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Automating Unit and Integration Testing with Partial

Oracles

Rene Just · Franz Schweiggert

Abstract The oracle problem is an essential part in current research on automating

software tests. Partial oracles seem to be a viable solution, but their suitability for

different testing steps and general applicability for various systems remains still to be

shown. This paper presents a study in which partial oracles are applied in order to

automatically test a jpeg2000 encoder as an example for a modular software system

with several integrated units and components. The effectiveness of the partial oracles

is measured by means of mutation analysis to determine their adequacy for both unit

and integration testing. Additionally, the paper presents possibilities of improving the

effectiveness as well as the efficiency of the employed partial oracles. It shows how the

knowledge of certain characteristics of the system to be tested, such as linearity or

time-invariance, may lead to a better choice of partial oracles and thus to an improved

effectiveness and efficiency.

Keywords Test Automation, Partial Oracles, Metamorphic Testing, Integration

Testing, Mutation Analysis, Random Testing

1 Introduction

Increasing the level of automation is a crucial part in current research on software

engineering and especially software testing. Automating software tests is a complex

task which concerns not only the execution of test cases but also the generation of

appropriate input values and the evaluation of the corresponding outputs. Selecting

a suitable model for input value generation and an appropriate oracle to verify the

outputs can be referred to as testing strategy. In order to achieve reliable results from
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testing, this strategy has to cover the semantics of the implementation which is to

be investigated since appropriate oracles and input values are correlated with both

structure and processing logic.

Regarding the inputs, random or adaptive random generation is an established

approach since it is suitable for most environments and an unbiased technique. The

resulting outputs are evaluated by means of an oracle [3]. However, the usage of ran-

domly generated inputs often results in the oracle problem [22] if an appropriate oracle

is not available. Regarding the oracle problem various standard solutions (cf. [3]) exist

which are, however, only employable in rare situations. On the other hand a promising

class of oracles, the partial oracles [22], are considered to be easily automatable, more

often applicable and should therefore be used for automating software tests [2]. These

oracles are referred to as partial oracles because they cannot determine the correct out-

put of a system. They only exploit constraints of the underlying function or algorithm

in order to identify faults within the tested system. A trivial example for a partial

oracle concerning the trigonometric sine function is for instance the equation:

sin(−x) = − sin(x)

If this equation is not fulfilled by an implementation of the sine function, it can be

judged to be faulty even without the knowledge of the correct output of sin(x) or

sin(−x). However, an implementation which does not violate this constraint could still

be faulty if it computes the same wrong output for sin(x) and sin(−x).

With regard to integration testing, where several units are combined to a sub-

system, partial oracles have to be able to verify necessary conditions of the complete

subsystem in order to be applicable. In comparison with unit testing, these necessary

conditions of the complete subsystem might be less restrictive than the conditions of

the individual units since they must hold for the complete subsystem. If, for instance,

a software unit implements a linear time-invariant system, we can exploit the linearity

to define necessary conditions which have to be fulfilled by the implementation. Now,

if a subsystem which contains this unit is no longer linear and time-invariant, these

necessary conditions do not hold for the integrated system and cannot be used as par-

tial oracles. As a consequence, partial oracles applicable for the complete (sub)system

could be less effective than partial oracles constructed for an individual unit of this

system. Therefore, the question arises whether partial oracles are in principle adequate

in the field of integration testing and, if so, how suitable they are.

This paper presents a study of constructing and applying partial oracles in order

to automatically test several parts of an image processing application, more precisely

a modular and object oriented jpeg2000 encoder. The study relies on random input

generation and furthermore on mutation analysis to assess the effectiveness of the

generated inputs as well as the applied partial oracles. It analyzes the adequacy of the

chosen partial oracles for unit and integration testing and investigates additionally the

complexity of the partial oracles as well as possible improvements of their effectiveness

and efficiency. The remainder of the present paper is structured as follows: Section 2

deals with the basics of random input generation, partial oracles, and mutation analysis.

The applied approach to evaluate the input values and partial oracles is also explained

in this section. Thereafter, Section 3 describes the study in detail and discusses the

corresponding results. Potential threats to validity are described in Section 4 and finally

Section 5 concludes the paper and discusses future work.
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Fig. 1 Input generation model for color images.

2 Preliminaries and Related Work

Concerning the input values, which have to be complete images in our case, it is obvi-

ously infeasible to cover all possibilities of the whole input range. Moreover, creating

input values manually is time-consuming, particularly for image processing applica-

tions which deal with complex input values, and hence not convenient. Thus, we rely

on random input generation in order to create the inputs efficiently since this tech-

nique is simple and versatilely applicable in most environments. Various models for

generating gray level images, such as the random or boolean model, are available and

in our study the random model is applied, which determines the gray scale value of

each pixel independently.

In order to obtain color images, the random model for gray-level images has been

extended as shown in Figure 1. Each color component of the RGB color space is created

independently by means of the random model and the complete image is achieved

by merging all three components. That means that a gray-scale image is randomly

generated for every color component red (R), green (G), and blue (B). Then these

images are interpreted as color components, i.e., their gray-scale values represent the

according color values of red, green, or blue. Finally, the union of the color components

forms the resulting, randomly generated, color image. Generating a gray-scale image

randomly is equal to computing a matrix in which every coefficient, which represents

a pixel, is randomly generated. Since the resulting matrix shall represent a gray-scale

image, the values of all coefficients have to be restricted to the interval [0, 255]:

⇐⇒












128 128 128 128 128 128

128 128 128 128 128 128

70 70 70 70 70 70

70 70 70 70 70 70

170 170 170 170 170 170

170 170 170 170 170 170












With regard to the randomly generated input values, we face the oracle problem which

is in our case to be alleviated by means of partial oracles. However, this class of oracles

can only check necessary conditions but cannot verify sufficient conditions. Thus, one

of the main characteristics of partial oracles is that their results may be false negative,

i.e., if the oracle judges the System Under Test (SUT) to be correct, it may still contain

a fault since it only fulfills the necessary conditions. On the other hand, if such an oracle
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Fig. 2 Exploiting the commutativity of the two-dimensional Wavelet Transformation as par-
tial oracle by means of the matrix transposition.

reveals a defect in the SUT, the system contains definitely a fault. It thus becomes clear

that assessing the oracles is necessary since they may not detect every fault and the

effectiveness of the applied testing strategy depends on the quality of the oracle.

Associated with the class of partial oracles is for instance metamorphic testing

which exploits properties of the SUT in order to evaluate the corresponding depen-

dencies between inputs and outputs. The properties are described using metamorphic

relations (cf. [6]) consisting of two relations RI and RO. Assume I to be the input

domain, O the output range, and f a mapping f : I → O. In addition, RI ⊆ In and

RO ⊆ In × On. The pair (RI , RO) is called a metamorphic relation if and only if the

following implication is fulfilled:

(i1, . . . , in) ∈ RI ⇒ (i1, . . . , in, f(i1), . . . , f(in)) ∈ RO

An example for testing with such partial oracles is depicted in Figure 2 where the

relation between the inputs RI is the matrix transposition. The relation between the

resulting outputs RO is also the matrix transposition because of the commutativity of

the two-dimensional Wavelet Transformation which is the SUT in this case. The work-

flow of metamorphic testing can thus be described briefly as given below (c.f. [23]).

1. Generate a follow-up test case from an arbitrary input according to a relation RI .

2. Execute the SUT independently with both inputs.

3. Verify whether the resulting outputs fulfill the corresponding relation RO.

As already mentioned, the applied partial oracles have to be assessed in order to achieve

reliable test results. For this purpose, mutation analysis is used which is a fault-based

approach, originally introduced in [4,8], and appropriate for testing and benchmarking

purposes [1,9]. Aiming at measuring the quality of a given testing strategy, faults

are seeded systematically into the SUT and the corresponding testing strategies are

verified with regard to their ability to reveal the injected faults. The way of applying

mutation analysis is formally specified by mutation operators [13,18] and the resulting

faulty versions of the SUT are referred to as mutants. The mutation operators can
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be distinguished between traditional and class-based operators (cf. [14]). Traditional

operators are applied at the functional or method level and the class-based ones operate

at class level in object oriented systems. If a fault is revealed by a test case, the

corresponding mutant is said to be killed. Accordingly, relating the number of all killed

mutants to the total number of generated mutants is appropriate to measure the fault-

finding capability of the applied testing strategy. However, a mutant cannot be killed

under all circumstances. In fact, when the mutation does not affect the semantics

of the SUT, there exists no test case that can detect the mutation. In this case, the

mutant is said to be equivalent (c.f. [17]). Thus, disassociating equivalent mutants from

the complete repertoire provides an improved assessment of the effectiveness with the

subsequent measure, the mutation score MS:

MS =
Mk(Number of killed mutants)

Mt(Number of non-equivalent mutants)

In order to kill a mutant, three necessary conditions have to be fulfilled (cf. [21]):

1. The mutated code has to be reached and executed.

2. The mutation has to change the state of the program.

3. The change has to be propagated to the output.

Obviously, the first condition (reachability) is solely related to the input values, apart

from dead code fragments, and the latter can be reduced to the question of semantic

equivalence. Since a testing strategy consists of an input generation model and an oracle

to evaluate the outputs, the adequacy of a strategy depends on both the quality of the

input values and the capability of the oracle. However, the effectiveness of the oracle is

correlated with the quality of the input values according to the reachability condition.

Mutation analysis can be employed to assess both parts of the strategy. First, the

input values can be evaluated with the original implementation as a perfect oracle. The

resulting mutation score MSI for the inputs provides an upper bound for the mutation

score of the complete strategy since the perfect oracle, i.e., the best available oracle,

is applied in this step. The (partial) oracle of the strategy can then be assessed with

the input values which have been determined in the first step. Only the mutants killed

by the perfect oracle are used in the second step because all other mutants cannot be

killed. It has to be pointed out that the perfect oracle is never applied in this second

step because a mutant is said to be killed, by the oracle which is to be assessed, if and

only if it violates the constraints represented by the applied (partial) oracle. Hence,

the mutation score MSO of the investigated oracle represents the number of mutants

killed by this oracle related to the number of killable mutants (i.e., mutants killed by

the perfect oracle). Now, in order to express the dependency of MSO and MSI , we

have to define the overall mutation score MSS for a complete testing strategy as:

MSS = MSI ·MSO

Let M
p
k

be the number of mutants killed by the perfect oracle with respect to the

applied input generation model. Furthermore, Mt denotes again the total number of

non-equivalent mutants of the SUT and Mk represents the number of mutants killed

by the employed (partial) oracle. The mutation score MSS is equal to MS:

MSS = MSI ·MSO =
M

p
k

Mt
·
Mk

M
p
k

=
Mk

Mt
= MS

The separated evaluation, however, provides a better view on the effectiveness of the

individual parts of the testing strategy.
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Fig. 3 The investigated subsystem for preprocessing and decorrelation.

Let us consider the following example:

– Number of non-equivalent mutants: 900

– Mutants killed by the perfect oracle: 882

– Mutants killed by the (partial) oracle: 750

By employing the above equation we obtain the corresponding mutation scores:

MSS =
882

900
·
750

882
= 0.98 · 0.85 = 0.83 =

750

900
= MS

In order to increase the effectiveness of the assessed testing strategy it would be ad-

visable in this case to focus on the applied oracle because the input generation model

yields a satisfying result of 0.98. Aiming at evaluating the applied oracle exclusively,

reliable results can only be achieved for almost perfect input values, i.e., MSI ≈ 1.

The effectiveness of the generated inputs might be assessed with other metrics. The

degree of certain code coverage criteria such as statement or branch coverage is, for

example, also applicable for this purpose (cf. [24]). Nevertheless, we rely exclusively

on mutation analysis in this study. It has to be pointed out that mutation analysis is

not feasible without appropriate tool support. Tools are available for lots of common

programming languages like Fortran, C#, or PHP. MuJava [14,16] is for instance an

established tool in the field of Java applications and used in the present paper.

3 Case Study

The selected SUT is a Java implementation of the jpeg2000 encoder which is part of the

JJ2000 library [10,11]. This encoder is a system consisting of several concatenated sub-

systems which in turn consist of various combined transformations. The system to be

investigated, illustrated in Figure 3, is a complex and large subsystem which is responsi-

ble for preprocessing and decorrelation. The size, measured in Lines of Code (LOC), of

the individual parts and the complete subsystem is depicted in Table 1. The overall size

of the jpeg2000 encoder and the jj2000 library is 14k LOC and 30k LOC, respectively.

Generally, the selected SUT takes, as shown in Figure 3, an uncompressed color

image as an input value and executes the following workflow:

1. Split color image into color components red (R), green (G), and blue (B).

2. Shift the color values of each color component.

3. Transform RGB color components into YCbCr components.

4. Decompose components by applying the two-dimensional wavelet transformation.
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Table 1 Software packages and physical lines of code of the investigated subsystem.

DC-shift/color
transformation

Decomposition
Wavelet
transformation

Complete
subsystem

LOC* 1422 964 2010 4396

Package jj2000.j2k.image jj2000.j2k.wavelet jj2000.j2k.wavelet jj2000.j2k

* LOC as reported by sloccount (non-comment and non-blank lines).

As a consequence of this workflow, the outputs of the SUT are three individually decom-

posed color components where each of them contains a DC component (approximation

of the color values) and three detail components (differences between pixels). Further

background information on the encoder as well as the complete jpeg2000 standard is

described in detail e.g., in [7,19].

Generally, the usage of randomly generated inputs, as applied in this study, results

in the oracle problem for image processing applications. Therefore, handcrafted or well

known standard test images are usually employed for which the expected output can

be defined in advance. However, the oracle problem is avoided in our study, as already

mentioned in Section 1, by means of partial oracles. Aiming at automatically testing

this integrated subsystem with partial oracles, the oracles have to be applicable to the

complete subsystem. Therefore, the following oracles have been chosen:

R1: A constant offset is added to every color value of the input image. Because of

this constant offset, the mean color value of each color component changes but the

difference between two pixels remains the same. Therefore, only the DC component

must be increased (or decreased if the offset is a negative value) by the constant offset.

RI=⇒
RO
⇐⇒

R2: The color values of the input image are multiplied by a constant factor. As a

consequence, the mean color value as well as the differences between pixels are affected.

Thus, the DC component and all detail components have to be changed with respect

to the constant factor.

RI=⇒
RO
⇐⇒

R3: The input image is transposed by means of the standard matrix transposition.

Because of the linearity of the SUT and the commutativity of the two-dimensional

wavelet transformation, the resulting components (DC component and detail compo-

nents) have to be transposed as well.

RI=⇒
RO
⇐⇒

R4: The pixel values of each row within the input image can be regarded as a signal

and since the SUT is linear and time-invariant, these signals can be shifted. For this

purpose, the image width is enlarged with a defined number (constant for all rows) of

leading zeros. Consequently, the resulting components also have to be shifted.

RI=⇒
RO
⇐⇒
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R5: Applying an inverted image to the SUT has to result in inverted components due

to the linearity of the SUT. Hence, the color values of the input image are inverted

and all resulting components have to be affected.

RI=⇒
RO
⇐⇒

All oracles can be described as metamorphic relations and summarized as follows:

R1 RI : Add an offset to the color values.

RO: Only the DC component must be affected.

R2 RI : Multiply the color values by a coefficient.

RO: Every pixel has to be affected.

R3 RI : Transpose the pixel array of the input image.

RO: The resulting components have to be transposed.

R4 RI : Enlarge the input image with zero-padding.

RO: The resulting components have to be shifted.

R5 RI : Invert the color values of the input image.

RO: The color values of the resulting components have to be inverted.

The metamorphic relations are implemented as matrix transformations. This means

that on the one hand the color components of the randomly generated input values

are mapped to follow-up matrices (according to RI). On the other hand, the result-

ing outputs of the execution of the follow-up test cases are normalized (i.e., they are

transformed according to the corresponding relation RO) and then they are compared

with the output of the randomly generated input.

Based on the bipartite approach already mentioned in Section 2, we investigate the

adequacy of these partial oracles for testing purposes with respect to the integrated

subsystem. In total, 1977 non-equivalent traditional mutants can be generated for the

complete subsystem. Additionally, 206 non-equivalent class-based mutants can be ob-

tained (e.g, in interfaces between the transformations). The following examples of mu-

tation operators illustrate the difference between traditional and class-based mutants:

Traditional mutants

– int a = b + c; =⇒ int a = b - c;

– if(a && b){...}; =⇒ if(a || b){...};

Class-based mutants

– component.setWidth(5); =⇒ component.setHeight(5);

– A obj = new A1(); =⇒ A obj = new A2();

The class-based mutants represent structural defects in contrast to the traditional

mutants which are injected at the functional level. Thus, the class-based mutants can

be regarded as faults which could have been introduced by a programmer during the

integration of software units. It has to be pointed out that the class-based mutants are

obligatory in this study since we aim at assessing the adequacy of partial oracles for

integration testing.
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Fig. 4 Fitness landscapes for (a) the Wavelet Transformation and (b) the Decomposition.

3.1 Evaluation of Input Values

Corresponding to the reachability condition, the mutated code has to be covered in

order to be detected. Hence, the effectiveness of the partial oracles is heavily dependent

on the input values. Consequently, we assess the input values in a first step, as described

in Section 2, to provide the most adequate inputs for evaluating the partial oracles.

Considering the input values, different properties like the image dimension (i.e., width

and height) or the color depth may affect the suitability. However, it turned out that

only the image dimension has an impact. Thus, images with different width and height

are applied to determine the most appropriate inputs.

In order to achieve the highest possible mutation score for the input values MSI ,

we use an exhaustive search over a limited and reduced search space. Therefore, we

apply randomly generated images, employ the original implementation as a Golden

Standard Oracle [3] (i.e., as the perfect oracle), and use the mutation score as fitness

function. The remaining mutants not killed after the search are inspected to reject the

equivalent mutants and to get the correct mutation score. This task is done manually

but approaches exist to identify several equivalent mutants automatically (cf. [17]). Two

examples for resulting fitness landscapes are shown in Figure 4(a) and 4(b). The input

values are classified according to their effectiveness (mutation score). That means, all

images within a certain equivalence class yield exactly the same mutation score when

employing them as input value and applying the perfect oracle. More precisely, the

same mutants are killed by all images of the same equivalence class. Considering, for

example, the fitness landscape of the Decomposition in Figure 4(b), we could identify

exactly three equivalence classes in this case:

1. width < height

2. width = height

3. width > height

However, no class achieves a mutation score of 100%, this means that several runs of

the SUT are necessary to collectively reach the full mutation score. In general, if the

input images related to the most effective class are sufficient to kill all non-equivalent

mutants a conjunction of multiple classes, which implies several runs of the SUT, is

not necessary. Otherwise the classes have to be combined to collectively kill all of the

mutants. As one can see by means of Figure 4(a), multiple executions are not necessary

in this case since input images exist which achieve a mutation score of 100%.
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Fig. 5 Code coverage for the Wavelet Transformation as reported by cobertura.

As already mentioned in Section 2, another metric could be applied as fitness

function in this first step. For this reason, we investigate two code coverage metrics

as fitness function in addition to the mutation analysis. We use statement and simple

branch coverage within the same search space. An advantage of both code coverage

metrics is that of their being less expensive than mutation analysis. For every input

value the SUT has to be evaluated just once. However, it turns out that both metrics

are weaker criteria than mutation analysis. Considering the three conditions to kill

a mutant, the first one (reachability) is obviously a necessary condition for all three

metrics. In contrast to the mutation analysis this condition is, however, also sufficient

for the code coverage metrics. Since we apply all mutation operators, available within

the mutation tool, every basic block and expression is mutated. In addition, almost

every statement is mutated. Thus, mutation analysis implies both code coverage criteria

in this case and is according to this fact the stronger criterion. Example results of the

exhaustive searches are depicted in Figure 5(a) and 5(b). As one can see, the coverage

criteria achieve quite often a degree of 100%. Compared with the mutation score of

the diagram in Figure 4(a) it becomes clear that input values exist which cover all

statements and branches, but they are not able to kill all of the mutants.

It has to be pointed out that Search Based Techniques [15] may be more efficient

for larger search spaces. Additionally, the exhaustive approach is no longer feasible for

huge input domains. Since we exactly know where the mutation is located in the source

code, one could alternatively transform the problem of searching adequate inputs, which

cover the mutation, into a path problem (c.f. [20]).

3.2 Evaluation of the Partial Oracles

The partial oracles are investigated with regards to both the capability to reveal faults

in each transformation and the overall effectiveness for the complete subsystem. It

has to be pointed out that roughly 40% of the traditional and 20% of the class-based

mutants throw a runtime exception, when the corresponding mutated code is covered,

mostly because of invalid array indexes or references. Due to the restrictions of the

Java programming language, these faults could thus be revealed without a particular

oracle. However, all partial oracles catch these exceptions and mark the corresponding
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Table 2 Effectiveness of the applied partial oracles for the particular transformations and the
complete subsystem concerning the traditional mutants.

DC-shift/color
transformation

Decomposition
Wavelet
transformation

Complete
subsystem

Total 608 441 928 1977

R1 504 (82.89%) 402 (91.16%) 860 (92.67%) 1766 (89.33%)

R2 489 (80.43%) 381 (86.39%) 859 (92.56%) 1729 (87.46%)

R3 482 (79.28%) 413 (93.65%) 904 (97.41%) 1799 (91.00%)

R4 394 (64.80%) 398 (90.25%) 876 (94.40%) 1668 (84.37%)

R5 456 (75.00%) 372 (84.35%) 781 (84.16%) 1609 (81.39%)

Table 3 Comparison of the effectiveness of the applied partial oracles for the complete sub-
system with respect to the different kind of mutants.

Traditional mutants Class-based mutants

Total 1977 206

R1 1766 (89.33%) 151 (73.30%)

R2 1729 (87.46%) 146 (70.87%)

R3 1799 (91.00%) 119 (57.77%)

R4 1668 (84.37%) 84 (40.78%)

R5 1609 (81.39%) 87 (42.23%)

mutants as killed in this study. Consequently, the number of detected faults includes

those mutants killed by an exception.

The effectiveness of the partial oracles varies notably with respect to a specific

transformation, as illustrated in Table 2. Concerning the DC-Shift in conjunction with

the Color Transformation, the relation R1, which kills 504 mutants, is for instance

much more effective than R4, which reveals only 394 defects. In reference to the total

number of 608 non-equivalent mutants, this represents a considerable discrepancy in

the mutation score between 83% and 65%.

In addition, the effectiveness of the applied oracles differs with regard to the specific

parts of the subsystem and thus, none of them is adequate for all transformations.

Considering, for example, the DC-Shift and Color Transformation, the relation R1

yields the highest mutation score for this part of the subsystem. However, in the field

of the Wavelet Transformation, the effectiveness of R1 is only average in comparison

with the other relations.

Furthermore, there are substantial differences in the effectiveness for the different

kind of mutants as shown in Table 3. The relation R3 is for instance the most effective

oracle concerning the traditional mutants with an overall mutation score of 91% and

ranging between 80% and 97% with regard to the individual transformations. It is,

however, rather poor in killing the class-based mutants with a ratio of approximately

58%. Hence, it would be a fallacy to conclude that an oracle which is highly effective

for testing a specific transformation, or more generally an individual unit of a subsys-

tem, is as a consequence of this equally suitable for integration testing. Moreover, the

effectiveness of the applied relations is insufficient concerning the class-based mutants,
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Table 4 Increase in effectiveness of the applied partial oracles by means of combination of
the two most effective oracles (Rx & Ry) and all oracles (R1, R2, R3, R4, and R5).

Total Rx Ry Rx & Ry All oracles

Traditional mutants

DC-shift/color transformation 608 R1 R2 544 (89.47%) 553 (90.95%)

Decomposition 441 R3 R1 422 (95.69%) 430 (97.51%)

Wavelet transformation 928 R3 R4 923 (99.46%) 923 (99.46%)

Complete subsystem 1977 R3 R1 1889 (95.55%) 1906 (96.41%)

Class-based mutants

Complete subsystem 206 R1 R2 193 (93.69%) 200 (97.09%)

even though the results achieved by the relations are predominantly sufficient with

respect to the traditional mutants.

In order to increase the effectiveness and achieve satisfying results, the partial ora-

cles may be combined. Therefore, the two most effective oracles are combined pairwise

and additionally the overall effectiveness of the partial oracles altogether is investigated.

A combination in this case means that all of the combined partial oracles are applied

individually and the mutation score collectively achieved equates to the effectiveness of

the combined oracles. The results for each transformation as well as for the complete

subsystem are depicted in Table 4 where Rx and Ry represent the most effective and

the second most effective oracle with respect to the corresponding transformation. Re-

garding, for instance, the Wavelet Transformation, R3 is the most effective oracle and

R4 is the second most effective one. Thus, the column ”Rx & Ry“ denotes the mutation

score collectively achieved by the combination of these both oracles.

As one can see, the combination of the partial oracles can significantly increase

their effectiveness, especially with regard to the class-based mutants. The conjunction

of the two most effective relations leads to a mutation score of 94% for the class-based

mutants and an overall mutation score of 95% for all traditional mutants. In addition,

the variance is reduced significantly since all ratios are not less than 90%.

On the other hand, the additional benefit of combining all partial oracles is rather

small compared with the pairwise combination of the two most effective ones. The

necessary effort of applying two more oracles is disproportionate compared to the

further increase of at most 2% for the traditional and 3% for the class-based mutants.

3.3 Efficiency and Effectiveness Improvements

Considering the complexity of the partial oracles, we can distinguish between code

and model complexity. Metrics for the code complexity are for instance Lines Of Code

(LOC) or McCabe’s cyclomatic complexity which is a measure for the structural com-

plexity. Based on the control flow graph, let N be the number of nodes, E the number

of edges, and P the number of connected components. McCabe’s cyclomatic complexity

C is then defined as:

C = E −N + 2 · P

Both metrics are indicators for the effort to implement the corresponding partial oracle.
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Table 5 Complexity and effectiveness of applied partial oracles (Params denotes the number
of parameters of the corresponding oracle and Inputs represents the number of necessary runs
of the SUT).

LOC McCabe Params Inputs Mutation score

RI RO Traditional Class-based

R1 363 17 11 1 2 89.33% 73.30%

R2 352 17 6 1 2 87.46% 70.87%

R3 327 10 5 0 2 91.00% 57.77%

R4 398 20 11 1 2 84.37% 40.78%

R5 331 17 6 0 2 81.39% 42.23%

On the other hand we use the term model complexity for the costs of applying

the partial oracle. The model complexity is predominantly defined by the number of

parameters and additionally by the number of necessary inputs, which is equal to the

number of required runs of the SUT. Obviously, the number of parameters is more

severe since the partial oracle has to be applied for every parameter value which is to

be investigated. Considering for example the oracle R2 which can be described as:

SUT (c · I)
︸ ︷︷ ︸

run#1

= c · SUT (I)
︸ ︷︷ ︸

run#2

The only parameter of this oracle is the factor c which has to be chosen. In addition,

the SUT has to be executed twice in order to apply this oracle. Thus, the partial oracle

expects two inputs, namely I and c · I. It has to be pointed that the difference between

parameter an input is of particular importance. The oracle needs to be calibrated if

it contains a parameter and the choice of the parameter value has an impact on the

effectiveness. The code and model complexity as well as the overall mutation score of

the investigated oracles are depicted in detail in Table 5.

Given the complexity and effectiveness (mutation score) of the employed partial

oracles, we focus on the oracles R1 and R3 for further improvements of effectiveness

and efficiency since they achieve the highest mutation score for the class-based and

traditional mutants, respectively. In order to avoid the additional parameter of R1, the

constant offset, we can generalize this partial oracle by adding a randomly generated

offset to each coefficient. For this purpose, the new partial oracle R6 generates another

random image R with the same dimension as the input I and adds both together with

the standard matrix addition. Because of the linearity of the SUT, the necessary con-

dition which has to be fulfilled by the SUT can be described by the following equation:

(R6) SUT (I +R)
︸ ︷︷ ︸

run#1

= SUT (I)
︸ ︷︷ ︸

run#2

+SUT (R)
︸ ︷︷ ︸

run#3

Therefore, the additional parameter has been replaced by another input and thus an

extra run of the SUT. Moreover, the implementation of RO for R6 is even simpler

compared with R1 because we do not have to locate the DC component in the outputs.

According to the increase in effectiveness by combining partial oracles, a combina-

tion of the oracles R3 and R6 seems to be promising for further improvements. With

respect to efficiency, especially execution time, we can again exploit the linearity and
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Table 6 Complexity and effectiveness of enhanced partial oracles (Params denotes the number
of parameters of the corresponding oracle and Inputs represents the number of necessary runs
of the SUT).

LOC McCabe Params Inputs Mutation score

RI RO Traditional Class-based

R6 368 18 9 0 3 93.17% 88.83%

R7 391 24 13 0 3 96.26% 96.60%

furthermore the commutativity of the SUT. To combine both necessary conditions of

R3 and R6 within one oracle, we define a new partial oracle R7:

(R7) SUT ((I +R)T )
︸ ︷︷ ︸

run#1

= (SUT (I)
︸ ︷︷ ︸

run#2

+SUT (R)
︸ ︷︷ ︸

run#3

)T

The model complexity of this partial oracle is equal to that of R6 because we do not

have additional parameters and the required number of executions of the SUT is still

3. Hence, this oracle leads to an efficiency improvement by reducing the runtime by

40% in comparison with single executions of R3 and R6. The complexity and mutation

score of the enhanced oracles are illustrated in Table 6. As one can see, these oracles

are more complex but they achieve a significant increase in effectiveness. Since the

variance of the mutation score for the individual parts is also reduced considerably,

between 91.44% and 98.81%, they can be regarded as suitable for the SUT.

3.4 Discussion

Regarding the results, it seems that partial oracles are indeed applicable for integration

testing, but a few aspects have to be considered. First of all, the partial oracles derived

from the characteristics of the integrated (sub)system may be less effective than partial

oracles for the individual parts of this system. In addition, the effectiveness of oracles

for testing the processing logic of system parts most likely differs from the effectiveness

for testing the integration of these parts. In order to compensate such variations and

to increase the effectiveness, it is advisable to combine the partial oracles.

As shown in the case study, combining the most effective oracles is nearly as power-

ful as joining all oracles. Thus, the testing effort can be reduced without major quality

losses by prioritizing the partial oracles with regard to their fault-finding capability

and joining just the most effective ones. Since the SUT has to be executed for every

partial oracle and every input value, the time needed to run all tests is proportional

to the number of partial oracles. Concerning the investigated subsystem, processing

the input values is a time-consuming task and thus applying only two of four relations

would halve the time totally needed. This decrease of the execution time, and hence

testing effort, may be of particular importance in the field of regression testing.

According to our results of the efficiency and effectiveness improvements, some

suggestions on the selection and construction of partial oracles can be given. First

of all, it is advisable to exploit constraints like equivalence relations in conjunction

with properties such as commutativity, distributivity or associativity. For efficiency
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reasons the combination of necessary conditions should be implemented within one

partial oracle even though the complexity is increasing. Additional parameters should

be avoided or kept to a minimum since they extend the search space. Moreover, with

respect to automated (adaptive) random testing, a partial oracle like R7 would be

preferable (e.g., via prioritization) because it generates a follow-up value with different

properties (cf. [5]). As a consequence of this, the input values are better distributed in

the search space and the convergence rate of the mutation score is most likely higher.

Since the investigated SUT is a Java implementation, there are many mutants that

result in an exception due to violating restrictions. As mentioned above, these mutants

can be killed without a specific oracle, e.g., with smoke tests which can be regarded as

the simplest partial oracle. Thus, partial oracles can be implicitly combined with such

smoke tests, for instance, by means of an adequate exception handling, or smoke tests

can be used as a first step to reveal invalid indexes and references. However, this is

language dependent and may be less suitable for other languages.

4 Threats to Validity

With regard to the discussed results, some threats to validity have to be considered. The

chosen mutation operators could be a threat to internal validity. Different operators

or hand seeded faults may affect the mutation score of the investigated partial oracles.

However, we applied all possible operators, provided by the mutation tool, in order to

cover a wide variety of defects. Furthermore, the applied operators are frequently used

in the literature and therefore provide comparable results [1].

A potential threat to external validity might be the representativeness of the se-

lected application. There is no guarantee that the depicted results and the achieved

improvements of effectiveness and efficiency of the partial oracles will be the same

for other systems. However, the investigated subsystem represents a modular object

oriented application with several integrated units and hence is comparable to other

software systems. So, we judge that the reported results are meaningful. Nevertheless,

a replication of this study is necessary, especially for other programming languages and

different software systems. This matter is left open for future research.

Defects in the mutation tool or in our testing framework could be a threat to

construct validity, but we controlled this threat by analyzing the generated mutants

and by testing our implementation. Every partial oracle was applied to the original

implementation and executed with all input values to ensure that the implemented

constraints are fulfilled by the investigated system. Thus, we judge that the mutants

were properly generated and that our implementation worked correctly.

5 Conclusions and Future Work

Applying partial oracles to integration testing has been addressed in this paper. In

order to evaluate the applicability of partial oracles for this purpose, an integrated

subsystem of an object oriented image processing application is investigated by means

of mutation analysis. The applied partial oracles are assessed with regard to their ca-

pability to reveal faults in the individual parts of the subsystem and their suitability

for integration testing. It turns out that the effectiveness of the investigated partial

oracles varies concerning the different parts of the subsystem and none of the oracles is
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sufficient for the complete subsystem. Additionally, the adequacy of the partial oracles

for integration testing cannot be inferred from the effectiveness for testing the partic-

ular parts of the subsystem. However, combining the partial oracles yields satisfying

results for both unit testing and integration testing. Moreover, exploiting certain char-

acteristics of the system under test provides partial oracles which lead to a significant

increase in effectiveness and efficiency. Hence, this kind of oracles seems to be suitable

for testing purposes and especially test automation with respect to the oracle problem.

In summary, it can be said that partial oracles are suitable for automating various

parts of the software testing process but further research is necessary to confirm the

results. In addition, our results should be transferable to other linear and time-invariant

systems as well as transformations which meet the mentioned constraints. Examining

the transferability to other partial oracles as well as different software systems will thus

be part of our future work. Furthermore, conducting a study with similar applications

written in different programming languages to compare the effectiveness of the partial

oracles with respect to the corresponding language is another area for future work.
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