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Mutation analysis is a powerful but computationally expensive method to measure the
effectiveness of a testing or debugging technique. The high cost is due, in part, to redundant mutants
generated by commonly used mutation operators. A mutant is said to be redundant if its outcome
can be predicted based on the outcome of other mutants. The execution of those redundant mutants
is unnecessary and wastes CPU resources. Moreover, the inclusion of redundant mutants may lead
to a skewed mutant detection rate and therefore misrepresent the effectiveness of the assessed testing
or debugging technique.

This paper extends previous work and makes the following contributions. First, it defines and
provides non-redundant versions of the conditional operator replacement (COR), unary operator
insertion (UOI), and relational operator replacement (ROR) mutation operators. Second, it reports
on a conducted empirical study using ten real-world programs that comprise a total of 410,000 lines
of code. The empirical study used developer-written and generated test suites. The results show how
prevalent redundant mutants are and how their elimination improves the efficiency and accuracy of
mutation analysis. In summary, the total mutation analysis run time decreased by more than 20%
by removing redundant mutants, and the inclusion of redundant mutants led to an overestimated
mutation score for all analyzed test suites.

1. INTRODUCTION

Originally introduced by Budd [1] and DeMillo [2], mutation analysis measures the effectiveness
of a testing or debugging technique based on artificial faults that are systematically seeded into a
program under test (the original program). Each of those seeded faults leads to a small syntactic
variation of the original program, called mutant. The syntactic change within such a mutant is
referred to as mutation, which is produced by a mutation operator. Effectiveness is quantified in
the mutation score, which is the percentage of mutants that a test can distinguish from the original
program. A test that can distinguish a mutant from the original program is said to detect that mutant.
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Many test executions are necessary to calculate the mutation score — in the worst case one
execution for every single mutant. Since even small programs can lead to large numbers of mutants,
mutation analysis may be prohibitively time-consuming and computationally expensive, especially
in comparison to structural code coverage criteria [3].

However, not every mutant adds value to the analysis. Previous studies empirically investigated
redundancies between mutation operators and showed that a certain subset of all applicable mutation
operators is sufficient to measure test effectiveness [4, 5]. The obtained subset of mutation operators,
referred to as sufficient mutation operators, significantly improves efficiency but incurs a minor
loss of information in terms of the mutation score. Both previous studies considered the mutation
operators to be atomic, meaning that the set of mutants derived from a specific mutation operator
was either included as a whole or not at all. For instance, a replacement operator was either applied
with all valid replacements or entirely excluded.

This paper considers the set of sufficient mutation operators at a fine-grained level and shows that
their original definition implies redundancy in the resulting set of mutants. It formally describes the
requirements for a sufficient set of non-redundant mutations and provides a non-redundant version
of the conditional operator replacement (COR), unary operator insertion (UOI), and relational
operator replacement (ROR) mutation operators. Additionally, the empirical study demonstrates
how prevalent redundant mutants are for real-world programs and how their elimination improves
the efficiency of mutation analysis. The empirical study also shows how the inclusion of redundant
mutants leads to an inaccurate mutation score.

In summary, this paper makes the following contributions with regard to the effect of redundant
mutants on the efficiency and accuracy of mutation analysis:

• A definition of a sufficient set of non-redundant mutations that collectively subsume all other
mutations of a given mutation operator.

• A determination of a subsumption hierarchy for the COR, UOI, and ROR mutation operators.
The paper shows that only 4 out of 10 COR and UOI mutations and 3 out of 7 ROR mutations
are necessary to form a sufficient set of non-redundant mutations.

• An empirical study that investigates how redundant mutants derived from the COR, UOI, and
ROR mutation operators affect the efficiency and accuracy of mutation analysis for ten real-
world programs totaling 410,000 lines of code. The results show that eliminating redundant
mutants significantly decreases the mutation analysis run time and improves the accuracy of
the mutation score.

• A comparison of mutation coverage (i.e., ratio of reached and executed mutations) with
statement coverage, branch coverage, and the mutation score. The results show a very
strong correlation between mutation coverage and statement and branch coverage, but only
a moderate correlation between mutation coverage and mutation score.

The remainder of the paper is structured as follows: Section 2 furnishes a detailed view of
mutation operators and defines a sufficient set of non-redundant mutations for the COR, UOI, and
ROR mutation operators. Section 3 describes the empirical study and reports on the corresponding
results. Section 4 describes related work, and Section 5 concludes the paper.
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2. A DETAILED VIEW OF MUTATION OPERATORS

A wide variety of mutation operators has been proposed for different purposes and programming
languages (e.g., [6, 7, 8, 9]). The actual set of mutation operators that can be employed depends
on the programming language, and this paper considers the following set of mutation operators for
Java programs that are supported by the Major mutation framework [10]:

• Operator Replacement Binary: Replace all occurrences of binary operators (e.g., arithmetic,
logical, shift, conditional, or relational operators) with all valid alternatives. Note that the COR

and ROR mutation operators studied in this paper belong to this class.
• Operator Replacement Unary: Replace all occurrences of unary operators with all valid

alternatives.
• Unary Operator Insertion (UOI): Insert a unary boolean operator to negate boolean

expressions. This operator is also applied to subexpressions and boolean literals.
• Literal Value Replacement: Replace all numerical literals with a positive value, a negative

value, and zero. Replace reference type variables with a reference to null.

The remainder of this section considers the COR, UOI, and ROR mutation operators at a fine-
grained level. It defines non-redundant and subsumed mutations, and provides a sufficient set of
non-redundant mutations for those three mutation operators. Section 2.1 formally defines a sufficient
set of non-redundant mutations. Section 2.2 employs those definitions and provides a sufficient set
of non-redundant mutations for the COR and UOI mutation operators. Section 2.3 discusses the
definitions in the context of composed conditional expressions. Section 2.4 provides a sufficient set
of non-redundant mutations for the ROR mutation operator.

2.1. Definition of a sufficient set of non-redundant mutations

Recall that mutation refers to a syntactic change (e.g., a && b 7→ a || b), whereas mutant refers
to the program that includes a single mutation.

Definition 1
Semantically equivalent mutant

Let p be the original program and pm be a mutant of p. Let further Ω be the input domain of p and
ω ∈ Ω be an input tuple — that is, ω denotes a tuple of input values and configuration parameters,
necessary to execute p. A mutant pm is semantically equivalent to p, written as pm ≡ p, if and only
if pm yields the same output as p for all possible input tuples:

pm ≡ p :⇔ pm(ω) = p(ω),∀ω ∈ Ω

Definition 2
Semantically equivalent mutation

Let pm be a mutant of program p and op ∈ p be an n-nary operator, referred to as original version.
Let further m be a mutation of op and π ∈ Π be an n-nary input tuple. A mutation m is semantically
equivalent to op if and only if m computes the same output as op for all possible input tuples:

m ≡ op :⇔ m(π) = op(π),∀π ∈ Π
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In the context of first-order mutants (i.e., mutants that contain only one mutation at a time),
equivalence of a mutation implies equivalence of the corresponding mutant m ≡ op⇒ pm ≡ p. The
converse of this implication does not necessarily hold as a mutant pm can be equivalent to the
original program p even if the output of the corresponding mutation m differs from op — an example
is a missing propagation of that difference to an observable program output [11].

Definition 3
Trivial mutation

Let m be a mutation of an original version op and π ∈ Π be an input tuple. A mutation m is a
trivial mutation if and only if its output differs from op for every possible input tuple:

m is trivial mutation :⇔ m(π) , op(π),∀π ∈ Π

Trivial mutations are not desirable since they are likely to be detected independently of the actual
input tuple. A mutation should rather be a subtle change, making it hard to detect — that is, a
mutation should be similar to its original version. Such a similarity between a mutation and its
original version can be described as the distance between the output values.

Definition 4
Distance between mutation and original version d(m, op)

Let I = {1, . . . , |Π|} be an index set enumerating all possible input tuples πi ∈ Π. Let further m be
a mutation of an original version op. The distance between m and op, written as d(m, op), is defined
as the L1 norm:

d(m, op) B ‖m − op‖1 =
∑
i∈I

|m(πi) − op(πi)|

Considering COR, UOI, and ROR mutations for which the outputs of m and op are boolean, the
distance d(m, op) is equal to the number of input tuples for which the outputs of m and op differ.

Definition 5
Minimal-distance mutation

Let I = {1, . . . , |Π|} be an index set enumerating all possible input tuples πi ∈ Π. Let m further be
a mutation of an original version op. A mutation m is a minimal-distance mutation if the distance
between m and op is 1:

m is minimal-distance mutation :⇔ d(m, op) = 1⇔ ∃!πi ∈ Π : m(πi) , op(πi)

Definition 5 indicates that there exists exactly one input tuple πi for which the output of a minimal-
distance mutation differs from op. Note that a distance of 0 implies equivalence.

Definition 6
Subsumed mutation

Let I = {1, . . . , |Π|} be an index set enumerating all possible input tuples πi ∈ Π. Let m1 and m2

further be two mutations for an original version op. A mutation m1 subsumes a mutation m2 if
detecting m1 implies detecting m2:

m1 subsumes m2 :⇔ ∃i ∈ I∆(m2) : m1(πi) = m2(πi) ∧ I∆(m1) ⊆ I∆(m2),

I∆(m) = {i ∈ I | m(πi) , op(πi)}

The index set I∆(m) represents all input tuples for which the output of a mutation m differs from
the output of its original version op.
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Definition 7
Sufficient set of non-redundant mutations Msuf

Let I = {1, . . . , |Π|} be an index set enumerating all possible input tuples πi ∈ Π and M be the set
of all possible mutations for an original version op. Let further f : I 7→ M be an injection that maps
an index i ∈ I to a minimal-distance mutation mi (i.e., mi = f (i)) for the input tuple πi. The sufficient
set of non-redundant mutations Msuf ⊂ M is defined as follows:

Msuf B {mi | i ∈ I}

The set Msuf is minimal and subsumes all other possible mutations:

• Msuf is minimal because it contains exactly one minimal-distance mutation for each input
tuple, and hence the index sets I∆(mi) are disjoint. �

• Msuf subsumes all other mutations because it contains one minimal-distance mutation for each
input tuple and from Definition 5 follows that |I∆(mi)| = 1 for each such minimal-distance
mutation. Hence, Definition 6 is fulfilled for every additional mutation. �

The subsequent sections show that such a set Msuf indeed exists for the COR, UOI, and ROR

mutation operators.

2.2. Non-redundant COR mutation operator

Generally, the COR mutation operator replaces a boolean expression a <op> b where a and b
denote boolean subexpressions or literals and <op> is one of the logical connectors && or ||. Valid
mutations for such a boolean expression belong to one of the following three categories:

1. Conditional operator

• Logical connector &&: a && b
• Logical connector ||: a || b
• Equivalence operator: a == b
• Exclusive OR operator: a != b

2. Special operator

• Evaluation to left hand side: lhs
• Evaluation to right hand side: rhs
• Evaluation to true: true
• Evaluation to false: false

3. Unary boolean operator

• Negation of left operand: !a <op> b
• Negation of right operand: a <op> !b
• Negation of expression: !(a <op> b)

Note that the three logical operators ˆ, |, and & are omitted for two reasons. First, the logical
exclusive OR operator ˆ, when applied to boolean values, is semantically equivalent to the included
operator !=. Hence, the inclusion of both operators would inevitably introduce redundancy. Second,
the logical operators | and & produce the same boolean output as their conditional equivalents with
the exception that they do not exploit the possible short-circuit evaluation. The logical operators are
excluded since they are subsumed by the mutations included in the three categories.
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Table I. Set of non-redundant and subsumed mutations for the logical connector &&. A rectangle indicates
for which input tuples (a, b) a mutation’s output differs from the original version.

Original
version

Non-redundant
COR mutations

Subsumed
COR mutations

Subsumed
UOI mutations

a b a && b false lhs rhs a==b a ‖ b a!=b true !(a && b) !a && b a && !b

0 0 0 0 0 0 1 0 0 1 1 0 0
0 1 0 0 0 1 0 1 1 1 1 1 0
1 0 0 0 1 0 0 1 1 1 1 0 1
1 1 1 0 1 1 1 1 0 1 0 0 0

Table II. Set of non-redundant and subsumed mutations for the logical connector ||. A rectangle indicates
for which input tuples (a, b) a mutation’s output differs from the original version.

Original
version

Non-redundant
COR mutations

Subsumed
COR mutations

Subsumed
UOI mutations

a b a ‖ b a!=b rhs lhs true a && b a==b false !(a ‖ b) !a ‖ b a ‖ !b

0 0 0 0 0 0 1 0 1 0 1 1 1
0 1 1 1 1 0 1 0 0 0 0 1 0
1 0 1 1 0 1 1 0 0 0 0 0 1
1 1 1 0 1 1 1 1 1 0 0 1 1

Based on the given Definition 7, Table I highlights the sufficient set of non-redundant mutations
for the logical connector &&. All mutations within this set have a minimal distance, in compliance
with Definition 5 — the rectangles in the table highlight the outputs of the mutations that differ from
the original version. Furthermore, the input tuples for which these mutations produce an incorrect
output are disjoint, and hence their union forms the sufficient set.

Table I also gives all subsumed mutations for the logical connector &&. None of the subsumed
mutations fulfills Definition 5 (minimal distance). Besides manifesting a greater distance, the input
tuples for which the subsumed mutations lead to an incorrect output are not disjoint. All subsumed
mutations fulfill Definition 6 since the minimal-distance mutations collectively cover all possible
input tuples. For example, the lhsmutation computes an incorrect output for the input tuple a=1 and
b=0. If a test detects the lhs mutation, the same test also detects all of the subsumed mutations that
compute the same incorrect output for this input tuple. The logical negation !(a && b) is furthermore
a trivial mutation (Definition 3) since it produces an incorrect output for every input tuple.

Considering the logical connector ||, Table II shows the minimal-distance mutations that form
the sufficient set of non-redundant mutations. Additionally, Table II gives all subsumed COR and
UOI mutations for this logical connector, where each subsumed mutation again manifests a greater
distance, as visualized by the rectangles.

For both logical connectors, the sufficient set of non-redundant COR mutations subsumes all
mutations associated with the UOI mutation operator. Hence, the UOI mutation operator should be
omitted when mutating conditional expressions due to the manifested redundancy. Note that this
subsumption of the UOI mutation operator only holds for boolean expressions.
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1 public void pattern1 (int x){
2 Var v;

3
4 if(flag && (v=getVar())!=null){
5
6 v.foo(x);

7 }

8 return;
9 }

10
11 public void pattern2 (int x){
12 Var v;

13
14 if(flag || (v=getVar())==null){
15 return;
16 }

17 v.bar(x);

18 }

Listing 1. Two common patterns with uninitialized local variables exploiting the short-circuit property
of the logical connectors && and ||.

Regarding the sufficient set of non-redundant mutations, where every mutation has a minimal
distance of 1 and the corresponding input tuples are disjoint, detecting all mutations requires
combinatorial testing of the inputs a and b. Yet, this relation only holds for conditional expressions
with one logical connector as combinatorial testing of composed expressions would require higher-
order mutants [12], which are not considered in this paper.

Using the sufficient set of non-redundant mutations, the reduction of the number of mutations
generated by the COR and UOI mutation operators is theoretically 60% — only 4 out of 10 mutations
are necessary. However, the actual reduction depends on the applicability of the mutation operators.
There are two common patterns within Java programs that exploit the short-circuit property of the
logical connectors && and ||, as shown in Listing 1. Within this listing the short-circuit property
is utilized to avoid a pre-initialization of a local variable in line 2 and 12.† Since the Java compiler
strictly requires that every local variable is initialized before use, replacing the logical connector &&
by ||, and vice versa, is not valid in the illustrated methods. The application of the special operators
true, false, and lhs would also lead to invalid mutations.

The actual reduction of all generated mutants depends on two factors: (1) The number of
occurrences of the depicted patterns and (2) the ratio of COR and UOI mutants to all generated
mutants. Sections 3.2 and 3.3 provide details about the ratio of COR and UOI mutants and the
overall decrease of generated mutants.

†The Java Virtual Machine is a stack machine, and thus a local variable is only stored on the stack once it has been
initialized.
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2.3. Composed conditional expressions

The definitions and subsumption hierarchies in Section 2.1 and 2.2 are given for conditional
expressions with two literals, referred to as base case. By considering the following two cases this
section shows that the given subsumption hierarchies also hold in composed expressions:

1. The mutated conditional expression is an enclosed expression.
2. The mutated conditional expression is an enclosing expression.

Recall that only first-order mutants are considered, which means that each mutant contains exactly
one mutation. Consider the following example:

expr2︷          ︸︸          ︷
a && b︸   ︷︷   ︸

expr1

|| c

Regarding the first case in which the enclosed expr1 is mutated, the given subsumption hierarchies
hold because of the following two reasons:

1. Given the well-defined semantics for the evaluation of an expression, the evaluation of the
enclosing expression expr2 has no impact on the values of the literals a and b.

2. Let op1 be the operator of an enclosed expression expr1 and op2 be the operator of an
enclosing expression expr2. Let further mi be a minimal-distance mutation and ms be a
subsumed mutation of the operator op1. The following two implications hold for every
mutation mi and ms:

∀a, b : mi(a, b) = op1(a, b)⇒ op2(mi(a, b), c) = op2(op1(a, b), c)

∀a, b : mi(a, b) = ms(a, b)⇒ op2(mi(a, b), c) = op2(ms(a, b), c)

In other words, the subsumption hierarchy holds for an enclosed expression since its outcome is not
affected by the evaluation of an enclosing expression.

Regarding the second case in which the enclosing expression expr2 is mutated, the enclosed
expression expr1 can be viewed as a predicate p, which is not mutated:

a && b︸   ︷︷   ︸
p

|| c

This simplifies the mutated expression to p || c, which represents the base case and, thus, the
given subsumption hierarchy holds for the expression p || c.

2.4. Non-redundant ROR mutation operator

The ROR mutation operator targets expressions a <op> b with <op> representing one of the
6 relational operators (<, <=, >, >=, ==, !=). The ROR mutation operator replaces such a
relational operator with all other relational operators. Additionally, it applies the special operators
true and false— since every relational operator maps to a boolean output, the entire expression
can be replaced with true and false, respectively.

The definitions given in Section 2.1 are also applicable for the ROR mutation operator. Rather
than considering the actual values of the inputs a and b, all possible input tuples (a, b) are grouped
into three intervals representing the relation between a and b: a < b, a == b, and a > b.
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Table III. Set of non-redundant and subsumed mutations for all relational operators. Rectangles indicate for
which intervals a mutation’s output differs from the original version.

Interval Original
version

Non-redundant
ROR mutations

Subsumed
ROR mutations

a > b false a >= b a != b a < b a <= b a == b true

a < b 0 0 0 1 1 1 0 1
a == b 0 0 1 0 0 1 1 1
a > b 1 0 1 1 0 0 0 1

a < b false a <= b a != b a > b a >= b a == b true

a < b 1 0 1 1 0 0 0 1
a == b 0 0 1 0 0 1 1 1
a > b 0 0 0 1 1 1 0 1

a == b false a <= b a >= b a > b a != b a < b true

a < b 0 0 1 0 0 1 1 1
a == b 1 0 1 1 0 0 0 1
a > b 0 0 0 1 1 1 0 1

a >= b true a > b a == b a < b a <= b a != b false

a < b 0 1 0 0 1 1 1 0
a == b 1 1 0 1 0 1 0 0
a > b 1 1 1 0 0 0 1 0

a <= b true a < b a == b a > b a >= b a != b false

a < b 1 1 1 0 0 0 1 0
a == b 1 1 0 1 0 1 0 0
a > b 0 1 0 0 1 1 1 0

a != b true a < b a > b a == b a >= b a <= b false

a < b 1 1 1 0 0 0 1 0
a == b 0 1 0 0 1 1 1 0
a > b 1 1 0 1 0 1 0 0

Using the three intervals a < b, a == b, and a > b, Table III shows the sufficient and subsumed
mutations for all relational operators. Since there are only three intervals for all possible input tuples,
the sufficient set of non-redundant mutations for each relational operator contains three minimal-
distance mutations (Definition 5 and 7). Note that Kaminski et al. [13] previously suggested the
same sets of sufficient ROR mutations, using fault hierarchies. Therefore, the given subsumption
hierarchies for the ROR mutation operator confirm those prior results, using a different approach
(i.e., sufficient set of minimal-distance mutations).
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Table IV. Summary of the subject programs investigated in the empirical study. Non-comment and non-
blank lines of code (LOC) as reported by SLOCCount [15].

Application Version LOC Relational
operators

Conditional
operators

trove GNU Trove 3.0.2 116,750 7,937 1,945
chart jFreeChart 1.0.13 91,174 2,762 781
itext iText 5.0.6 76,229 5,293 1,760
math Commons Math 2.1 39,991 3,233 428
time Joda-Time 2.0 27,139 1,324 364
lang Commons Lang 3.0.1 19,495 1,618 695
jdom JDOM 2beta4 15,163 1,023 216
jaxen Jaxen 1.1.3 12,440 815 159
io Commons IO 2.0.1 7,908 345 139
num4j Numerics4j 1.3 3,647 312 133

total 409,936 24,662 6,620

3. EMPIRICAL EVALUATION

Given the findings of Section 2, the authors implemented the non-redundant versions of the COR,
UOI, and ROR mutation operators in the Major mutation framework [10, 14]. This section describes
an empirical study that used this enhanced version of Major to investigate the effect of redundant
mutants on the efficiency and accuracy of mutation analysis.

3.1. Methodology

The goal of this empirical study was to investigate the effects of redundant mutants on the efficiency
and accuracy of mutation analysis. Specifically, the empirical study aimed to answer the following
four research questions:

RQ1: What is the ratio of COR, UOI, and ROR mutants compared to all generated mutants?
See Section 3.2.

RQ2: How does the elimination of redundant mutants affect the efficiency of mutation analysis?
See Section 3.3.

RQ3: How does the elimination of redundant mutants affect the mutation score?
See Section 3.4.

RQ4: How does the elimination of redundant mutants affect the mutation coverage ratio?
See Section 3.5.

To answer those research questions, the empirical study considered the ten open-source subject
programs that are summarized in Table IV. Since the study focused on redundant mutants associated
with the COR, UOI, and ROR mutation operators, Table IV gives the counts for the occurrences of
relational and conditional operators in addition to the general description and lines of code.

The following sections report on the effects of redundant mutants on the efficiency and accuracy
of mutation analysis, according to the following two sets of mutants:

• Mall: Set of all mutants that includes subsumed COR, UOI, and ROR mutants (baseline).
• Mred: Reduced set of mutants that does not include subsumed COR, UOI, and ROR mutants.
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Table V. Characteristics of the analyzed test suites. Statement coverage (StmtCov) and branch coverage
(BranchCov) as reported by Cobertura [17]. Tdev denotes the developer-written test suites and Tgen the
generated test suites. The low coverage of Tdev for trove is caused by the inclusion of generated classes
not tested by Tdev. The low coverage of Tgen for chart is caused by the inclusion of GUI classes not tested

by Tgen.

Classes Tdev Tgen
Tests StmtCov BranchCov Tests StmtCov BranchCov

trove 691 544 7% 6% 13,527 77% 67%
chart 585 2,130 57% 46% 3,254 37% 28%
itext 408 75 20% 11% 4,468 57% 46%
math 408 2,169 88% 85% 2,643 68% 62%
time 156 3,855 90% 80% 2,172 75% 64%
lang 99 2,039 93% 90% 2,453 77% 71%
jdom 131 1,723 95% 94% 1,256 64% 47%
jaxen 197 699 78% 55% 1,210 83% 57%
io 100 309 39% 29% 624 57% 54%
num4j 73 218 97% 96% 341 65% 69%

Note that the two sets Mall and Mred both include mutants from all mutation operators — they only
differ in the number of COR, UOI, and ROR mutants.

In addition to the test suites that are released with the subject programs, the EvoSuite [16] test
generation tool was employed to generate an additional test suite for each program. EvoSuite was
executed with its default configuration using branch coverage as test objective. The following
two abbreviations are used to refer to the developer-written and generated test suites, whose
characteristics are summarized in Table V:

• Tdev: The developer-written test suites that are released with the subject programs.
• Tgen: The test suites that are generated with EvoSuite.

This study distinguishes between generated mutants and covered mutants. A test is said to cover
a mutant if it reaches and executes the mutated code. While the number of generated mutants is
test-independent and reflects the complexity and structure of the mutated program, the number of
covered mutants always depends on a given test suite. The mutation score S is usually defined
as the ratio of number of detected mutants to the number of generated mutants. Taking mutation
coverage information into account, a more detailed view on the mutation score is S = C ∗ S C where
C denotes the mutation coverage ratio and S C represents the mutation score with respect to the
number of covered mutants [18]. This separation offers a better view on the two aspects of test
effectiveness — that is, test coverage and test oracle strength [18, 19].

Besides, exploiting mutation coverage information is the state-of-the-art optimization in mutation
testing. A test that does not cover a mutant does not need to be executed on that mutant as it
cannot possibly detect it. In order to avoid biased results, the empirical study always employed the
mutation coverage optimization when evaluating the efficiency improvements due to the elimination
of redundant mutants.

Some mutants lead to infinite loops, for instance, the ones derived from mutating loop conditions.
To prevent the mutation analysis process from getting stuck, these infinite loops have to be identified.
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Figure 1. Function used to determine the timeout for mutants (base timeout factor=8).

Since it is undecidable in general whether or not a mutant will eventually terminate, a timeout
approximation was applied that depends on the run time of the original program. Figure 1 visualizes
the function used to determine the timeout for a certain test. This function uses a base timeout factor,
which decreases for longer run times, down to a minimum of two. Because the run time of a short test
is more likely to be influenced by small delays, inherent in the system, a considerably larger timeout
factor is used for short-running tests in conjunction with a lower bound of 100 milliseconds. Since
mutants are usually covered by several tests [20], the timeout is not fixed for a mutant but rather
depends on the run time of the test that covers that mutant. With regard to the individual tests of
which the run times differ by several orders of magnitude, this variable timeout is more sensitive to
varying run times. This approximation, like all heuristics for infinite loop detection, may produce
false-positive results. Nevertheless, the determined timeout only leads to an interruption of a test
execution if its run time is significantly prolonged. Interruption means that the execution of the test
that analyzes a certain mutant is stopped and the corresponding mutant is marked as being detected.

3.2. The ratio of COR, UOI, and ROR mutants

To answer the first research question, this section determines the ratio of mutants generated by the
COR, UOI, and ROR mutation operators. Figure 2 visualizes the ratio of mutants associated with
the COR, UOI, and ROR mutation operators (dark gray and black bars) compared to the number of
mutants generated by applying all mutation operators (light gray bar). Ranging from 31% for math
to 64% for trove, the number of mutants generated by the COR, UOI, and ROR mutation operators is
a substantial portion of all generated mutants. The mean ratio of 45% suggests that eliminating
redundant COR, UOI, and ROR mutants offers great potential for efficiency improvements. In
addition to the ratio of COR and UOI mutants, Figure 3 illustrates, for each subject program, the
distribution of the number of logical connectors used in conditional expressions. With a mean value
of 80% across the ten programs and a range between 63% for num4j and 86% for math, the number
of conditional expressions with only one connector is predominant for all programs.
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Table VI. Decrease in the number of generated mutants, total mutation analysis run time, and the number
of analyzed mutants. Run time is reported in minutes, and the overall row is calculated by considering all
tests over all mutants across all 10 programs. Tdev denotes the developer-written test suites and Tgen the
generated test suites. Baseline is the set of all mutants Mall, which includes the subsumed COR, UOI, and

ROR mutants. All decreases are statistically significant at the 1% level (Wilcoxon signed-rank test).

Generated Tdev Tgen
mutants Run time Analyzed mutants Run time Analyzed mutants

itext 126,781 (-21%) 427 (-31%) 19,541 (-24%) 1,034 (-28%) 76,245 (-21%)
trove 72,959 (-38%) 38 (-21%) 6,137 (-35%) 96 (-47%) 52,028 (-39%)
chart 68,503 (-26%) 582 (-26%) 36,298 (-28%) 145 (-18%) 21,565 (-28%)
math 66,787 (-18%) 473 (-12%) 60,148 (-19%) 209 (-13%) 43,300 (-21%)
time 23,781 (-27%) 340 (-22%) 19,577 (-29%) 222 (-35%) 17,719 (-30%)
lang 21,056 (-36%) 24 (-37%) 20,196 (-37%) 16 (-48%) 17,735 (-39%)
jdom 10,800 (-31%) 136 (-24%) 10,266 (-32%) 11 (-42%) 4,948 (-39%)
jaxen 7,132 (-30%) 431 (-11%) 4,679 (-30%) 62 (-15%) 4,760 (-37%)
io 7,319 (-26%) 5.0 (-32%) 4,255 (-18%) 1.5 (-38%) 4,998 (-28%)
num4j 5,437 (-25%) 1.8 (-36%) 5,243 (-25%) 1.3 (-38%) 3,747 (-31%)

overall 410,555 (-27%) 2,457 (-22%) 186,340 (-27%) 1,797 (-28%) 247,045 (-29%)

3.3. Effect of redundant mutants on the efficiency of mutation analysis

Answering the second research question, this section reports on the results of a full mutation analysis
performed to investigate the actual efficiency improvements due to the elimination of redundant
mutants. Using the smaller yet sufficient set of non-redundant mutations for the COR, UOI, and
ROR mutation operators implies that fewer mutants are generated overall. As shown in Table VI,
using the sufficient set of non-redundant mutations for the COR, UOI, and ROR mutation operators
significantly affects the number of generated mutants. The overall number of generated mutants
(i.e., all generated mutants for all subject programs) decreased by 27%. Depending on the ratio
of the COR/UOI and ROR mutants to all mutants (Figure 2), the decrease ranges between 18% for
math and 38% for trove. Note that this exclusion of mutants does not reduce the effectiveness of the
reduced set of mutants Mred since only subsumed (redundant) mutants are excluded.

Besides the decrease in the number of generated mutants, Table VI gives, for each subject
program, the decrease in the total mutation analysis run time and the number of analyzed mutants
for the developer-written and generated test suites. With an overall decrease in run time of 22%
for the developer-written test suites and 28% for the generated test suites, the results demonstrate
a significant speed-up for all subject programs. The observed speed-up depends on the ratio of the
COR, UOI, and ROR mutants generated for the programs and the run time of the tests that do not
cover these mutants. For instance, the test suites for math and jaxen contain a few long-running tests
that cover many mutants but only a few COR, UOI, and ROR mutants. Since the run time of these
tests is a considerable proportion of the total run time, eliminating redundant COR, UOI, and ROR

mutants only yields a modest decrease in total run time for math and jaxen. Figure 4 visualizes the
distribution of the ratio of analyzed mutants and total mutation analysis run time for the developer-
written and generated test suites.
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mutants Mall, which includes the subsumed COR, UOI, and ROR mutants.

Table VII. Difference between the mutation scores when using the set of all mutants Mall and the reduced set
of mutants Mred. Mutation scores calculated with respect to the number of covered mutants. Tdev denotes the
developer-written test suites and Tgen the generated test suites. The overall row is calculated by considering
all covered and detected mutants across all 10 programs. The differences between the mutation scores are

statistically significant at the 1% level for Tdev and Tgen (Wilcoxon signed-rank test).

Tdev Tgen
Mall Mred Mall Mred

itext 0.278 0.250 (-10%) 0.424 0.390 (-8.1%)
trove 0.657 0.580 (-12%) 0.688 0.618 (-10%)
chart 0.439 0.363 (-17%) 0.439 0.362 (-18%)
math 0.831 0.816 (-1.8%) 0.525 0.482 (-8.2%)
time 0.892 0.876 (-1.9%) 0.644 0.623 (-3.3%)
lang 0.790 0.740 (-6.3%) 0.560 0.509 (-9.0%)
jdom 0.828 0.802 (-3.1%) 0.618 0.563 (-8.9%)
jaxen 0.556 0.471 (-15%) 0.643 0.461 (-28%)
io 0.783 0.776 (-0.8%) 0.486 0.403 (-17%)
num4j 0.686 0.668 (-2.7%) 0.636 0.607 (-4.6%)

overall 0.679 0.644 (-5.2%) 0.547 0.485 (-11%)

3.4. Effect of redundant mutants on the mutation score

This section answers the third research question and shows how the elimination of redundant
mutants affects the mutation score with respect to the number of covered mutants — that is, the
number of detected mutants divided by the number of covered mutants. Table VII gives the mutation
scores for the test suites Tdev and Tgen when using the set of all mutants Mall and the reduced set of
mutants Mred. When applying the reduced set of mutants, the mutation score decreases for all test
suites with an overall decrease of 5% for Tdev and 11% for Tgen.

Unless redundant mutants are removed, the mutation score is overestimated for all test suites
investigated in this empirical study. This means that redundant mutants cause the mutation score
to less accurately reflect the test suites’ effectiveness and the elimination of redundant mutants
therefore improves the expressiveness of the mutation score. An accurate mutation score is of
particular importance if it is used as an absolute value, for instance, to drive test data generation [21].
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Table VIII. Comparison of mutation coverage with statement and branch coverage. Statement coverage and
branch coverage as reported by Cobertura [17]. Mutation coverage is given for the reduced set of mutants

Mred (values in parentheses give mutation coverage ratios for the set of all mutants Mall).

(a) Coverage ratios for developer-written test suites Tdev.

Mutation Coverage Statement Coverage Branch Coverage

itext 0.15 (0.16) 0.20 0.11
trove 0.08 (0.08) 0.07 0.06
chart 0.53 (0.55) 0.57 0.46
math 0.90 (0.91) 0.88 0.85
time 0.82 (0.85) 0.90 0.80
lang 0.96 (0.97) 0.93 0.90
jdom 0.95 (0.96) 0.95 0.94
jaxen 0.66 (0.65) 0.78 0.55
io 0.58 (0.52) 0.39 0.29
num4j 0.96 (0.97) 0.97 0.96

(b) Coverage ratios for generated test suites Tgen.

Mutation Coverage Statement Coverage Branch Coverage

itext 0.60 (0.60) 0.57 0.46
trove 0.71 (0.73) 0.77 0.67
chart 0.31 (0.33) 0.37 0.28
math 0.65 (0.67) 0.68 0.62
time 0.75 (0.78) 0.75 0.64
lang 0.84 (0.88) 0.77 0.71
jdom 0.46 (0.52) 0.64 0.47
jaxen 0.67 (0.73) 0.83 0.57
io 0.68 (0.70) 0.57 0.54
num4j 0.69 (0.75) 0.65 0.69

3.5. Effect of redundant mutants on the mutation coverage ratio

Answering the fourth research question, this section investigates the effect of redundant mutants on
the mutation coverage ratio. It also measures the correlation between mutation coverage and two
code coverage criteria, namely statement and branch coverage. Additionally, this section measures
and discusses the correlation between the mutation coverage ratio and the mutation score.

Table VIII provides the mutation coverage ratios as well as the ratios for statement and branch
coverage for the developer-written and generated test suites. Figure 5 and 6, furthermore, illustrate
the correlation between mutation coverage and the two code coverage criteria. For the investigated
test suites, the correlation between mutation coverage and both coverage criteria remains very strong
after eliminating redundant mutants. This observation suggests that mutation coverage can be used
as an alternative adequacy criterion for measuring code coverage.

Besides measuring the correlation, it is also important to consider the run time necessary to
measure the coverage ratios. In contrast to the mutation score, mutation and code coverage ratios can
be ascertained with only one execution of the test suite using an instrumented version of the original
program. Using Major to measure mutation coverage and Cobertura to measure code coverage,
mutation coverage could be calculated 45% faster on average in the experiments. Given the strong
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Figure 5. Correlation between mutation coverage and statement coverage.
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Figure 6. Correlation between mutation coverage and branch coverage.
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Figure 7. Correlation between mutation coverage and mutation score using all test suites.

correlation and low costs of determining mutation coverage, one could exclusively employ mutation
analysis to assess the overall effectiveness (i.e., coverage and test oracle strength) of a test suite. The
costs for measuring coverage may, however, depend on the code instrumentation and the employed
tool, and therefore additional studies are necessary to confirm the run-time observations.

Furthermore, Figure 7 shows that there is only a moderate correlation between mutation coverage
and the mutation score for the investigated test suites, suggesting that a high degree of mutation
coverage is not necessarily a good indicator of test oracle strength.
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3.6. Threats to Validity

This section examines the threats to validity for the conducted empirical study. The chosen set of
sufficient mutation operators could be a threat to internal validity. Different or additional operators
may affect both the number and the ratio of redundant mutants. However, the mutation operators
employed in the presented study are frequently used in the literature and provide comparable results
(e.g., [5, 6, 22]). In addition to the mutation operators, the function chosen to determine the timeout
for the mutants could be another threat to internal validity. A timeout factor that is too small
would result in a noticeable number of false-positives and introduce a bias towards the run-time
improvements. This threat was controlled by manually analyzing samples of mutants that ran into
a timeout and also by comparing the numbers of timeouts for different timeout factors. Mutants
that were detected due to a timeout exhibited syntactic changes that caused the detecting test to
run exceptionally long or infinitely. Furthermore, the empirical study reports on two alternative
efficiency metrics (decrease in the number of generated mutants and decrease in the number of
analyzed mutants) — all three metrics led to the same overall conclusion.

The representativeness of the selected subject programs might be a potential threat to external
validity. To address this issue, the empirical study considered programs that vary in terms of size
and operation purpose. Additionally, the preliminary study [23] was extended to verify that the
results generalize to a certain extent. For this purpose, more subject programs were added and the
entire study was repeated with a generated test suite for each program.

Defects in the employed mutation tool could be another threat to validity. This threat was
controlled by employing several example programs and manually analyzing the resulting mutants
and data. Besides, the Major mutation framework was used in previous studies without encountering
any problems. Considering the results about the accuracy and expressiveness of the mutation score,
the determined mutation score only adequately reflects the effectiveness of a test suite if the injected
mutants are representative for real faults. This threat to construct validity is, however, not unique to
this study but rather applies to all studies using mutation analysis. The assumption that mutants are
a valid substitute for real faults is widely accepted due to existing empirical evidence [24, 25, 26].
Provided that this assumption holds, the exclusion of redundant mutants not only improves the
efficiency of mutation analysis but also the expressiveness of the mutation score, which is commonly
used as a proxy for test effectiveness.

4. RELATED WORK

Several cost-reduction approaches for mutation analysis have been suggested in the literature
(cf. [6, 27]). This section discusses the closest related work that focuses on the reduction of mutants.

Generally, mutant reduction techniques reduce the quantity of mutants either by decreasing the
number of mutation operators or by sampling the set of generated mutants [4, 5, 28]. The reduced
set of mutants can be applied more efficiently but incurs a loss of information. Additionally, existing
approaches view the mutation operators, in their originally defined form, as atomic. Hence, there are
still redundancies within the reduced set of mutants. In contrast to prior studies, this paper focuses
on the reduction of mutants without any loss of information — only subsumed mutants are excluded.
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The set of applicable mutation operators depends on the programming language. While this paper
focuses on the mutation analysis of unit tests for Java programs, mutation operators have been
suggested for many other languages, such as Fortran or C (e.g., [7, 29]). Moreover, mutation analysis
is also applicable in the context of integration or system testing (e.g., [6, 18, 30]).

Considering run-time improvements for a given set of generated mutants, exploiting mutation
coverage information is the most common optimization to avoid unnecessary mutant executions
(e.g., [10, 16, 31]). Mutation coverage is used as the baseline for efficiency evaluations in this
paper to provide a fair comparison. Just et al. investigated efficiency improvements due to test suite
prioritization in a related study, which primarily focused on test suite characteristics and different
test suite prioritization approaches to improve the efficiency of mutation analysis [20]. In contrast,
this paper investigates the effect of eliminating redundant mutants on the efficiency and accuracy of
mutation analysis.

With regard to redundant mutants, Kaminski et al. investigated the ROR mutation operator and
showed that a subset of all valid replacements is sufficient for this operator [13]. They additionally
claimed, without further investigation, that this reduction would improve efficiency. In contrast,
this paper confirms that a sufficient set of non-redundant mutations exists for the ROR mutation
operator, and also provides sufficient sets of non-redundant mutations for the COR and UOI

mutation operators. Furthermore, this paper provides an empirical study that investigates the actual
efficiency improvements due to the elimination of redundant mutants. In connection with testing
conditional and relational operators, Tai developed a theory for testing the predicates in conditional
statements [32].

Considering mutant reduction techniques, higher order mutation aims at generating fewer yet
subtle mutants [12]. A mutant created by combining two simple (first-order) mutants is referred
to as second order mutant. Accordingly, higher order mutation generally denotes the combination
of two or more first-order mutants. Jia and Harman showed the existence of higher order mutants
that are harder to detect than the first-order mutants of which they were created. The computational
costs for higher order mutation are significantly greater because of the combinatorial explosion, but
search-based approaches seem to be a feasible solution to this problem [12].

Besides redundant mutants, the equivalent mutant problem is another crucial challenge in
mutation testing. Equivalent mutants are harmful to the run time of the mutation analysis process
since they cannot be detected by any test. Additionally, employing a set of mutants that includes
equivalent mutants results in an underestimation of the mutation score. Approaches that try to
alleviate the equivalent mutant problem can be divided into two categories: (1) Approaches that
avoid generating equivalent mutants during the mutant generation process (e.g., [33, 34]) and (2)
approaches that focus on the detection of equivalent mutants (e.g., [35, 36, 22]).

5. CONCLUSIONS AND FUTURE WORK

This paper investigates how redundant mutants affect the efficiency and accuracy of mutation
analysis. Focusing on three well-known mutation operators, namely the conditional operator
replacement (COR), unary operator insertion (UOI), and relational operator replacement (ROR)
mutation operators, it makes the following contributions.
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This paper first develops a subsumption hierarchy and provides a sufficient set of non-redundant
mutations for the COR, UOI, and ROR mutation operators. The paper shows that 4 out of 10 COR

mutations are sufficient and that the COR mutation operator subsumes the UOI mutation operator for
boolean expressions. The paper also confirms prior results and shows that 3 out of 7 ROR mutations
are sufficient.

The empirical study in this paper demonstrates how redundant mutants affect the efficiency and
accuracy of mutation analysis. Besides showing how prevalent COR, UOI, and ROR mutants are
for real-world programs, the study reveals that eliminating redundant mutants decreases the total
mutation analysis run time by more than 20%. Moreover, the study shows that the inclusion of
redundant mutants misleadingly overestimates the mutation score. Comparing mutation coverage
with statement coverage, branch coverage, and the mutation score, the study reveals that mutation
coverage has a very strong correlation with statement and branch coverage but only a moderate
correlation with the mutation score.

Given the results reported in the empirical study, areas for future work include the determination
of sufficient sets of non-redundant mutations for other mutation operators, such as the arithmetic
operator replacement (AOR). The notion of determining a minimal distance between a mutation
and its original version should be transferable to other mutation operators as well. In addition, this
paper investigates intra-operator redundancies but mutants derived from different mutation operators
might also exhibit redundancies. Therefore, the investigation of inter-operator redundancies is
another area for future work.

The Major mutation framework and the experimental data is publicly available at:

http://mutation-testing.org
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