreed that it is valuable [14], and 97% of all developers at
Google are happy with the Critique code review UI.

Contemporary code review is always augmented with au-
tomated code analysis tools, such as linters, automated test
execution, and code coverage analyzers. It helps developers
discover faults, missing tests, test failures, compliance issues,
and other code health issues early in the development process.
Examples of automated code findings include code coverage in-
formation, linter errors, and ClangTidy [15] or ErrorProne [16]
suggestions. Examples of human comments include suggestions

about code design, reuse of libraries, style, and other code
improvements.

The code being reviewed often changes during the code
review. Developers react to the automated analysis and modify
the code, possibly even before a human reviewer has had a
chance to see it. If a reviewer leaves comments, these can lead
to more changes. This process can repeat multiple times, until
both the author and the reviewers approve of the change. We
refer to each of these iterations as a code snapshot. Fig. 1
illustrates a code review with multiple code snapshots.

The many potential changes involved in the code review
process create a challenge when empirically studying the
effectiveness of individual analyses involved in contemporary
code review in a real industrial setting. Because the code
review typically involves at least two humans and tens if not
hundreds of automated analyses, it can be difficult to attribute
observations to individual analyses, in particular for more
complex analyses like mutation testing, which reports mutants
in code that require non-local changes to tests to be resolved.

Some analyses (e.g., ClangTidy) are usually limited to
a single line and their findings can be fixed in the same
line—pinpointing code that is almost always incorrect and
should be fixed. If such an analysis surfaces an error in one
snapshot but not a later one, it is likely that the presence of the
analysis finding is associated with fixing that error. Reasoning
about more complex analyses, like mutation testing, is not as
straightforward: First, changes that address a mutant may be
non-local (e.g., mutants are usually surfaced in application code,
but changes that resolve them very often occur in the related test
code). Second, multiple analyses can surface findings related
to the same root cause on different lines, and resolving any
one of the findings will resolve all of them. Third, as code
changes it may be challenging to identify the exact new code
location that needs to be mutated in order to determine whether
a previously surfaced mutant has indeed been resolved.

In theory, any finding from an automated analysis might also
have been identified by a human reviewer. However, automated
analyses are much faster, cheaper, and never get tired. In our
use case, it is highly unlikely that a human reviewer would
inspect the code before automated analyses have finished.

B. Incremental Mutation Testing

Incremental mutation testing refers to surfacing undetected
mutants in the context of a contemporary code review pro-
cess [5]. It differs from traditional mutation analysis in
two important ways. First, incremental mutation testing is
scoped to a set of changed lines of code under review—as
opposed to all lines of code in an existing code base. Second,
incremental mutation testing is concerned with surfacing
individual undetected mutants to developers—as opposed to
computing an adequacy score (e.g., the mutant-detection ratio).

Fig. 1 illustrates how incremental mutation testing is inte-
grated into the code review process. First, a developer begins
their work by forking the latest state of the code repository
into a feature branch. Then, they iterate on the code until they
deem it ready for review. At any point, the developer can run



Fig. 1: Code evolves during code review over multiple code snapshots. During the initial coding phase, an author receives
feedback from automated analyses. Once the code is sent for review, human reviewers contribute feedback, too.

configured automated analysis tools and observe code findings
even before the code review starts. Finally, the developer sends
the code for review by assigning reviewers. At this point,
all configured automated analysis tools are run, and human
reviewers are asked to review the code changes. Incremental
mutation testing runs at the start of the review, usually before
a human reviewer has had a chance to review the code, as well
as on later snapshots, after the developer has changed the code
in response to analysis results or human comments.

Code review can involve tens or hundreds of snapshots,
significantly modifying earlier code changes. For example,
code mutated in an initial snapshot can change, or disappear
altogether, by the time a code change is approved and merged.

To study the effects of surfacing mutants in such a dynamic
environment, it is critical to track the mutants as the mutated
code gets modified, moved, or deleted during the code review.
While a mutant-detection ratio provides a summary statistic
over the detected mutants in any one snapshot, it provides
no information about what happens to individual mutants and
what actions a developer took to resolve them. As code evolves,
more or fewer mutants may be generated between snapshots,
and the mutation score may increase or decrease for that reason
alone—without providing any insights into what happened to
the previously surfaced mutants. Only by tracking individual
mutants through the code review process can we arrive at
conclusions about resolution strategies and outcomes.

C. Mutant Reaction

During code review, both the author and the reviewers of a
change can react to a surfaced mutant. The user interface of
the code review tool used in this paper provides two buttons:

• Please fix (reviewers only): a reviewer believes that the
mutant is productive —identifies an issue with the code
or tests and should be resolved—and explicitly marks it
as such. Clicking this button produces a human comment,
with the reviewer’s name and the text “Please fix”. The
author of the change must treat this comment like any other
human comment. Specifically, the author must resolve all
comments before merging the change. Author and reviewer

can disagree and discuss the issue in multiple rounds of
comments until they agree on the best way forward.

• Not useful (reviewers or authors): a reviewer or the author
believes that the mutant is unproductive —resolving the
mutant is not necessary, undesirable, or may even lead to
lower code or test quality.

The author and the reviewers are free to provide no reaction
at all for surfaced mutants. The author can also resolve a
mutant, without an explicit “please fix” reaction by a reviewer.
For example, it is common to resolve automated findings before
sending the merge request for code review, as indicated in Fig. 1.
In this case, mutant resolution happened prior to assigning
reviewers, and there is no explicit please-fix reaction.

D. Mutant Location

Given a code snapshot Si, in which a mutant is reported on
line Li

n, and a follow-up code snapshot Sj (j > i), there are
five possible ways for the mutated code location to change:

• Li
n = Lj

n: The mutated code is unmodified; an identical
mutant can be generated in Sj on the same line.

• Li
n = Lj

m;n ̸= m: The mutated code is unmodified, but
the code location has shifted; an identical mutant can be
generated Sj on a different line.

• Li
n ∼ Lj

n: The mutated code is modified; a similar mutant
can be generated in Sj on the same line.

• Li
n ∼ Lj

m;n ̸= m: The mutated code is modified and
the code location has shifted; a similar mutant can be
generated Sj on a different line.

• Li
n ̸∼ Lj

m,∀m: The line containing the mutant was deleted
or heavily modified. A similar mutant can no longer be
generated in Sj (mutant invalidation).

Note that a snapshot index is unique w.r.t. a given merge
request. We omit a merge-request index on Si and Li

n for
clarity. Figs. 2 and 3 provide examples for a shift in code
location as well as for identical and similar mutants.

E. Mutant Resolution

We say that a change between two code snapshots Si and
Sj (j > i) resolves a mutant if (1) an undetected mutant exists
in Si, (2) an identical or similar mutant exists in Sj , and (3) a



Fig. 2: Identical mutant (getB()+getC() ⇝ getB()-getC()) on line 11 in S1 (left) and on line 12 in S2 (right): the
highlighted change (insertion of a new statement setC()) affects only non-mutated code, but shifts the mutated code location.

Fig. 3: Similar mutant on line 12 in S1 (left: b+c ⇝ b-c) and in S2 (right: getB()+getC() ⇝ getB()-getC()):
the highlighted change affects the mutated code, but the same mutation operator is still applicable on the same line.

test detects that mutant in Sj . A mutant in Si and a mutant in
Sj are similar if (1) they are generated by the same mutation
operator and (2) the mutated AST nodes (modified expression
or statement) are semantically related and similar. Section IV
provides details about AST node relatedness and similarity.

F. Change After Mutant Intervention

Given a code snapshot Si, which surfaced a mutant, we
refer to the change between Si and a subsequent snapshot Sj

(j > i) as change after mutant intervention. Specifically, in
this paper we consider the following four types of changes
between the first code snapshot that surfaced a mutant and the
code snapshot of the final merge:

1) Code: the change between the two code snapshots only
affects non-test code.

2) Tests: the change between the two code snapshots only
affects test code.

3) Code+Tests: the change between the two code snapshots
affects both non-test and test code.

4) Mutant invalidation: the change between the two snapshots
substantially modifies or deletes the mutated code location
such that a similar mutant can no longer be generated.

About 5% of all mutants were invalidated between the snapshot
that surfaced them and the snapshot of the final merge; we
consistently exclude these when analyzing mutant resolution.

III. DATA SET

To answer our research questions, we produced a data set
of 1,538 merge requests. This data set contains 2,806 unique,
surfaced mutants, with different mutant reactions, as well as
5,127 unique, non-surfaced mutants, which were generated
during code review but already detected by existing tests.

A. Merge Request Sampling

We sampled from a monolithic repository [17], containing
more than 2 billion lines of code and thousands of projects
written in various programming languages. The deployed mu-
tation testing system supports 10 programming languages [18],
and we sampled merge requests from the past six months at
random, with no regard to programming language or project.

Given that the vast majority of generated mutants are either
detected or receive no reaction, we used a stratified random
sampling approach. Specifically, we randomly sampled 300
merge requests from each of the following three subpopulations,
considering the difference between the initial submission and
the final merge of each merge request:

1) Please fix: at least one mutant surfaced that received a
please fix reaction.

2) Not useful: at least one mutant surfaced that received a
not useful reaction.

3) No reaction: at least one mutant surfaced that received
no reaction.

Additionally, we randomly sampled 900 merge requests from
the following subpopulation:

4) Not surfaced: at least one mutant was generated and all
generated mutants are detected, and hence none surfaced.

The goal of this stratified sampling approach was to increase
the proportion of mutants that received a reaction without
introducing further bias. Note that the first three subpopulations
are not mutually exclusive. As a final step, we eliminated
duplicate merge requests and those for which we were unable to
determine mutant resolution for all surfaced mutants—resulting
in a final data set of 1,538 merge requests.

B. Mutant Deduplication

Recall that a merge request usually evolves during code
review. As a result mutation testing is run for multiple code
snapshots. This means that an unresolved mutant may be
surfaced multiple times and that a mutant may be surfaced for
an arbitrary code snapshot. For example, a merge request may
have no surfaced mutants initially, but changes introduced
in a later code snapshot can lead to undetected mutants
being surfaced. To aggregate the mutants in our data set that
surfaced multiple times, we consider the first code snapshot
that surfaces a particular mutant the point of intervention; later
code snapshots for the same mutant are ignored. We consider
the changes between the first code snapshot that surfaced a
mutant and the final code snapshot of the merge request the
change after intervention.
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Fig. 4: Distribution of merge request sizes for all 1,538 merge
requests. The size bucket of a merge request is determined by
the number of changed lines in the initial code snapshot.

C. Characteristics

The final data set consists of 1,538 merge requests, with
2,806 surfaced and 5,127 non-surfaced mutants. Most of the
surfaced mutants were generated for C++ (45%), followed by
Java (19%) and Go (14%). The top-3 mutation operators that
generated the surfaced mutants deleted statements/blocks (50%
of mutants), mutated logical expressions (28% of mutants),
and inserted unary operators (20% of mutants). Out of all
2,806 surfaced mutants, 319 received a please-fix reaction, 298
received a not-useful reaction, and 2,189 received no reaction.

Fig. 4 shows the size distribution of all merge requests, ac-
cording to four size buckets. The size bucket of a merge request
is determined by the number of changed lines (∆L) in the initial
snapshot: S: ∆L < 50; M: ∆L < 250 L: ∆L < 1000; XL:
∆L >= 1000. We use a bucketing approach because the precise
number of changed lines is irrelevant for our research, but we
do expect the magnitude to confound some of our measures of
interest (Section V). We determined these buckets empirically,
considering the quantiles of the distribution of ∆L.

IV. TRACKING MUTANTS ACROSS CODE SNAPSHOTS

Determining mutant resolution requires tracking a mutant
from the code snapshot in which it was surfaced to the final
merged code snapshot. This is a non-trivial mapping problem,
in particular if the source code sees substantial changes during
code review. We devised a semi-automated approach to perform
this mapping and manually validated the mapping for each
surfaced mutant in our data set.

An initial exploration of a handful of merge requests revealed
that mutated code changes surprisingly often. This observation
motivated our first research question:

RQ1 How often do code locations of surfaced mutants change
as code evolves? Can these changes be accurately tracked?

Being able to track mutants, or code findings more generally,
is crucial for two reasons. First, when evaluating a mutant’s
effectiveness, it is necessary to understand what happens to
the mutated source code as it evolves; specifically, determining
whether a mutant was eventually resolved requires generating
the same mutant in the final snapshot. Second, in order to
consistently and accurately resurface the same mutant, if it
remains undetected, requires repeatedly generating it for the
same line of code, even if that line has moved or changed. The
findings reported in Section V further reinforce the need for
resurfacing mutants: a lack of resolution may go unnoticed if
unresolved mutants are not resurfaced.

Traditionally, tree difference computation is a well-known
research topic. However, optimal algorithms are prohibitively
slow for any practical application that involves working
with large trees, or even medium-sized trees for real-time
applications such as interactive tools. Therefore, we use a
tree-based diffing algorithm (a gumtree [19] variant) that uses
heuristics tailored to the code base at hand for efficiency and
scalability to large compilation units.

In our context, the result of applying this algorithm to a
merge request is a mapping of abstract syntax tree (AST)
nodes in one code snapshot to corresponding nodes in another
snapshot. Given a mutated block of code in a code snapshot, this
algorithm identifies syntactically and semantically equivalent
or similar code in a later snapshot, even if the code changes
to a significant degree. Put simply, it allows us to track where
code moves as the code review progresses, and where mutants
should be regenerated.

To measure the accuracy of this mutant-tracking approach
and to ultimately answer RQ1, we developed a mapping tool,
called MUTANTMAPPER, shown in Fig. 5. The tool provides a
simple web interface that visualizes code diffs and highlights
the mapping produced by the algorithm for each mutant. We
developed the tool to perform a manual validation of the
produced mappings. Using it, we were able to efficiently
and semi-automatically map mutated code, even if it changed
significantly during code review.

We manually analyzed all mutants in our data set, corrected
the automatically computed mapping if needed, and classified
the change between the two code snapshots as one of (1) same
line, (2) different line, or (3) deleted line. If the mutated code
was refactored beyond recognition, we classified it as deleted
line. Note that we relied on MUTANTMAPPER for speed and
convenience, not correctness. Overall, MUTANTMAPPER was
highly accurate in mapping muated code locations; manual cor-
rection was required in less than 1% of all cases. The primary
reason for an incorrect mapping was the existance of code
clones. A mapping of mutated code locations can be established
for other code bases, with or without MUTANTMAPPER as a
convenience tool. We have no reason to believe that tree-based
diffing would be substantially less effective on other code bases,
but we leave a deeper investigation for future work.



(a) MUTANTMAPPER user interface visualizing the AST mapping below.

(b) Automated AST mapping example: mapping a binary operator node that is a child of a for loop node.

Fig. 5: Tracking an identical mutant (g[i][k]+g[k][j] ⇝ g[i][k]-g[k][j]) from line 76 (left) to line 91 (right).

(a) Identical code: an identical mutant can be generated.

(b) Similar code: a similar mutant can be generated.

(c) Refactored code: no similar mutant can be generated (mutant invalidation).

Fig. 6: Differences between code snapshots with varying degrees of change.
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Fig. 7: Final mutant location, compared to where it was first surfaced, for all mutants broken down by merge request size.

Fig. 7 shows how often the location of the surfaced mutants
changed during code review, mapping the mutated code location
in the snapshot that surfaced a mutant to the corresponding
location in the merged snapshot. The results are broken down
by mutant reaction and lead to two important observations.

First, for all but the smallest merge requests, we observe
a substantial location change. Indeed, the location of 64% of
all mutants changes between the first snapshot that surfaces
a mutant and the final snapshot of the corresponding merge
request. These findings underscore the need for an accurate
code mapping between snapshots that allows for accurate and
consistent surfacing of mutants during code review.

Second, the extent to which the code changes during code
review is noticeably smaller for not-useful mutants: not-useful
mutants remain on the same line between 46% and 72% of
the time whereas please-fix mutants remain on the same line
between 26% and 69% of the time. This suggests that surfacing
actionable mutants is associated with code changes, in addition
to test changes.

A key takeaway is that tracking mutants is an important
aspect of incremental mutation testing and that tree-based
diffing is a viable solution. However, our particular tracking
solution is only one point in the design space, and we leave
a deeper exploration of possible design choices as well as
efficiency and accuracy trade-offs for future work.

Summary (RQ1): The code location of 64% of all surfaced
mutants changes during code review. Tree-based diffing can
track such changes with an accuracy of over 99%.

V. MUTANT RESOLUTION

Having established the mapping (Section IV) for all surfaced
mutants allowed us to automatically compute which of them
were resolved during code review. This computation boils down
to checking whether the mutant, regenerated in the mapped
code in the merged snapshot, is detected—a mutant that is
detected is resolved, otherwise it is unresolved.

The resolution data enables us to answer our second and
third research questions:
RQ2 How often are surfaced mutants resolved?
RQ3 Is mutant resolution associated with changes to both

code and tests?

For each research question, we are interested in contrasting
the results by mutant reaction, specifically the difference be-
tween please-fix mutants and not-useful mutants. Additionally,
we aim to answer each research question both quantitatively as
well as qualitatively—thereby providing deeper insights for the
quantified observations. For example, an important follow-up
question to RQ2 is what the reasons for please-fix mutants
remaining unresolved are when a merge request gets merged.

In the presence of multiple code findings and reviewer
comments, it is generally impossible to determine what specific
analysis prompted the code author to improve the code or add
more tests in a post-hoc study. Many different code analyzers
surface code findings in close proximity to one another and
the causal path from a particular code finding to a related
code improvement may be non-local. For example, in order to
resolve a finding in one function a change may be required in
an entirely different function. In other words, the attribution of
code or test changes to a surfaced analysis finding is fuzzy at
best. However, it is possible to establish whether the resolution
of surfaced mutants is associated with code or test changes
beyond the expected variance around the average changes for
an arbitrary merge request.

A. Measures of Interest

a) Mutant reaction (Section II-C): Each surfaced mutant
is labeled as one of: (1) please fix, (2) not useful, or (3) no
reaction; non-surfaced mutants are labeled as (4) not surfaced.

b) Mutant resolution (Section II-E): Each surfaced mutant
is labeled as either (1) resolved or (2) unresolved; each non-
surfaced mutant is labeled as (3) “NA” since mutant resolution
is not applicable in this case.

c) Change after mutant intervention (Section II-F): Each
mutant is labeled as one of: (1) None—no change, (2) Code—
changes only to non-test code, (3) Code+Tests—changes to
both non-test and test code, or (4) Tests—changes only to
test code. Since measuring lines of code is very sensitive
to the corresponding programming language and can lead
to comparability issues in a multi-language set up [8], we
dichotomize code and test changes and assess the probability
of change as opposed to the magnitude of that change.
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Fig. 8: Mutant resolution in the final snapshot, for all mutants broken down by mutant reaction and merge request size.

B. RQ2 How often are surfaced mutants resolved?

Fig. 8 shows the rate at which surfaced mutants are resolved,
broken down by mutant reaction and merge request size.
Overall, please-fix mutants are substantially more often resolved
than mutants without an explicit reaction and more than twice
as often resolved than not-useful mutants: not-useful mutants
are resolved at a rate between 12% and 30%; no-reaction
mutants are resolved at a rate between 31% and 41%; please-
fix mutants are resolved at a rate between 56% and 63%. The
overall resolution rate of please-fix mutants is about 60%. In
contrast to mutant reaction, merge request size shows little
influence on mutant resolution.

Summary (RQ2): Overall, 38% of all surfaced mutants and
60% of please-fix mutants are resolved. Please-fix mutants are
resolved more than twice as often as not-useful mutants.

C. RQ3 Is mutant resolution associated with changes to both
code and tests?

Fig. 9 shows how the change after intervention differs
between resolved and unresolved mutants, broken down by
mutant reaction. The plot also shows the distribution of changes
for non-surfaced mutants to establish a baseline. (Note that
these mutants were generated but already detected in the initial
snapshot of a merge request, and hence the notion of mutant
resolution is not applicable.) Fig. 9 shows a strong association
between mutant resolution and changes to tests: the ratio of
changes to only tests (purple area) is noticeably larger for
resolved mutants. These findings are in line with prior work:
they support the observation that surfacing undetected mutants
motivates developers to write more tests [8]. The plot also
shows that a large ratio of changes apply to both code and
tests (green and blue areas).

To understand whether these observed changes represent
significant deviations from the expectation, we fitted two
logistic regression models and estimated the probability of
change to code and tests, respectively, given the size bucket
of a merge request, whether mutants surfaced, and the extent
to which surfaced mutants are resolved in that merge request.
Fig. 10 shows the estimated probability (and 95% confidence
interval) that code or tests change for a merge request for which
no mutant surfaced (red line) and for a merge request for which
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0.00

0.25

0.50

0.75

1.00

Mutant resolution

R
a
tio

Change after intervention None Code Code+Tests Tests

Fig. 9: Change after mutant intervention, for all mutants broken
down by mutant reaction and resolution.

at least one mutant surfaced (blue line). Merge requests with
non-surfaced mutants serve as a baseline and visual cue in the
plot. Mutant resolution does not apply to these merge requests,
and the ratio of resolved mutants is set to 0. (The red line
is technically a single reference point, but we plot it as a
horizontal line for visibility.)

For both changes to code and tests, merge request size is sig-
nificantly associated with the probability of change (p < 0.001),
with a strong effect. This observation is expected: larger merge
requests tend to see more changes during code review. For test
changes, the ratio of resolved mutants is significantly associated
with the probability of change (p < 0.001), with a strong
effect, independently of merge request size. The probability of
change to tests is indistinguishable for merge requests with non-
surfaced mutants (red line) and merge requests with surfaced
but unresolved mutants (origin of the blue line with 0 resolved
mutants). For code changes, the ratio of resolved mutants is
weakly significantly associated with the probability of change
(p < 0.1), with a non-negligible effect, independently of merge
request size. Despite the baseline probability of changes to
code being relatively high, mutant resolution still shows a
measurable effect. Overall, the results suggest that mutant
resolution is associated with changes to both code and tests.

Summary (RQ3): Merge requests with resolved mutants have
a significantly higher probability of change to both code and
tests, compared to merge requests with unresolved or non-
surfaced mutants. The effect is stronger for tests than for code.
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Fig. 10: Probability of change to code or tests as a function of the ratio of resolved mutants, broken down by merge request size.
The shaded area gives the 95% confidence interval, and the dashed red line gives the probability of change for merge requests
with not-surfaced mutants—merge requests for which all generated mutants were already detected, and hence none surfaced.

VI. ANALYSIS OF RESOLVED AND UNRESOLVED MUTANTS

To provide deeper insights into the findings presented
in Section V, we manually analyzed merge requests with
resolved and unresolved surfaced mutants, answering our final
research question:

RQ4 What actions do developers take to resolve mutants?

For this analysis, we specifically focused on merge requests
with please-fix mutants as these received a reviewer endorse-
ment, and hence required action by the code author. Recall that
during code review, the reviewer(s) can click the “please fix”
button to signal that the code author should resolve a mutant.

We sampled 40% of merge requests for which (1) at least one
mutant received a please-fix reaction, (2) no mutant received a
not-useful reaction, and (3) all please-fix mutants were resolved.
Additionally, we sampled 70% of merge requests for which
(1) at least one mutant received a please-fix reaction, (2) no
mutant received a not-useful reaction, and (3) all please-fix
mutants were unresolved. We chose a higher sampling rate
for merge requests with unresolved please-fix mutants as these
are unexpected and might offer valuable insights. In total, we
analyzed 51 merge requests with resolved please-fix mutants
and 60 merge requests with unresolved please-fix mutants. For
each of these merge requests, we analyzed the code review
data and extracted the author-reviewer communication and
mutant-resolution actions (i.e., test and code changes), if any.

A. Resolved Mutants

We followed a grounded-theory, open-coding approach.
Specifically, one author performed an initial exploration,

TABLE I: Number of merge requests with resolved please-fix
mutants per category.

Tests Refactoring Discussion Inconclusive Total

33 13 3 2 51

analyzing 20 resolved mutants and developing an initial code
book. Then, all authors discussed the results, identified common
themes, and refined the code book. Finally, one author used
this code book to classify the remaining mutants.

Four different categories of mutant resolution emerged,
which are summarized in Table I: (1) in 33 cases, the code
author added or modified a test to detect the mutant; (2) in
13 cases the code author refactored the code, to improve
testability, and added tests; (3) in 3 cases, the mutants prompted
a discussion between the author and the reviewer(s); (4) in 2
cases, the discussion and code/test changes were inconclusive.

1) Tests: Code authors resolved the majority of please-
fix mutants by adding a new test. We did not observe any
qualitative differences between the added tests and the ones
that already existed in the code base.

2) Refactoring: If a mutant was surfaced in a code block
that was not testable or hard to follow, the author first refactored
the code and then added tests to detect the mutant. Often it
was the case that the mutant could not be detected without
the refactoring. A commonly observed theme was that the
reviewer(s) asked an author to extract a complex piece of logic
into a separate function, test it well, and use it at the call site.



3) Discussion: Mutants led to useful discussions, in par-
ticular for code-deletion mutations, where the reviewer(s)
questioned whether a piece of code is redundant, or some
additional data guards are required. This resulted in either
the author explaining the reasoning, usually involving code
externalities and project invariants that the reviewer might not
be familiar with, resulting in better documentation. Another
resolution path is the removal of clauses that are deemed
redundant as the result of the discussion.

4) Inconclusive: Code review is an arena in which code
authors and reviewers work together to produce the best
possible merge request outcome. Sometimes, it is impossible
to ascertain the causes of author actions. Mutants are shown
in many code snapshots, and review comments are too. In
two cases, after looking at the code review process, we were
unable to establish with confidence why and how a mutant was
resolved (i.e., whether the mutant elicited only test changes or
also additional code changes).

B. Unresolved Mutants

Similar to resolved mutants, unresolved mutants in our data
set involve some author-reviewer communication around the
reviewers’ request to address an endorsed mutant finding. Given
that each mutant in this set is unresolved, such a mutant
may have no attempted mutant resolution, or it may have
an unsuccessful attempted mutant resolution. To analyze the
code-review data for the unresolved please-fix mutants, we
followed the same grounded-theory, open-coding approach as
for resolved mutants.

We identified four different categories of reasons for a lack
of (observed) mutant resolution, which are summarized in
Table II: (1) in 27 cases, the code author pushed back on the
request for resolving the mutant, mostly stating an argument
for why adding a test for the mutant is undesirable; (2) in
16 cases, the author agreed with the mutant, but deferred the
resolution for various reasons (3) in 3 cases, mutant resolution
did occur but was unobservable due to the use of unusual
testing approaches; (4) in 14 cases, mutant resolution was
attempted but unsuccessful, a fact unknown to the code authors
due to a limitation of the mutation testing system.

1) Pushback: Code authors questioned the importance of
the test a surfaced mutant would have elicited, and its ability
to detect actual bugs. As a result, the authors pushed back and
did not resolve the surfaced mutant. We rely on the expertise
of developers to make these decisions.

2) Deferred resolution: If the code under test is not designed
with testing in mind, it might be difficult or impossible to write
a test that detects the mutant, without a larger refactoring. In
these cases, authors often left a TODO or created a tracking
bug, leaving refactorings and additional tests to subsequent
changes. This is common practice to separate the code review
of a feature from additional quality improvements and ensure
that these changes stand alone as individual commits in the
version control system. For example, when the code change
is either topical or should be possible to be rolled back in
an emergency push, code authors push back on testing the

TABLE II: Number of merge requests with unresolved please-
fix mutants per category.

Pushback Action deferred Unusual testing Infrastructure Total

27 16 3 14 60

mutant within the merge request under review. Additionally,
larger refactorings and new tests, if they make up the bulk of
the changes in the same merge request, could make the code
review harder or the already selected reviewers less suitable.

3) Unusual testing: Some mutants are surfaced despite being
detected because of specialized tests that the mutation testing
system is not aware of. For example, our mutation testing
system supports JavaScript, Dart, and TypeScript, which are
commonly used languages for frontend development. Some
of the corresponding tests are large end-to-end tests or other
user interface tests like screenshot tests. The mutation testing
system does not evaluate such large tests, or it is not aware
of them because there is no clear connection between, e.g.,
screenshot tests that assert on the equivalence or similarity
between two browser screenshots and the code that produces
the browser content. Since the mutation testing system only
evaluates tests that directly exercise mutated lines of code, and
no such connection exists, this class of tests are ignored. Thus,
these mutants are resolved—a fact that can only be observed
outside of the mutation testing system.

4) Infrastructure limitations: Code review is a complex
process in which code findings present goals for developers
to achieve: when developers take action to resolve a code
finding, e.g., detect a mutant, they expect to see that mutant
detected when the analysis reruns. Failure to provide that
feedback produces a negative experience for the developer
and is undesirable. Similarly, developers expect consistency
and a clear set of goals during code review. For example, no
additional mutants should be surfaced in subsequent snapshots
of the code review, unless new code is added. Due to the
probabilistic and incremental nature of our mutation testing
system [5], additional mutants could in theory be generated and
surfaced in subsequent snapshots. For example, if a restricted
set of mutants (a subset of all possible mutants) surfaced in
an initial snapshot and the code author adds tests to detect
these mutants, the system could generate and surface additional
mutants for the same code in a subsequent snapshot. This would
result in an inconsistent user experience. To avoid that, the
system only regenerates identical mutants in the same lines in
which they initially surfaced. This means that detected mutants
disappear and no new mutants are generated for previously
unmutated code, thereby producing a consistent experience.

As code changes during code review, regenerating identical
mutants on the same line of code is insufficient. Often, code
authors add tests based on a mutant, but also update the code—
moving the mutated line. In these cases, our mutation testing
system did not regenerate the same mutant on the new line. As
a result, code authors sometimes deemed a mutant resolved,
even though the test written for it might have been inadequate.



Given that the code location of 64% of surfaced mutants
changed (RQ1), the lack of an accurate mapping of mutants
across snapshots accounted for 14 merge requests with un-
resolved please-fix mutants in our sample. While the code
authors attempted mutant resolution for these merge requests,
the mutation testing system did not resurface the undetected mu-
tant(s) on subsequent snapshots. These observations prompted
us to incorporate tree-based diffing for mutant tracking into
our mutation testing system.

Summary (RQ4): The most common action for mutant
resolution is additional testing, followed by code refactorings,
and in-depth discussion about code relevance (in particular
for statement-deletion mutants). The most common reasons
for a lack of observed resolution are developers questioning
the actionability of a mutant and deferred action (i.e., mutant
resolution in a subsequent merge request).

VII. RELATED WORK

There has been significant research interest in mutation
testing in recent years. However, relatively few publications
provide data or insights into human interactions with mutation
testing. More common is the use of simulations on historical
or synthetic datasets (e.g., [2], [4], [20]).

A. Industrial Applications of Mutation Testing

Prior works by Google [8], [18] and Facebook [9] describe
deployments of mutation testing at industrial scale, together
with associated challenges and technical solutions. They also
provide some anecdotal data on user satisfaction, but mostly in
the form of supporting evidence for the technical contributions.

A case study by Ahmed et al. [21] reports on an application
of mutation testing on a Linux Kernel module. The study
analyzed 3169 mutants, out of which 380 were live. The study
examined the computational costs of mutation analysis and
ways in which it could be reduced. It concludes that “mutation
testing can and should be more extensively used in practice”.

Delgado-Pérez et al. [22] report on an application of mutation
testing in the nuclear industry. The subjects of the study were
firmware modules, with 15 functions ranging from 10 to 63
lines of code. The authors examined 2509 mutants, out of
which 154 were live. The aim of the study was to determine
computational costs and human effort caused by equivalent
mutants when extending a coverage-adequate test suite to a
mutation-adequate one. The main insight is that mutation testing
can indeed improve fault detection compared to structural-
coverage-guided testing.

In contrast to these prior studies, our work specifically probes
into the interactions between developers and surfaced mutants.

B. Gamification of Mutation Testing

Rojas and Fraser [23] and Rojas et al. [24] present a mutation
testing game played between humans. The focus of this research
was to examine if gamification can be used to produce high
quality mutants and to improve test suites. Rojas et al.’s research
is perhaps the closest to the study presented in this paper, but

it uses different interventions to modify human behavior by
introducing goals and rewards; their data could not be used to
answer the research questions presented in this paper.

C. Actionability of Surfaced Mutants

The notion that some mutants are more valuable and/or
harder to detect than others has also received attention in
the research community. Common themes in prior work were
attempts to eliminate redundancy among mutants or identify
a sufficient subset of mutants (e.g., [25]–[29]) and to rank
mutants by utility (e.g., [20], [30], [31]).

In contrast to these prior studies, our work specifically
ties the actionability of mutants to developer feedback and
observable actions taken to resolve surfaced mutants.

VIII. CONCLUSIONS

This paper reports on an empirical study that analyzes how
developers resolve mutants surfaced during code review, using
a dataset of 1,538 merge requests with 7,933 mutants. The
paper’s key results and implications are as follows.

First, the code location of 64% of all surfaced mutants
changes during code review. This large percentage demonstrates
the need for advanced code mapping techniques that can
track mutants across snapshots during the code review process.
An accurate mapping is important for both researchers, who
wish to evaluate the effects of mutation testing, and engineers
who wish to develop effective mutation testing systems. Our
results suggest that it is possible to adapt tree-based diffing to
efficiently track mutants across snapshots, with an accuracy
of 99%. We specifically adapted the diffing algorithm used in
this paper to our codebase. While this codebase is very large,
it remains an open question to what extent tree-based diffing
is effective for evolving merge requests in other codebases.

Second, developers resolve 38% of all surfaced mutants.
The resolution rate is 60% for mutants endorsed by reviewers
during code review, and developers resolve endorsed mutants
more than twice as often as mutants they deem not useful.
Additionally, merge requests with resolved surfaced mutants
have a significantly higher probability of change to both code
and tests, compared to merge requests with unresolved or non-
surfaced mutants. Overall, our results suggest that mutation
testing offers benefits beyond improved testing. While the most
common action for mutant resolution was adding additional
tests, we additionally observed code refactorings and in-depth
discussions prompted by surfaced mutants. We also observed
that the most common reason for a lack of resolution is
developers questioning the value of certain mutants, considering
them not actionable or the required effort to resolve them
not worthwhile. Given these findings, we plan to research
techniques for increasing the ratio of mutants developers
endorse while minimizing the ratio of mutants they consider
not useful.
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