
1

Practical Mutation Testing at Scale
A view from Google

Goran Petrović, Marko Ivanković, Gordon Fraser, René Just

Abstract—Mutation analysis assesses a test suite’s adequacy by measuring its ability to detect small artificial faults, systematically
seeded into the tested program. Mutation analysis is considered one of the strongest test-adequacy criteria. Mutation testing builds on
top of mutation analysis and is a testing technique that uses mutants as test goals to create or improve a test suite. Mutation testing
has long been considered intractable because the sheer number of mutants that can be created represents an insurmountable
problem—both in terms of human and computational effort. This has hindered the adoption of mutation testing as an industry standard.
For example, Google has a codebase of two billion lines of code and more than 500,000,000 tests are executed on a daily basis. The
traditional approach to mutation testing does not scale to such an environment; even existing solutions to speed up mutation analysis
are insufficient to make it computationally feasible at such a scale.
To address these challenges, this paper presents a scalable approach to mutation testing based on the following main ideas: (1)
Mutation testing is done incrementally, mutating only changed code during code review, rather than the entire code base; (2) Mutants
are filtered, removing mutants that are likely to be irrelevant to developers, and limiting the number of mutants per line and per code
review process; (3) Mutants are selected based on the historical performance of mutation operators, further eliminating irrelevant
mutants and improving mutant quality. This paper empirically validates the proposed approach by analyzing its effectiveness in a
code-review-based setting, used by more than 24,000 developers on more than 1,000 projects. The results show that the proposed
approach produces orders of magnitude fewer mutants and that context-based mutant filtering and selection improve mutant quality
and actionability. Overall, the proposed approach represents a mutation testing framework that seamlessly integrates into the software
development workflow and is applicable up to large-scale industrial settings.

Index Terms—mutation testing, code coverage, test efficacy

F

1 INTRODUCTION

Software testing is the predominant technique for ensuring
software quality, and various approaches exist for assessing
test suite efficacy (i.e., a test suite’s ability to detect software
defects). One such approach is code coverage, which is
widely used at Google [1] and measures the degree to which
a test suite exercises a program. Code coverage is intuitive,
cheap to compute, and well supported by commercial-grade
tools. However, code coverage alone might be misleading,
in particular when program statements are covered but the
expected program outcome is not asserted upon [2], [3].
Another approach is mutation analysis, which systematically
seeds artificial faults into a program and measures a test
suite’s ability to detect these artificial faults, called mu-
tants [4]. Mutation analysis addresses the limitations of code
coverage and is widely considered the best approach for
evaluating test suite efficacy [5], [6], [7]. Mutation testing is
an iterative testing approach that builds on top of mutation
analysis and uses undetected mutants as concrete test goals
for which to create test cases.

• Goran Petrović and Marko Ivanković are with Google LLC.
E-mail: goranpetrovic@google.com, markoi@google.com

• Gordon Fraser is with the University of Passau
E-mail: gordon.fraser@uni-passau.de

• René Just is with the University of Washington
E-mail: rjust@cs.washington.edu

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be
accessible.

As a concrete example, consider the following fully
covered, yet weekly tested, function:

public Buffer view() {
Buffer buf = new Buffer();
buf.Append(this.internal_buf); //mutation: delete this line
return buf;

}

The tests only exercise the function, but do not assert upon
its effects on the returned buffer. This is just one example
where mutation testing outperforms code coverage: even
though the line that appends some content to buf is covered,
a developer is not informed about the fact that no test checks
for its effects. The statement-deletion mutation, on the other
hand, explicitly points out this testing weakness.

Google always strives to improve test quality, and
thus decided to implement and deploy a mutation system
to evaluate its effectiveness. The sheer scale of Google’s
monolithic repository with approximately 2 billion lines
of code [8], however, rendered the traditional approach
to mutation testing infeasible: More than 500,000,000 test
executions per day are gatekeepers for 60,000 change sub-
missions to this code base, ensuring that 13,000 continuous
integrations remain healthy on a daily basis [9]. First, at this
scale, systematically mutating the entire code base would
create far too many mutants, each potentially requiring
many tests to be executed. Second, neither the traditionally
computed mutant-detection ratio, which quantifies test suite
efficacy, nor simply showing all mutants that have evaded
detection to a developer would be actionable. Given that
evaluating and resolving a single mutant takes several min-

ar
X

iv
:2

10
2.

11
37

8v
2

 [
cs

.S
E

]
 2

6
Fe

b
20

21

2

utes [10], [11], the required developer effort for resolving all
undetected mutants would be prohibitively expensive.

To make matters worse, even when applying sampling
techniques to substantially reduce the number of mutants,
developers at Google initially classified 85% of reported mu-
tants as unproductive. An unproductive mutant is either triv-
ially equivalent to the original program or it is detectable,
but adding a test for it would not improve the test suite [11].
For example, mutating the initial capacity of a Java collec-
tion (e.g., new ArrayList(64) 7→ new ArrayList(16)) creates
an unproductive mutant. While it is possible to write a test
that asserts on the collection capacity or expected memory
allocations, it is unproductive to do so. In fact, it is con-
ceivable that these tests, if written and added, would even
have a negative impact because their change-detector nature
(specifically testing the current implementation rather than
the specification) violates testing best practices and causes
brittle tests and false alarms.

Faced with the two major challenges in deploying mu-
tation testing—the computational costs of mutation analysis
and the fact that most mutants are unproductive—we have
developed a mutation testing approach that is scalable and
usable, based on three central ideas:

1) Our approach performs mutation testing on code changes,
considering only changed lines of code (Section 2, based
on our prior work [12]), and surfacing mutants during
code review. This greatly reduces the number of lines in
which mutants are created and matches a developer’s
unit of work for which additional tests are desirable.

2) Our approach uses transitive mutant suppression, us-
ing heuristics based on developer feedback (Section 3,
based on our prior work [12]). The feedback of more
than 20,000 developers on thousands of mutants over
siz years enabled us to develop heuristics for mutant
suppression that improved the ratio of productive mu-
tants from 15% to 89%.

3) Our approach uses probabilistic, targeted mutant selec-
tion, surfacing a restricted number of mutants based
on historical performance (Section 4), further avoiding
unproductive mutants.

Based on an evaluation of the proposed mutation test-
ing framework on almost 17 million mutants and 760,000
changes, which surfaced 2 million mutants during code
review (Section 5), we conclude that, taken together, these
improvements make mutation testing feasible—even for
industry-scale software development environments.

2 MUTATION TESTING AT GOOGLE

Mutation testing at Google faces challenges of scale, both
in terms of computation time as well as integration into
the developer workflow. Even though existing work on
selective mutation and other optimizations can substantially
reduce the number of mutants that need to be analyzed,
it remains infeasibly expensive to compute the absolute
mutation score for the codebase at any given fixed point
due to the size of the code repository. It would be even more
expensive to keep re-computing the mutation score in any
fixed time period (e.g., daily or weekly), and it is impossible
to compute the full score after each commit. In addition to
the computational costs of the mutation score, we were also

unable to find a good way to surface it to the developers
in an actionable way, as it is neither concrete nor actionable,
and it does not guide testing. The scale, however, also makes
surfacing individual mutants to developers challenging, in
particular in light of unproductive mutants. Mutation test-
ing at Google is designed to overcome these challenges of
scale and unproductive mutants, and therefore differs from
the traditional approach to mutation testing, described in
the literature [13].

Figure 1 summarizes how the Mutation Testing Service
at Google creates and analyzes mutants: Mutation testing is
started when developers send changelists for code review.
A changelist is an atomic update to the version control
system, and it consists of a list of files, the operations to
be performed on these files, and possibly the file contents
to be modified or added, along with metadata like change
description, author, etc. First, the Mutation Testing Service
calculates the code coverage for the changelist (Section 2.1).
Then, it creates mutants (Section 2.2) by determining which
nodes of the abstract syntax tree (AST) are eligible for
mutation. An AST node is eligible for mutation if it is
covered by at least one test and if it is not arid (i.e., if
mutated, it does not create unproductive mutants; see Sec-
tion 3). The service then generates, executes, and analyzes
mutants for all eligible AST nodes (Section 2.3). In the end,
only a restricted set of surviving mutants is selected to be
surfaced to the developer as part of the code review process
(Section 2.4). This section describes the overall infrastructure
and workflow of mutation testing at Google.

2.1 Prerequisites: Changelists and Coverage

To enable mutation testing at Google, we implemented diff-
based mutation testing: Mutants are only generated for lines
that are changed. Once a developer is happy with their
changelist, they send it to peers for code review. At this
point, various static and dynamic analyses are run for that
changelist and report back useful findings to the developer
and the reviewers. Line coverage is one such analysis: Dur-
ing code reviews, overall and delta code coverage is surfaced
to the developers [1]. Overall code coverage is the ratio of
the number of lines covered by tests in the file to the total
number of instrumented lines in the file. The number of
instrumented lines is usually smaller than the total number
of lines, since artifacts like comments or pure whitespace
lines are not applicable for testing. Delta coverage is the
ratio of the number of lines covered by tests in the added
or modified lines in the changelist to the total number of
added or modified lines in the changelist.

Code coverage is a prerequisite for running mutation
analysis, as shown in Figure 3, because of the high cost of
generating and evaluating mutants in uncovered lines, all
of which would inevitably survive because the code is not
tested. Once line-level coverage is available for a changelist,
mutagenesis is triggered.

Google uses Bazel as its build system [14]. Build targets
list their sources and dependencies explicitly. Test targets
can contain multiple tests, and each test suite can contain
multiple test targets. Tests are executed in parallel. Using
the explicit dependency and source listing, test coverage
analysis provides information about which test target covers

3

A

A
A

MUT

MUT

--++
--++

Fig. 1: Mutagenesis process: (1) For a given changelist, line coverage is computed and code is parsed into an AST. (2)
For AST nodes spanning covered lines, arid nodes are tagged as unproductive using the arid node detection heuristic. (3)
Non-arid (eligible) nodes are mutated and tested. (4) Surviving mutants are surfaced as code findings.

which line in the source code. Results of coverage analysis
link lines of code to a set of tests covering them. Line level
coverage is used during the test execution phase, where it
determines the minimal set of tests that need to be run in an
attempt to kill a mutant.

2.2 Mutagenesis

Once delta coverage and line-level coverage metadata is
available, the system generates mutants in affected covered
lines. Affected lines are added or modified lines in the
changelist, and covered lines are defined by the coverage
analysis results. The mutagenesis service receives a request
to generate point mutations, i.e., mutations that produce a
mutant which differs from the original in one AST node on
the requested line. For each programming language sup-
ported, a special mutagenesis service capable of navigating
the AST of a compilation unit in that language accepts point
mutation requests and replies with potential mutants.

For each point mutation request, i.e., a (file, line) tuple,
a mutation operator is selected and a mutant is generated
in that line if that mutation operator is applicable to it. If
no mutant is generated by the mutation operator, another is
selected and so on until either a mutant is generated or all
mutation operators have been tried and no mutant could
be generated. There are two mutation operator selection
strategies, random and targeted, described in Section 4.

When a mutagenesis service receives a point mutation
request, it first constructs an AST of the file in question, and
visits each node, labeling arid nodes (Section 3) in advance
using heuristics accumulated using developer feedback
about mutant productivity over the years. Arid nodes are
not considered for mutation and no mutants are produced
in them. Arid node labeling happens before mutagenesis
is started; mutants in arid nodes are not generated and
discarded, they are never created in the first place.

The Mutation Testing Service implements mutagenesis
for 10 programming languages: C++, Java, Go, Python,
TypeScript, JavaScript, Dart, SQL, Common Lisp, and
Kotlin. For each language, the service implements five mu-
tation operators: AOR (Arithmetic operator replacement),
LCR (Logical connector replacement), ROR (Relational oper-
ator replacement), UOI (Unary operator insertion), and SBR
(Statement block removal). These mutation operators were
originally introduced for Mothra [15], and Table 1 gives
further details for each. In Python, the unary increment and
decrement are replaced by a binary operator to achieve the
same effect due to the language design. In our experience,
the ABS (Absolute value insertion) mutation operator was

reported to predominantly create unproductive mutants,
mostly because it acted on time-and-count related expres-
sions that are positive and nonsensical if negated, and is
therefore not used. Note that this is due to the style and
features of our codebase, and may not hold in general.

For each file in the changelist, a set of mutants is re-
quested, one for each affected covered line. Mutagenesis is
performed by traversing the ASTs in each of the languages,
and decisions are often done on the AST node level because
it allows for fine-grained decisions due to the amount of
context available.

2.3 Mutation Analysis and Selection
Once all mutants are generated for a changelist, a temporary
state of the version control system is prepared for each
of them, based on the original changelist, and then tests
are executed in parallel for all those states. This makes for
an efficient interaction and caching between our version
control system and build system, and evaluates mutants in
the fastest possible manner. Once test results are available,
we randomly pick mutants from all surviving mutants to
be reported. We limit the number of reported mutants to
at most 7 times the number of total files in the changelist,
to ensure that the cognitive overhead of understanding
the reported mutants is not too high, which might cause
developers to stop using mutation testing. 7 is a result of
heuristics collected over the years of running the system.
Selected surviving mutants are reported in the code review
UI to the author and the reviewers.

2.4 Surfacing Mutants in the Code Review Process
The selected mutants are shown to developers during the
code review process. Most changes to Google’s monolithic
codebase, except for a limited number of fully automated
changes, are reviewed by developers before they are merged
into the source tree. Potvin and Levenberg [8] provide a
comprehensive overview of Google’s development ecosys-
tem. Reviewers can leave comments on the changed code
that must be resolved by the author. A special type of
comment generated by an automated analyzer is known as
a finding. Unlike human-generated comments, findings do
not need to be resolved by the author before submission,
unless a human reviewer marks them as mandatory. Many
analyzers are run automatically when a changelist is sent for
review: linters, formatters, static code and build dependency
analyzers etc. The majority of analyzers are based on the
Tricorder code analysis platform [16]. We display mutation
analysis results during the code review process because this

4

TABLE 1: Mutation operators implemented in the Mutation Testing Service

NAME SCOPE

AOR Arithmetic operator replacement a + b → {a, b, a - b, a * b, a / b, a % b}
LCR Logical connector replacement a && b → {a, b, a || b, true, false}
ROR Relational operator replacement a > b → {a < b, a <= b, a >= b, true, false}
UOI Unary operator insertion a → {a++, a--}; b → !b
SBR Statement block removal stmt → ∅

Fig. 2: Mutant shown in the code review tool

Calculate coverage

Changelist

Critique

Generate mutants
Coverage Service Mutation Service

Report findings

Fig. 3: Code coverage and mutation testing integration

maximizes the probability that the results will be considered
by the developers.

The number of comments displayed during code review
can be large, so it is important that all tools only produce
high quality findings that can be used immediately by
the developers. Surfacing non-actionable findings during
code review has a negative impact on the author and the
reviewers. If an automated changelist analyzer finding (e.g.,
a surviving mutant) is not perceived as useful, developers
can report that with a single click on the finding. If any of
the reviewers consider a finding to be important, they can
indicate that to the changelist author with a single click.
Figure 2 shows an example mutant displayed in Critique,
including the “Please Fix” and “Not useful” links in the
bottom corners. This feedback is accessible to the owner
of the system that created the findings, so quality metrics
can be tracked and unhelpful findings triaged, and ideally
prevented in the future.

2.5 Mutation Testing in Use at Google
Google has a large codebase with code in various program-
ming languages. The coverage distribution per project is
shown in Figure 4. Although the statement coverage of most
projects is satisfactory, even with our system that does heavy
suppression and selection, the number of live mutants per

Fig. 4: Distribution of project statement coverage

changelist is still significant (median is 2 mutants, 99th

percentile is 43 mutants). To be of any use to the author and
the reviewers, code findings need to be surfaced quickly,
before the review is complete. To further reduce the number
of mutants, mutations are never generated in uninteresting,
arid lines, as described in Section 3; furthermore, we proba-
bilistically select mutants based on their historical mutation
operator performance (Section 4).

3 ARID NODE DETECTION

Some parts of the code are less interesting than others. Sur-
facing live mutants in uninteresting statements, for example
debug logging statements, has a negative impact on human
time spent analyzing the finding, and its cognitive overhead.
Because developers do not perceive adding tests to kill
mutants in uninteresting nodes as improving the overall
efficacy of the suite to detect faults, such mutants tend
to survive. This section proposes an approach for mutant
suppression and a set of heuristics for detecting AST nodes
in which mutation is to be suppressed. There is a trade-off
between correctness and usability of the results; the pro-
posed heuristic may suppress mutation in relevant nodes
as a side-effect of reducing uninteresting node mutations.
We argue that this is a good trade-off because the number
of possible mutants is always orders of magnitude larger
than what we could reasonably present to the developers
within the existing developer tools, and it is more effective
to prevent high impact faults, rather than arid faults.

3.1 Detecting Arid Nodes
Mutation operators create mutants based on the AST of a
program. The AST contains nodes, which are statements,
expressions or declarations, and their child-parent relation-
ships reflect their connections in the source code [17]. In or-
der to prevent the generation of unproductive mutants, we
identify nodes in the AST that are related to uninteresting
statements, i.e., arid nodes.

Most compilers differentiate simple and compound
nodes in an AST. Simple nodes have no body, e.g., a call

5

expression names a function and parameters, but has no
body. Compound nodes have at least one body, e.g., a for
loop might have a body, while an if statement might have
two: then and else branches. Examples of arid nodes would
be log statements, calls to memory-reserving functions like
std::vector::reserve, or writes to stdout; these scenarios
are typically not tested by unit tests.

The heuristic approach for labeling nodes as arid is two-
fold and is defined in Equation 1:

arid(N) =

{
expert(N) if simple(N)

1 if
∧
(arid(b)) = 1,∀b ∈ N otherwise

(1)
Here, N ∈ T is a node in the abstract syntax tree

T of a program, simple is a boolean function determining
whether a node is simple (compound nodes contain their
children nodes), and expert is a boolean function over a
subset of simple statements in T encoding manually curated
knowledge on arid simple nodes. The first part of Equa-
tion 1 operates on simple nodes, is represented by an expert
curated manually for each programming language and is
adjusted over time. The second part operates on compound
nodes and is defined recursively. A compound node is an
arid node iff all of its parts are arid.

The expert function that flags simple nodes as arid is
developed over time to incorporate developer feedback on
reported ‘Not useful’ mutants. This process is manual: if
we decide a certain mutation is not productive and that
the whole class of mutants should not be created, the rule
is added to the expert function. This is the critical part
of the system because, without it, users would become
frustrated with non-actionable feedback and opt out of the
system altogether. Targeted mutation and careful surfacing
of findings has been critical for adoption of mutation testing
at Google. There are more than a hundred rules for arid
node detection in our system.

3.2 Expert Heuristic Categories

The expert function consists of various rules, some of which
are mutation-operator-specific, and some of which are uni-
versal. We distinguish between heuristics that prevent the
generation of uncompilable vs. compilable yet unproductive
mutants. Most heuristics deal with the latter category, but
the former is also important, especially in Go, where the
compiler is very sensitive to mutations (e.g., unused import
is a compiler error). For compilable mutants, we distinguish
between heuristics for equivalent mutants, killable mutants,
and redundant mutants, as reported in Table 2.

3.2.1 Heuristics to Prevent Uncompilable Mutants

A mutant should be a syntactically valid program—
otherwise, it would be detected by the compiler and not
add any value for testing. There are certain mutations,
especially the ones that delete code, that violate this validity
principle. A prime example is deleting code in Go; any
unused variables or imported modules produce compiler
errors. The proposed heuristic is to gather all used symbols
and put them in a slice instead of deleting them so they are
referenced and the compiler is appeased.

3.2.2 Heuristics to Prevent Equivalent Mutants
Equivalent mutants, which are semantically equivalent to
the mutated program, are a plague in mutation testing
and cannot generally be detected automatically. However,
there are some categories of equivalent mutants that can be
accurately detected. For example, in Java, the specification
for the size method of a java.util.Collection is that it
returns a non-negative value. This means that mutations
such as collection.size() == 0 7→ collection.size() <= 0

are guaranteed to produce an equivalent mutant.
Another example for this category is related to memoiza-

tion. Memoization is often used to speed up execution, but
its removal inevitably causes the generation of equivalent
mutants. The following heuristic is used to detect memoiza-
tion: An if statement is a cache lookup if it is of the form
if a, ok := x[v]; ok return a, i.e., if a lookup in the map
finds an element, the if block returns that element (among
other values, e.g., Error in Go). Such an if statement is a
cache lookup statement and is considered arid by the expert
function, as is its full body. The following example shows a
cache lookup in Go:

var cache map[string]string
func get(key string) string {

if val, ok := cache[key]; ok {
return val

}
value := expensiveCalculation(key)
cache[key] = value
return value

}

Removing the if statement just removes caching, but does
not change functional behavior, and hence yields an equiv-
alent mutant. The program still produces the same output
for the same input—albeit slower. Functional tests are not
expected to detect such changes.

As a third example, a heuristic in this category avoids
mutations of time specifications because unit tests rarely test
for time, and if they do, they tend to use fake clocks. State-
ments invoking sleep-like functionality, setting deadlines, or
waiting for services to become ready (like gRPC [18] server’s
Wait function that is always invoked in RPC servers, which
are abundant in Google’s code base) are considered arid by
the expert function.

sleep(100); rpc.set_deadline(10);

sleep(200); rpc.set_deadline(20);

3.2.3 Heuristics to Prevent Unproductive Killable Mutants
Not all code is equally important. Much of it can be mutated,
and those mutants could actually be killed, but such tests
are not considered valuable and will not be written by
experienced developers; such mutants are bad test goals.
Examples of this category are increments of values in moni-
toring system frameworks, low level APIs like mkdir or flag
changes: these are easy to mutate, easy to test for, and yet
mostly undesirable as tests.

A common way to implement heuristics in this category
is to match function names; indeed we suppress mutants
in calls to hundreds of functions, which is responsible for
the highest number of suppressions. The star example of
this category is a heuristic that marks any function call

6

arid if the function name starts with the prefix log or the
object on which the function is invoked is called logger. We
validated this heuristic by randomly sampling 100 nodes
that were marked arid by the log heuristic, and found that
99 indeed were correctly marked, while one had marginal
utility. We have fuzzy name suppression rules for more than
200 function families.

log.infof("network speed: %v", bytes/time)

log.infof("network speed: %v", bytes+time)

3.2.4 Heuristics to Prevent Redundant Mutants
There has been a lot of research on redundant mutants,
targeted at reducing the cost of mutation testing. While the
cost aspect is not a concern for us, because we generate at
most a single mutant in a line, user experience and con-
sistency are important concerns. In a code review context,
we surface mutants in each snapshot; when the developers
update their code, possibly writing tests to kill mutants, we
rerun mutation testing on the new code and report new mu-
tants. Because of this, we suppress some redundant mutants
so that mutants are consistently reported, as opposed to
alternating between redundant mutants, which introduces
cognitive overhead and can be confusing.

As an example, in C++, the LCR mutation operator has a
special case when dealing with NULL (i.e., nullptr), because
of its logical equivalence with false:

ORIGINAL NODE POTENTIAL MUTANTS

if (x != nullptr) 7−→

if (x)

if (nullptr)
if (x == nullptr)

if (false)
if (true)

The mutants marked in bold are redundant (equivalent to
one another) because the value of nullptr is equivalent to
false. Likewise, the opposite example, where the condition
is if (nullptr == x), yields redundant mutants for the left-
hand side. These mutations are suppressed.

3.2.5 Experience with Heuristics
The highest mutant productivity gains came from the three
heuristics implemented in the early days: suppression of
mutations in logging statements, time-related operations
(e.g., setting deadlines, timeouts, exponential backoff spec-
ifications etc.), and finally configuration flags. Most of the
early feedback was about unproductive mutants in such
code, which is ubiquitous in the code base. While it is hard
to measure exactly, there is strong indication that these sup-
pressions account for improvements in productivity from
about 15% to 80%. Additional heuristics and refinements
progressivley improved producitvity to 89%.

Heuristics are implemented by matching AST nodes
with the full compiler information available to the muta-
tion operator. Some heuristics are unsound: they employ
fuzzy name matching and recognize AST shapes, but can
suppress a productive mutant. On the other hand, some
heuristics make use of the full type information (like match-
ing java.util.HashMap::size calls) and are sound. Sound

TABLE 2: Arid node heuristics.

HEURISTIC COUNT FREQUENCY

Uncompilable 1 Common
Equivalent 13 Common
Unproductive killable 16 Very common
Redundant 2 Uncommon

heuristics are demonstrably correct, but we have had much
more important improvements of perceived mutant useful-
ness from unsound heuristics.

For a detailed list of heuristics, please refer to Ap-
pendix A.

4 MUTANT SELECTION CRITERIA

Once arid nodes have been identified in the AST, the next
step (cf. Section 2.2) is to produce mutants for the remaining,
non-arid nodes. There are two issues arising from this: First,
only mutants that survive the tests can be shown to devel-
opers, whereas those that are killed just use computational
resources. Many mutants never survive the test phase, and
are not reported to the developer and reviewers during code
review. An iterative approach, where after the first round of
tests further rounds of mutagenesis could be run for lines
in which mutants were killed, would use the build and test
systems inefficiently, and would take much longer because
of multiple rounds. Second, not all surviving mutants are
equally productive: Depending on the context, certain mu-
tation operators may produce better mutants than others.
Reporting all surviving mutants for a line would prolong
the mutagenesis step and increase test evaluation costs in
a prohibitive manner. Because of this, effective selection
criteria not only constitute a good trade-off, but are crucial
in making mutation analysis results actionable during code
review. In this section, we present a basic random selection
strategy that generates one mutant per covered line and
considers information about arid nodes, and a targeted
selection, which considers the past performance of mutation
operators in similar context (Figure 5).

4.1 Random Selection

The basic principle of a random line-based mutant selection
is shown in Listing 1: For each line in a changelist, one
of the mutants that can be generated for that line would
be selected randomly, or alternatively a mutation target
is picked randomly first and then a mutation operator is
randomly selected.

function Mutagenesis(diff_ast)
mutants ← ∅
for line in covered_lines(diff_ast)
mutants ← uniform_random(all_mutants(line))

endfor
return mutants

Listing 1: Naïve random selection

Since our approach to mutation testing is based on the
identification of arid nodes which should not be mutated,

7

the random selection algorithm we use is described in List-
ing 2. For each language, the Mutation Testing Service im-
plements mutation operators as AST visitors. The mutation
operators available for a language are randomly shuffled,
and are used one by one to try and create a mutant in the
given file and line, until one succeeds. We do this for each
changed line in the changelist that is covered by tests. If
any mutant can be created in a line, one will be created
in that line, but which one will depend on the random
shuffle and the AST itself (e.g., in a line without relational
operators, the ROR mutation operator will not produce a
mutant, but SBR might, because most lines can be deleted).
If the first mutation operator in the randomly shuffled order
cannot produce a mutant in a given line, either because it is
not applicable to it, or because the relevant AST nodes are
labeled arid, the next mutation operator is invoked, until
either a mutant is produced or there are no more mutation
operators left. This is done for each mutation request.

function Mutagenesis(diff_ast)
mutants ← ∅
productive_ast = remove_arid_nodes(diff_ast)
ops = shuffle({UOI, ROR, SBR, LCR, AOR})
for line in covered_lines(productive_ast)
for op in ops
if can_generate(op, line)
mutants ∪= generate_mutant(op, line)
break

return mutants

Listing 2: Random selection with suppression

It is important to note that many nodes are labeled as
arid by our heuristic (see Section 3), and are not considered
for mutation at all. Furthermore, only a single mutant in a
line is ever produced, all others are not considered. These
design decisions proved to be the core of making mutation
testing feasible at very large scale.

4.2 Targeted Selection
The targeted mutation operator selection strategy orders the
operators by their perceived productivity in the mutation
AST context, as shown in Listing 3.

function Mutagenesis(diff_ast)
mutants ← ∅
productive_ast = remove_arid_nodes(diff_ast)
ops = {UOI, ROR, SBR, LCR, AOR}
for line in covered_lines(productive_ast)
ops = order_by_historic_productivity(line, ops)
for operator in ops
if can_generate(operator, line)
mutants ∪= generate_mutant(operator, line)
break

return mutants

Listing 3: Targeted selection with suppression

The information about how productive mutating a par-
ticular AST node by a particular mutation operator is, is
based on historical information: First, we can determine a
mutation operator’s survivability (i.e., the fraction of mutants
produced by the operator in the past that were not killed
by the existing tests) in a particular context. Second, we

A

A
A

Fig. 5: Random (1) vs. Targeted (2) mutation selection

can determine a mutant’s productivity using developer feed-
back: Each reported mutant can be flagged as productive
or unproductive by the author of the changelist or any of
the reviewers of the changelist. We consider this a strong
signal because it comes from experienced professionals that
understand the context of the mutant.

Using this information, we can order the mutation opera-
tors by survivability and perceived productivity, rather than
using a random shuffle. For each mutant, an AST context is
kept, describing the environment of the AST node that was
mutated, along with the productivity feedback and whether
the mutant was killed or not. When the mutagenesis service
receives a point mutation request, for nodes for which
the mutation is requested, it finds similar nodes from the
body of millions of previously evaluated mutants using the
AST context, and then looks into historical performance
of those mutants in two categories: developer feedback on
productivity and mutant survivabiliy. Mutation operators
are ordered using this metric rather than uniformly shuffled,
and mutagenesis is attempted in that order, to maximize the
probability that the mutant will be productive, or at least
survive to be reported in the code review. For example, if
we are mutating a binary expression within an if condition,
we will find mutants done in a similar AST context and see
how each mutation operator performed in them.

4.3 Mutation Context
In order to apply historical information about mutation pro-
ductivity and effectiveness, we need to decide how similar
candidate mutations are compared to past mutations. We
define a mutation to be similar if it happened in a similar
context, e.g., replacing a relational operator within an if
condition that is the first statement in the body of a for
loop, as shown in Listing 4.

As an efficient means to capture the similarity of the
context of two mutations, we use the hashing framework
for tree-structured data introduced by Tatikonda et al. [19],
which maps an unordered tree into a multiset of simple
structures referred to as pivots. Each pivot captures infor-
mation about the relationship among the nodes of the tree
(see Section 4.4).

8

Finding similar mutation contexts is then reduced to
finding similar pivot multisets. To identify similar pivot
multisets, we produce a MinHash [20] inspired fingerprint
of the pivot multiset. Because the distance in the fingerprint
space correlates with the distance in the tree space, we can
find similar mutation contexts efficiently by finding similar
fingerprints of the node under mutation.

4.4 Generating Pivots from ASTs

In order to capture the intricate relationship between nodes
in the AST, we translate the AST into a multiset of pivots. A
pivot is a triplet of nodes from the AST that encodes their
relationship; for nodes u and v, a pivot p is tuple (lca, u, v),
where lca is the lowest common ancestor of nodes u and
v. The pivot represents a subtree of the AST. The set of
all pivots involving a particular node describes the tree
from the point of view of that node. In mutation testing,
we are only interested in nodes that are close to the node
being mutated, so we constrain the set of pivots to pivots
containing nodes that are a certain distance from the node
considered for mutation.

In the example of replacing a relational operator in an
if condition within a body of the for loop in Listing 4, one
pivot might be (if, Cond, ∗), and another (Cond, i, kMax). All
combinations of two nodes within some distance from the
node being mutated in the AST in Figure 6 and their lowest
common ancestor make pivot structures.

for (int i = 0; i < kMax; ++i) {
if (i < kMax / 2) {
return i / 2;

} else {
return i * 2;

}
}

Listing 4: C++ snippet with an if statement within a for
loop

Pivot multisets P precisely preserve the structural re-
lationship of the tree nodes (parent-child and ancestor rela-
tions), so the tree similarity of two AST subtrees T1 and
T2 can be measured as the Jaccard index of the pivot
multisets [19] as shown in equation 2.

For

Init

i

Cond

<

i kMax

Inc

++

i

Block

If

Cond

<

i /

kMax 2

Then

Return

/

i 2

Else

Return

*

i 2

Fig. 6: AST for the C++ example in Listing 4

d(T1, T2) = Jaccard(P (T1), P (T2)) =
|P (T1) ∩ P (T2)|
|P (T1) ∪ P (T2)|

(2)

4.5 Fingerprinting Pivot Multisets

Pivot multisets are potentially quadratic in tree size, leading
to costly union and intersection operations. Even a trivial
if statement with a single return statement produces large
pivot sets, and set operations become prohibitive. To allevi-
ate that, a fingerprinting function is applied to convert large
pivot multisets into fixed-sized fingerprints.

We hash the pivot sets to single objects that form the
multiset of representatives for the input AST. The size of the
multiset can be large, especially for large programs. In order
to improve the efficiency of further manipulation, we use a
signature function that converts large pivot hash sets into
shorter signatures. The signatures are later used to compute
the similarity between the trees, taking into consideration
only the AST node type and ignoring everything else, like
type data or names of the identifiers.

We use a simple hash function to hash a single pivot p =
(lca, u, v) into a fixed-size value, proposed by Tatikonda and
Parthasarathy [19].

h(p) = (a · lca+ b · u+ c · v) mod K

a, b, c ∈ ZP

For a, b, c we pick small primes, and for K a large prime
that fits in 32 bits. To be able to hash AST nodes, we assign
sparse integer hash values to different AST node types in
each language, e.g., a C++ FunctionDecl is assigned 8500,
and CXXMethodDecl 8600. For nodes in the pivot (lca, u, v)
we use these assigned hashes.

The signature for such a bag of representatives is gen-
erated using a MinHashing technique. The set of pivots is
permuted and hashed under that permutation. To minimize
the false positives and negatives (i.e., different trees hash
to similar hashes, or vice versa), this is repeated k times,
resulting in k-MinHashes.

The goal is that the signatures are similar for similar
(multi)sets and dissimilar for dissimilar ones. Jaccard sim-
ilarity between two sets can be estimated by comparing
their MinHash signatures in the same way [20], as shown
in equation 3. The MinHash scheme can be considered an
instance of locality-sensitive hashing, in which ASTs that
have a small distance to each other are transformed into
hashes that preserve that property.

d(T1, T2) =
|P (T1) ∩ P (T2)|
|P (T1) ∪ P (T2)|

≈ |hash(T1) ∩ hash(T2)|
|hash(T1) ∪ hash(T2)|

(3)
When mutating a node, we calculate its pivot set and

hash it. We find similar AST contexts using nearest neighbor
search algorithms. We observe how different mutants be-
have in this context and which mutation operators produce
the most productive and surviving mutants. This is the basis
for targeted mutation selection.

9

5 EVALUATION

In order to bring value to developers, the Mutation Testing
Service at Google needs to surface few productive mutants,
selected from a large pool of mutants—most of which
are unproductive. Recall that a productive mutant elicits
an effective test, or otherwise advances code quality [11].
Therefore, our goal is two-fold. First, we aim to select mu-
tants with a high survival rate and productivity to maximize
their utility as test objectives. Second, we aim to surface
very few mutants to reduce computational effort and avoid
overwhelming developers with too many findings.

In addition to the design decision of applying muta-
tion testing at the level of changelists rather than projects,
two technical solutions reduce the number of mutants: (1)
mutant suppression using arid nodes and (2) one-per-line
mutant selection. The first research question aims to answer
how effective these two solutions are:

• RQ1 Mutant suppression. How effective is mutant
suppression using arid nodes and 1-per-line mutant
selection? (Section 5.2)

To understand the influence of mutation operator selection
on mutant survivability and productivity in the remain-
ing non-arid nodes, we consider historical data, including
developer feedback. We aim to answer the following two
research questions:

• RQ2 Mutant survivability. Does mutation operator
selection influence the probability that a generated mu-
tant survives the test suite? (Section 5.3)

• RQ3 Mutant productivity. Does mutation operator
selection influence developer feedback on a generated
mutant? (Section 5.4)

Having established the influence of individual mutation op-
erators on survivability and productivity, the final question
is whether mutation context can be used to improve both.
Therefore, our final research question is as follows:

• RQ4 Mutation context. Does context-based selection of
mutation operators improve mutant survivability and
productivity? (Section 5.5)

5.1 Experiment Setup

For our analyses, we established two datasets, one with
data on all mutants, and one containing additional data on
mutation context for a subset of all mutants.

Mutant dataset. The mutant dataset contains 16,935,148
mutants across 10 programming languages: C++, Java, Go,
Python, TypeScript, JavaScript, Dart, SQL, Common Lisp,
and Kotlin. Table 3 summarizes the mutant dataset and
gives the number and ratio of mutants per programming
language, the average number of mutants per changelist
and the percentage of mutants that survive the test suite.
Table 4 breaks down the numbers by mutation operator.

We created this dataset by gathering data on all mu-
tants that the Mutation Testing Service generated since its
inauguration, which refers to the date when we made the
service broadly available, after the initial development of the
service and its suppression rules (see Section 3.2.5). We did
not perform any data filtering, hence the dataset provides
information about all mutation analyses that were run.

TABLE 3: Summary of the mutant dataset. (Note that SQL,
Common Lisp, and Kotlin are excluded from our analyses
because of insufficient data.)

LANGUAGE GENERATED MUTANTS SURVIVABILITY

COUNT RATIO PER CL

C++ 7,197,069 42.5% 23.2 12.5%
Java 2,894,772 17.1% 14.8 13.2%
Go 1,988,798 11.7% 27.6 12.5%
Python 1,689,382 10.0% 21.3 13.2%
TypeScript 1,006,531 5.9% 20.8 10.8%
JavaScript 908,014 5.4% 31.0 9.4%
Dart 581,109 3.4% 17.4 16.3%

SQL 478,975 2.8% 91.2 11.7%
Common Lisp 148,289 0.9% 179.3 2.2%
Kotlin 42,209 0.2% 20.7 11.0%

Total 16,935,148 100% 21.8 12.5%

TABLE 4: Number of mutants per mutation operator.

OPERATOR GENERATED MUTANTS SURVIVABILITY

COUNT RATIO

SBR 11,522,932 68.0% 12.7%
UOI 3,137,375 18.5% 9.6%
LCR 1,305,499 7.7% 16.3%
ROR 672,009 4.0% 14.7%
AOR 297,333 1.8% 13.5%

Total 16,935,148 100% 12.5%

In total, our data collection considered 776,740 change-
lists that were part of the code review process. For these,
16,935,148 mutants were generated, out of which 2,110,489
were surfaced. Out of all surfaced mutants, 66,798 received
explicit developer feedback. For each considered changelist,
the mutant dataset contains information about:

• affected files and affected lines,
• test targets testing those affected lines,
• mutants generated for each of the affected lines,
• test results for the file at the mutated line, and
• mutation operator and context for each mutant.
Our analysis aims to study the efficacy and perceived

productivity of mutants and mutation operators across pro-
gramming languages. Note that our mutant dataset is likely
specific to Google’s code style and review practices. How-
ever, the code style is widely adopted [21], and the modern
code review process is used throughout the industry [22].

Information about mutant survivability per program-
ming language or mutation operator can be directly ex-
tracted from the dataset and allows us to answer research
questions RQ1, RQ2 and RQ3.
Context dataset. The context dataset contains 4,068,241
mutants (a subset of the mutant dataset) for the top-four
programming languages: C++, Java, Go, and Python. Each
mutant in this dataset is enriched with the information of
whether our context-based selection strategy would have
selected that mutant. When generating mutants, we would
also run the context-based prediction, and we persisted
the prediction information along with the mutants. If the
randomly chosen operator was indeed what the prediction
service picked, this mutant is the one with the highest
predicted value. For each mutant, the dataset contains:

• all information from the mutant dataset,

10

• predicted survivability and productivity for each muta-
tion in similar context, and

• information about whether the mutant has the highest
predicted survivability/productivity.

We created this dataset by using our context-based mu-
tation selection strategy during mutagenesis on all mutants
during a limited period of time. During this time, we
automatically annotated the mutants, indicating whether
a mutant would be picked by the context-based mutation
selection strategy along with the mutant outcome in terms
of survivability and productivity. This dataset enables the
evaluation of our context-based mutation selection strategy
and allows us to answer research question RQ4.
Experiment measures: Surviving the initial test suite is a
precondition for surfacing a mutant, but survivability alone
is not a good measure of mutant productivity. For example,
a mutation that changes the timeout of a network call
likely survives the test suite but is also very likely to be
unproductive (i.e., a developer will not consider writing
a test for it). Hence, developer feedback indicating that a
mutant is indeed (un)productive is a stronger signal.

We measure mutant productivity via user feedback gath-
ered from Critique (Section 2.4), where each surfaced mu-
tant displays a Please fix (productive mutant) and a Not
useful (unproductive mutant) link. Please fix corresponds to
a request to the author of a changelist to improve the test
suite based on the surfaced mutant; not useful corresponds
to a false alarm or generally a non-actionable code finding.
82% of all surfaced mutants with feedback were labeled
as productive by developers. Note that this ratio is an
aggregate over the entire data set. Since the inauguration
of the Mutation Testing Service, productivity has increased
over time from 80% to 89% because we generalized the
feedback on unproductive mutants and created suppression
rules for the expert function, described in Section 3. This
means that later mutations of nodes in which mutants were
found to be unproductive will be suppressed, generating
fewer unproductive mutants over time. Surfaced mutants
without explicit developer feedback are not considered for
the productivity analysis.

5.2 RQ1 Mutant Suppression
In order to compare our mutant-suppression approach with
the traditional mutagenesis, we (1) randomly sampled 5,000
changelists from the mutant dataset, (2) determined how
many mutants traditional mutagenesis produces, and (3)
compared the result with the number of mutants generated
by our approach. (Since traditional mutation analysis is
prohibitively expensive at scale, we adapted our system to
only generate all mutants for the selected changelists.) Fig-
ure 7 shows the results for three strategies: no suppression
(traditional), select one mutant per line, and select one mu-
tant per line after excluding arid nodes (our approach). We
include the 1-per-line approach in the analysis to evaluate
the individual contribution of the arid-node suppression,
beyond sampling one mutant per line.

As shown in and Table 5, the median number of gener-
ated mutants is 820 for traditional mutagenesis, 77 for 1-per-
line selection, and only 7 for arid-1-per-line selection. Hence,
our mutant-suppression approach reduces the number of

No suppression 1-per-line Arid-1-per-line
Suppression strategy

100

101

102

103

104

M
ut

an
ts

 (l
og

)

Number of mutants per strategy
type

No suppression
1-per-line
Arid-1-per-line

Fig. 7: Number of generated mutants per changelist for no
suppression (traditional mutagenesis), 1-per-line and arid-1-
per-line (our approach). (Note the log-scaled vertical axis.)

TABLE 5: Mann-Whitney U test comparing the distributions
of the number of mutants generated by different strategies.

STRATEGY A STRATEGY B P-VALUE MEDIAN A MEDIAN B

No suppression 1-per-line <.0001 820 77
1-per-line Arid-1-per-line <.0001 77 7
No suppression Arid-1-per-line <.0001 820 7

mutants by two orders of magnitude. Table 5 also shows the
results for a Mann-Whitney U test, which confirms that the
distributions are statistically significantly different.

Our mutant-suppression approach generates fewer than
20 mutants for most changelists; the 25th and 75th per-
centiles are 3 and 19, respectively. In contrast, the 25th
and 75th percentiles for 1-per-line are 31 and 138 mutants.
Traditional mutagenesis generates more than 450 mutants
for most changelists (the 25th and 75th percentiles are 460
and 1734, respectively), further underscoring that this ap-
proach is impractical, even at the changelist level. Presenting
hundreds of mutants, most of which are not actionable, to
a developer would almost certainly result in that developer
abandoning mutation testing altogether.

RQ1: Arid-node suppression and 1-per-line selection signifi-
cantly reduce the number of mutants per changelist, with a
median of only 7 mutants per changelist (compared to 820
mutants for traditional mutagenesis).

5.3 RQ2 Mutant Survivability
Mutant survivability is important because we generate at
most a single mutant per line—if that mutant is killed, no
other mutant is generated. To be actionable, mutants have to
be reported as soon as possible in the code review process,
as described in Section 4. Therefore, we aim to maximize
mutant survivability because it directly impacts the number
of surfaced mutants.

Overall, 87.5% of all generated mutants are killed by
the initial test suite. Note that this is not the same as
the traditional mutation score [23] (ratio of killed mutants
to the total number of mutants) because mutagenesis is
probabilistic and only generates a subset of all mutants. This
means only a fraction of all possible mutants are generated
and evaluated, and many other mutants are never generated
because they are associated with arid nodes.

11

12.5%13.2% 13.2% 12.5%
9.3%10.7%

16.3%

0.0%

5.0%

10.0%

15.0%

20.0%

Dar
t

Ja
va

Pyth
on C++ Go

Ty
pe

Scr
ipt

Ja
va

Scr
ipt

S
ur

vi
va

bi
lit

y

(a) Survivability per programming language.

12.6%
9.5%

14.7%16.3%
13.5%

0.0%

5.0%

10.0%

15.0%

20.0%

LCR ROR AOR SBR UOI

S
ur

vi
va

bi
lit

y

(b) Survivability per mutation operator.

Fig. 8: Mutant survivability.

81.3%87.2%
70.6%74%

83%86.9% 86.7%

0%

25%

50%

75%

100%

Ja
va

Ty
pe

Scr
ipt

Dar
t

Ja
va

Scr
ipt

C++ Go

Pyth
on

P
ro

du
ct

iv
ity

(a) Productivity per programming language.

82.7% 74.5%
84.1% 83.2% 75.4%

0%

25%

50%

75%

100%

ROR LCR SBR AOR UOI

P
ro

du
ct

iv
ity

(b) Productivity per mutation operator.

Fig. 9: Mutant productivity.

Tables 3 and 4 show the distribution of number of mu-
tants and mutant survivability, broken down by program-
ming language and mutation operator. Figure 8 visualizes
the mutant survivability data. Because the SBR mutation
operator can be applied to almost any non-arid node in the
code, it is no surprise that this mutation operator dominates
the number of mutants, contributing roughly 68% of all
mutants. While SBR is a prolific and versatile mutation oper-
ator, it is also the second least likely to survive the test suite:
when applicable to a changelist, SBR mutants are surfaced
during code review with a probability of 12.6%. Overall,
mutant survivability is similar across mutation operators,
with a notable exception of UOI, which has a survivability
of only 9.5%. Mutant survivability is also similar across
programming languages with the exception of Dart, whose
mutant survivability is noticeably higher. We conjecture that
this is because Dart is mostly used for web development
which has its own testing challenges.

RQ2: Different mutation operators result in different mutant
survivability; for example, the survival rate of LCR is almost
twice as high as that of UOI.

Language Operator

C++ Go Java Python AOR LCR ROR SBR UOI

0%

50%

100%

150%

Im
pr

ov
em

en
t

Probability Mutant survives Mutant is productive

Fig. 10: Improvements achieved by context-based selection.
(0% improvement corresponds to random selection.)

5.4 RQ3 Mutant Productivity
Mutant productivity is the most important measure, because
it directly measures the utility of a surfaced mutant. Since
we only generate a single mutant in a line, that mutant
ideally should not just survive the test suite but also be
productive, allowing developers to improve the test suite
or the source code itself. Given Google’s high accuracy
and actionability requirements for surfacing code findings
during code reviews, we rely on developer feedback as the
best available measure for mutant productivity. Specifically,
we consider a mutant a developer marked with Please fix
to be more productive than others. Likewise, we consider
a mutant a developer marked with Not useful to be less
productive than others. (Note that we excluded mutants for
which no developer feedback is available from the analy-
sis.) We compare the mutant productivity across mutation
operators and programming languages.

Figure 9 shows the results, indicating that mutant pro-
ductivity is similar across mutation operators, with AOR
and UOI mutants being noticeably less productive. For
example, ROR mutants are productive 84.1% of the time,
whereas, UOI mutants are only productive 74.5% of the
time. The differences between programming languages are
even more pronounced, with Java mutants being productive
87.2% of the time, compared to Python mutants that are
productive 70.6% of the time. This could be due to code
conventions, language common usecase scenarios, testing
frameworks or simply the lack of heuristics. We have found
that Python code generally requires more tests because of
the lack of the compiler.

RQ3: ROR, LCR, and SBR mutants show similar productivity,
whereas AOR and UOI mutants show noticeably lower produc-
tivity.

5.5 RQ4 Mutation Context
We examine whether context-based selection of mutation
operators improves mutant survivability and productivity.
Specifically, we determine whether context-based selection
of mutation operators increases the probability of a gener-
ated mutant to survive and to result in a Please fix request,
when compared to the random-selection baseline.

Figure 10 shows that selecting mutation operators based
on the AST context of the node under mutation substantially

12

increases the probability of the generated mutant to survive
and to result in a Please fix request. While improvements
vary across programming languages and across mutation
operators, the context-based selection consistently outper-
forms random selection. The largest productivity improve-
ments are achieved for UOI, AOR, and SBR, which generate
most of all mutants. Intuitively, these improvements mean
that context-based selection results in twice as many pro-
ductive UOI mutants (out of all generated mutants), when
compared to random selection. Figure 10 also shows to
what extent these improvements can be attributed to the
fact that simply more mutants are surfaced. Since the im-
provements for productivity increase even more than those
for survivability, context-based selection not only results in
more surfaced mutants but also in higher productivity of
the surviving mutants. Overall, the survival rate increases
by over 40% and the probability that a reviewer asks for a
generated mutant to be fixed increases by almost 50%.

It is important to put these improvements into context.
Probabilistic diff-based mutation analysis aggressively trims
down the number of considered mutants from thousands in
a representative file to a mere few, and enables mutants to be
effectively presented to developers as potential test targets.
The random-selection approach produces fewer surviving
mutants of lower productivity.

RQ4: Context-based selection improves the probability that a
generated mutant survives by more than 40% and the probabil-
ity that a generated mutant is productive by almost 50%.

6 RELATED WORK

There are several veins of research that are related to this
work. Just et al. proposed an AST-based program context
model for predicting mutant effectiveness [24]. Fernandez
et al. developed various rules for Java programs to detect
equivalent and redundant mutants [25]. The initial results
are promising for developing selection strategies that out-
perform random selection. Further, Zhang et al. used ma-
chine learning to predict mutation scores, both on successive
versions of a given project, and across projects [26]. Finally,
the PIT project makes mutation testing usable by practicing
developers and has gained adoption in the industry [27].

There has been a lot of focus on computational costs and
the equivalent mutant problem [28]. There is much focus
on avoiding redundant mutants, which leads to increase of
computational costs and inflation of the mutation score [29],
and instead favoring hard-to-detect mutants [30], [31] or
dominator mutants [32]. Mutant subsumption graphs have
similar goals but mutant productivity is much more fuzzy
than dominance or subsumption.

Effectiveness for mutants is primarily defined in terms of
redundacy and equivalence. This approach fails to consider
the notion that non-reduntant mutants might be unpro-
ductive or that equivalent mutants can be productive [33].
From our experience, reporting equivalent mutants has been
a vastly easier problem than reporting unproductive non-
reduntant and non-equivalent mutants.

Our approach for targeted mutant selection (Section 4)
compares the context of mutants using tree hashes. The

specific implementation was driven by the need for con-
sistency and efficiency, in order to make it possible to look
up similar AST contexts in real time during mutant creation.
In particular, the hash distances need to be preserved over
time to improve the targeted selection. There are approaches
to software clone detection [34] that similarly use tree-
distances (e.g., [35], [36], [37], [38], [39]). Whether alternative
distance measurements can be scaled for application at
Google and whether they can further improve the targeted
selection remains to be determined in future work.

This approach is similar to tree-based approaches
(e.g., [35], [36], [37], [38], [39]) in software clone detec-
tion [34], which aims to detect that a code fragment is a
copy of some original code, with or without modification.
The AST-based techniques can detect additional categories
of modifications like identifier name changes or type aliases,
that token-based detection cannot, and the insensitivity of
to variable names is important for the mutation context.
However, clone detection differs drastically in its goal: it
cares about detecting code with the same semantics, in spite
of the syntactical changes made to it. While clone detection
might want to detect that an algorithm has been copied
and then changed slightly, e.g., a recursion rewritten to
an equivalent iterative algorithm, mutation testing context
cares only about the neighboring AST nodes: in the iterative
algorithm, the most productive mutants will be those that
thrived before in such code, not the ones that thrived for
a recursive algorithm. In order to look up similar AST
contexts in real time, as mutants are created, we require
a fast method that preserves hash distance over time. For
these consistency and efficiency reasons, we opted for the
described tree-hashing approach.

7 CONCLUSIONS

Mutation testing has the potential to effectively guide soft-
ware testing and advance software quality. However, many
mutants represent unproductive test goals; writing tests for
them does not improve test suite efficacy and, even worse,
negatively affects test maintainability.

Over the past six years, we have developed a scalable
mutation testing approach and mutant suppression rules
that increased the ratio of productive mutants, as judged
by developers, from 15% to 89% at Google. Three strate-
gies were key to success. First, we devised an incremental
mutation testing strategy, reporting at most one mutant per
line of code—targeting lines that are changed and covered.
Second, we have created a set of rule-based heuristics
for mutant suppression, based on developer feedback and
manual analyses. Third, we devised a probabilistic, targeted
mutant selection approach that considers mutation context
and historical mutation results.

Given the success of our mutation testing approach
and the positive developer feedback, we are planning to
deploy it company-wide. We expect that this step will result
in additional refinements of the suppression and selection
strategies in order to maintain a mutant productivity rate
around 90%. Furthermore, we will investigate the long-
term effects of mutation testing on developer behavior when
writing tests as part of our future work.

13

REFERENCES

[1] M. Ivanković, G. Petrović, R. Just, and G. Fraser, “Code coverage
at google,” in Proc. of ESEC/FSE, August 26–30 2019, pp. 955–963.

[2] A. J. Offutt and J. M. Voas, “Subsumption of condition coverage
techniques by mutation testing,” Department of Information and
Software Systems Engineering, George Mason University, Tech. Rep.
ISSE-TR-96-100, 1996.

[3] D. Schuler and A. Zeller, “Assessing oracle quality with checked
coverage,” in 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, 2011, pp. 90–99.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11,
no. 4, pp. 34–41, 1978.

[5] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage
criteria,” IEEE Transactions on Software Engineering, vol. 32, no. 8,
pp. 608–624, 2006.

[6] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser, “Are mutants a valid substitute for real faults in software
testing?” in Proceedings of the International Symposium on Founda-
tions of Software Engineering. ACM, 2014, pp. 654–665.

[7] Y. T. Chen, R. Gopinath, A. Tadakamalla, M. D. Ernst, R. Holmes,
G. Fraser, P. Ammann, and R. Just, “Revisiting the relationship
between fault detection, test adequacy criteria, and test set size,”
in Proc. of ASE, September 21–25 2020, pp. 237–249.

[8] R. Potvin and J. Levenberg, “Why Google stores billions of lines
of code in a single repository,” Communications of the ACM, vol. 59,
pp. 78–87, 2016.

[9] “How DevOps Accelerates "Ideas to Prod" at Google,” https://
swampup.jfrog.com/.

[10] D. Schuler and A. Zeller, “(un-)covering equivalent mutants,” in
Proc. of ICST, April 2010, pp. 45–54.

[11] G. Petrović, M. Ivanković, B. Kurtz, P. Ammann, and R. Just, “An
industrial application of mutation testing: Lessons, challenges, and
research directions,” in Proc. of Mutation, Apr. 2018, pp. 47–53.

[12] G. Petrovic and M. Ivankovic, “State of Mutation Testing at
Google,” in Proceedings of the 40th International Conference on Soft-
ware Engineering 2017 (SEIP), 2018.

[13] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthog-
onal,” Mutation testing for the new century, pp. 34–44, 2001.

[14] “Bazel build system,” https://bazel.io/, 2015.
[15] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An

experimental determination of sufficient mutant operators,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 5, no. 2, pp. 99–118, 1996.

[16] C. Sadowski, J. van Gogh, C. Jaspan, E. Soederberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Software
Conference (ICSE), 2015, 2015.

[17] S. S. Muchnick, Advanced compiler design implementation. Morgan
Kaufmann, 1997.

[18] G. Inc., “gRPC: A high performance, open-source universal RPC
framework,” https://grpc.io, 2006.

[19] S. Tatikonda and S. Parthasarathy, “Hashing tree-structured data:
Methods and applications,” in 2010 IEEE 26th International Confer-
ence on Data Engineering (ICDE 2010). IEEE, 2010, pp. 429–440.

[20] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” Journal of Computer and
System Sciences, vol. 60, no. 3, pp. 630–659, 2000.

[21] “Google Style Guides,” https://google.github.io/styleguide/.
[22] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges

of modern code review,” in 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 2013, pp. 712–721.

[23] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11,
no. 4, pp. 34–41, Apr. 1978.

[24] R. Just, R. J. Kurtz, and P. Ammann, “Inferring mutant utility from
program context,” in Proc. of ISSTA, July 2017, pp. 284–294.

[25] L. Fernandes, M. Ribeiro, L. Carvalho, R. Gheyi, M. Mongiovi,
A. Santos, A. Cavalcanti, F. Ferrari, and J. C. Maldonado, “Avoid-
ing useless mutants,” in Proc. of GPCE, October 2017, pp. 187–198.

[26] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and
L. Zhang, “Predictive mutation testing,” in Proc. of ISSTA, July
2016, pp. 342–353.

[27] H. Coles, “Real world mutation testing,” http://pitest.org, last
accessed January 2018.

[28] Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE TSE, vol. 37, no. 5, pp. 649–678,
2011.

[29] R. Just and F. Schweiggert, “Higher accuracy and lower run
time: efficient mutation analysis using non-redundant mutation
operators,” JSTVR, vol. 25, no. 5-7, pp. 490–507, 2015.

[30] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stub-
born mutation operators using human analysis of equivalence,” in
Proc. of ICSE, May 2014, pp. 919–930.

[31] W. Visser, “What makes killing a mutant hard,” in Proc. of ASE,
September 2016, pp. 39–44.

[32] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoreti-
cal minimal sets of mutants,” in Proc. of ICST, 2014, pp. 21–31.

[33] P. McMinn, C. J. Wright, C. J. McCurdy, and G. Kapfhammer,
“Automatic detection and removal of ineffective mutants for the
mutation analysis of relational database schemas,” IEEE TSE, 2017.

[34] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, pp.
64–68, 2007.

[35] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). IEEE,
1998, pp. 368–377.

[36] W. Yang, “Identifying syntactic differences between two pro-
grams,” Software: Practice and Experience, vol. 21, no. 7, pp. 739–755,
1991.

[37] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in International
Conference on Software Engineering (ICSE’07). IEEE, 2007, pp. 96–
105.

[38] V. Wahler, D. Seipel, J. Wolff, and G. Fischer, “Clone detection
in source code by frequent itemset techniques,” in Source Code
Analysis and Manipulation, Fourth IEEE International Workshop on.
IEEE, 2004, pp. 128–135.

[39] W. S. Evans, C. W. Fraser, and F. Ma, “Clone detection via struc-
tural abstraction,” Software Quality Journal, vol. 17, no. 4, pp. 309–
330, 2009.

Goran Petrović Goran Petrović is a Staff Software Engineer at Google
Switzerland, Zürich. He received an MS in Computer Science from
University of Zagreb, Croatia, in 2009. His main research interests are
software quality metrics and improvements, ranging from prevention
of software defects to evaluation of software design reusability and
maintenance costs and automated large scale software refactoring.

Marko Ivanković Marko Ivanković is a Staff Software Engineer at
Google Switzerland, Zürich. He received an MS in Computer Science
from University of Zagreb, in 2011. His work focuses on Software
Engineering as a discipline, large scale code base manipulation, code
metrics and developer workflows.

Gordon Fraser Gordon Fraser is a full professor in Computer Science
at the University of Passau, Germany. He received a PhD in computer
science from Graz University of Technology, Austria, in 2007, worked
as a post-doc at Saarland University, and was a Senior Lecturer at the
University of Sheffield, UK. The central theme of his research is improv-
ing software quality, and his recent research concerns the prevention,
detection, and removal of defects in software.

René Just René Just is an Assistant Professor at the University of
Washington. His research interests are in software engineering, soft-
ware security, and data science, in particular static and dynamic pro-
gram analysis, mobile security, and applied statistics and machine learn-
ing. He is the recipient of an NSF CAREER Award, and his research
in the area of software engineering won three ACM SIGSOFT Distin-
guished Paper Awards. He develops research and educational infras-
tructures that are widely adopted by other researchers and instructors
(e.g., Defects4J and the Major mutation framework).

https://swampup.jfrog.com/
https://swampup.jfrog.com/
https://bazel.io/
https://grpc.io
https://google.github.io/styleguide/

14

APPENDIX A
ARID NODE HEURISTICS

Nodes of the abstract syntax tree (AST) are arid if applying
mutation operators on them or their subtrees would lead
to unproductive mutants. An unproductive mutant is either
trivially equivalent to the original program, or if it is de-
tectable then adding a test for it would not lead to an actual
improvement of the test suite. The decision of whether a
node of the AST is arid is implemented using heuristics
built on developer feedback over time. In general, these
heuristics are specifically tailored for the environment of
the developers who provided the feedback, and a different
context will require deriving new, appropriate heuristics.
In this appendix, we summarize the main categories of
such heuristics. We first summarize the main categories of
arid node heuristics that are indendent of a specific pro-
gramming language, then we describe heuristics developed
specifically for different programming languages. For each
heuristic, we provide examples of unproductive mutants
that the heuristic addresses.

A.1 Language Independent Heuristics
A.1.1 Logging Frameworks
Logging statements are rarely tested outside of the code of
the logging systems themselves. Mutants in logging state-
ments are usually unproductive and would not lead to tests
that improve software quality.

LOG(INFO) << "Duration: " << (absl::Now() - start);

LOG(INFO) << "Duration: " << (absl::Now() + start);

A special case of the logging statement heuristic con-
cerns the Console class available in the browser that can be
used for logging; mutants in that code are unproductive test
goals.

console.log(’duration is ’, new Date() - start);

console.log(’duration is ’, new Date() + start);

Similar is true for other console methods like assert.
Implementation. This is implemented using AST-level

arid node tagging, matching call expression or macros.
Soundness. This heuristic is sound when applied to

source code that does not explicitly test the logging code
itself, which is easy to detect using the build system.

A.1.2 Memory and Capacity Functionality
Often it makes sense to pre-allocate memory for efficiency,
when the total size is known in advance. Mutants in these
memory size specifications are not good test goals; they

usually create functionally equivalent code and are not
killable by standard testing methods.

std::vector<std::string> merged(left.size() + right.size());
absl::c_copy(left, std::back_inserter(merged));
absl::c_copy(right, std::back_inserter(merged));

std::vector<std::string> merged(left.size() - right.size());
absl::c_copy(left, std::back_inserter(merged));
absl::c_copy(right, std::back_inserter(merged));

In this example, the only consequence will be that the
vector may need to grow itself and that will take extra time.
The same also holds for Java collections, e.g.,

List<String> merged = new ArrayList<>(left.length() +
right.length());

List<String> merged = new ArrayList<>(left.length() -
right.length());

List<String> merged =
Lists.newArrayListWithCapacity(left.length() +
right.length());

List<String> merged =
Lists.newArrayListWithCapacity(left.length() -
right.length());

Similar constructs exist in all programming lan-
guages, and the heuristic extends to all of these such
as std::vector::resize, or reserve, shrink_to_fit, free,
delete. These represent a family of common functions of
many containers in many languages, std::vector being just
a representative example.

Another interesting example are cache prefetch instruc-
tions added with SSE, prefetch0, prefetch, prefetch2 and
prefetchnta accessible with __builtin or directly by an asm
block.

- __builtin_prefetch(&obj, 0, 3);

Implementation. This is implemented using AST-level
arid node tagging, matching call expressions.

Soundness. This heuristic is sound; it uses exact symbols
and type names.

A.1.3 Monitoring Systems
Although it may be debatable whether monitoring logic
should be tested or not, developers did not use such mutants
productively and instead reported them as being unproduc-
tive. Consequently, heuristics mark AST nodes related to
monitoring logic as arid.

15

#include <prometheus/counter.h>

auto& counter_family =
prometheus::BuildCounter().Name("time").Register(*r);

auto& error_counter = counter_family.Add({{"error",
"value"}}});

error_counter.Increment(run1.errors().size() +
run2.errors().size());

#include <prometheus/counter.h>

auto& counter_family =
prometheus::BuildCounter().Name("time").Register(*r);

auto& error_counter = counter_family.Add({{"error",
"value"}}});

error_counter.Increment(run1.errors().size() -
run2.errors().size());

Implementation. This is implemented using AST-level
arid node tagging, matching constructor or call expressions.

Soundness. This heuristic is sound; it uses exact symbols
and type names.

A.1.4 Time Related Code
Clocks are usually faked in tests, and networking calls are
short-circuited to special RPC implementations for testing;
it therefore rarely makes sense to mutate time expressions
when used in a deadline-context, because they would lead
to unproductive mutants.

- ::SleepFor(absl::Seconds(5));

The same holds for other types of network-code, such as
setting deadlines:

context.set_deadline(std::chrono::system_clock::now() +
std::chrono::milliseconds(10));

context.set_deadline(std::chrono::system_clock::now() -
std::chrono::milliseconds(10));

Implementation. This is implemented using AST-level
arid node tagging, matching constructor or call expressions.

Soundness. This heuristic is sound; it uses exact symbols
and type names.

A.1.5 Tracing and Debugging
Code is often adorned with debugging and tracing informa-
tion that may be even excluded in the release builds, but
present while testing. This code serves its purpose, but is
usually impossible to test and mutants in that code do not
make good test goals.

- ASSERT_GT(input.size(), 0);

- assert(x != nullptr);

- TRACE(x);

- Preconditions.checkNotNull(v);

- exception.printStackTrace();

In general, check-failures usually make the program
segfault and serve as a last line of defense, and tracing
is used for debugging purposes, and so neither results in
productive mutants.

Implementation. This is implemented using AST-level
arid node tagging, matching constructors, call expressions
or macros.

Soundness. This heuristic is sound; it uses exact symbols
and type names.

A.1.6 Programming Model Frameworks
There are specialized frameworks for specifying complex
work conceptually and then executing that work in a differ-
ent way, where the code that is written serves as a model for
the intent, not the real logic that gets executed. Some exam-
ples of this principle are Apache Beam and TensorFlow.

Pipeline p = Pipeline.create(options);
PCollection<String, Long> word_counts = p
.apply(TextIO.read().from(options.getInputFile()))
.apply("ExtractWords", new WordExtractor())
.apply(Count.<String>perElement())
.apply("FormatResults", new ResultFormatter());

// materializes the results
- PipelineRunner.run(p);

In this example, developers usually test the components
of the pipeline, but not the code assembling the pipeline.
Similar examples exist for TensorFlow:

- tf.compat.v1.enable_eager_execution()
assert tf.multiply(6, 7).numpy() == 42

Implementation. This is implemented using AST-level
arid node tagging, matching constructor or call expressions.

Soundness. This heuristic is not sound. Because it is
based on best-effort matching of code structures that look
arid and often are, it can suppress productive mutants.

A.1.7 Block Body Uncovered
Suppose that a block entry condition (e.g., of an if-
statement) is covered by tests, but the condition is not
fulfilled by any tests and thus the corresponding block is not
covered. Most mutants of the condition would only help the
developers to identify that no test covers the relevant branch
yet. However, the same information is already provided by
coverage, and so mutants in such if-conditions are deemed
unproductive. Mutants like this can indeed inform about
test suite quality, but coverage is a far simpler test goal for

16

the developers to act on in this case, and for that reason we
use coverage to drive test case implementation, and mutatns
for their subsequent improvement.

Implementation. This is implemented using AST-level
arid node tagging, aided by line code coverage data.

Soundness. While most mutants are indeed unproduc-
tive, the heuristic is not entirely sound as there may be
mutants that reveal information about boundary cases of
the condition. Since coverage points out that a branch is not
taken, forcing boundary-check tests prior to even covering
both branches is pre-mature; if the tests written for the cov-
erage test goal do not check boundary conditions, mutants
can then be reported as new test goals.

A.1.8 Arithmetic Operator with a no-op Child
In some cases, mostly due to style, code will be written with
explicit zeros for some parts of an expression. For example:

data[i] + 0 * sizeof(char), data[i] + 4 * sizeof(char),
data[i] + 8 * sizeof(char);

Mutating the binary operator + by removing the right-
hand side (the 0 * sizeof(char)), leaving only left-hand
side of the binary operator (the data[i]), results in an
equivalent mutant. The code is simply written in such a way
because it deals with low-level instructions and the code
style requires that each offset be explicitly written, and all
lines equally aligned so each offset is at the same column.

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound because it has the full
type and expression information available.

A.1.9 Logical Comparator of POD with Zero Values
When comparing a plain-old-data structure with its zero-
value, there is a possibility for creating an equivalent mu-
tant. For example, a conditional statement if (x != 0),
with x having a primitive or record type, is equivalent to
if (x). In that case, mutating the condition x != 0 to the
left-hand-side operand x produces an equivalent mutant.

if (x !== 0) {
return 5;

}

if (x) {
return 5;

}

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound when full type and
expression information is available.

A.1.10 Logical Comparator with Null Child
When comparing something to nullptr and its correspond-
ing value in other languages (NULL, nil, null, None, ...),
picking the left (or right, depending where the null value
is) is equivalent to replacing the binary operator with false.

if (worker_ == nullptr)

+ if (nullptr) // ‘if (false)‘ is the equivalent mutation

In an expression of format x != nullptr, mutating it to
x is an equivalent mutant.

if (worker_ != nullptr) worker_->DoWork();

if (worker_) worker_->DoWork();

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound because it has the full
type and expression information available.

A.1.11 Floating Point Equality
Floating point equality comparison, except for special val-
ues such as zero, is mostly meaningless. For a number x that
is not 0, replacing f() > x with f() >= x is not a good test
goal.

return normalized_score > 0.95

return normalized_score >= 0.95

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound because it has the full
type and expression information available.

A.1.12 Expression and Statement Deletion
Many statements can be deleted, but usually more cannot,
if the code is to compile. This is obvious in itself, but it
is worth reporting general types of nodes that are best not
deleted. Some of them are: conditional (ternary) operator:
b in a ? b : c, parameters of call expressions: a in f(a),
non-assignment binary operators, unary operators that are
not a standalone statement but within a compound, return,
label, default and declaration statements, blocks containing
a return path within non-void functions, only statements
in non-void functions (function with 1 statement). Some
of these rules change from language to language, or are
applicable only in some languages, but the ideas carry. In
C++, one may have a function without a return statement
and when compiled with the right set of compiler flags, it
compiles, but the return value is undefined, and in some
other languages it would fail to compile and no amount of
compiler flags could change that. Blocks can be deleted, or
replaced with an empty block {}, or in Python a block with
pass.

Implementation. This is implemented using AST-level
arid node tagging, matching nodes.

Soundness. This heuristic is not sound because it might
suppress some mutants that would be productive.

17

A.1.13 Program Flags
Program flags, passed in as arguments and parsed by some
flag framework like Abseil, are a way to configure the
program. Often, tests will inject the fake flag values, but
often they will ignore them; they may be used for algorithm
tweaking (max threads in pool, max size of cache, deadline
for network operations). Other flags will inform the pro-
gram about the location of dependencies on the network, or
resources on the file system; these are usually faked in tests
and injected directly into the code using the programming
API rather than flags, since the code is directly invoked,
rather than forked into.

- flags.DEFINE_string(’name’, ’Jane Random’, ’Your name.’)

flags.DEFINE_integer(’stack_size’, 1000 * 1000, ’Size of
the call stack.’)

flags.DEFINE_integer(’stack_size’, 1000 / 1000, ’Size of
the call stack.’)

flags.DEFINE_integer(’rpc_deadline_seconds’, 5 * 60,
’Network deadline.’)

flags.DEFINE_integer(’rpc_deadline_seconds’, 5 + 60,
’Network deadline.’)

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound because it has the full
type and expression information available.

A.1.14 Low-level APIs
If the code directly accesses the operating system using the
standard libraries (glibc) or Python’s os or shutil libraries
(e.g., to copy some files, create a directory, or to print on
the screen), then the program is probably some kind of a
utility script and mutating these calls results in unproduc-
tive mutants: these calls are hard to mock (except in Python)
and mostly unproductive test targets. There are exceptions,
e.g., an API that wraps this communication and is used
by various projects, but for the most part there are few of
those and many more of simple utility scripts for doing
basic filesystem operations. We can be sure that these are
not critical programs because the standard libraries cannot
use any of the standard storages, just local disk, and are
rarely used in production.

- shutil.rmtree(dir)

- os.rename(from, to)

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound because it has the full
type and expression information available.

A.1.15 Stream Operations
Streams like stdout, stderr, or any other cached buffer,
flush when the buffer fills to some point, or on special
events. Removing the flush operations on various streams
should change no behavior from the test point of view, and
therefore mutants of such statements are not productive test
goals. The same also holds for close operations on files or
other buffers.

- buffer.flush();

- file.close();

Implementation. This is implemented using AST-level
arid node tagging, matching call expressions.

Soundness. This heuristic is not sound because there
are conceivable code constructs in which buffer operations
change the perceived behavior (e.g., in concurrent stream
manipulation).

A.1.16 Gate Configuration
It is very common to use flags or some other mechanisms to
facilitate easy switching between different implementations,
or control the state of rollout. Consider the following:

class Controller(object):
USE_NEXT_GEN_BACKEND = True

class Controller(object):
USE_NEXT_GEN_BACKEND = False

In this example there are two implementations, an old
and a new one, but ideally both should work correctly, and
then it becomes impossible to distinguish by tests that there
is a difference.

Similarly, a more gradual approach might have some-
thing like this:

private static final Double nextGenTrafficRatio = 0.1;

private static final Double nextGenTrafficRatio = 0.1 + 1;

Some ratio of traffic can exercise a new implementa-
tion, for easier incremental control. Mutants in such global
switches, usually determinable from code style, do not make
for good test goals.

Implementation. This is implemented using AST-level
arid node tagging, matching nodes.

Soundness. This heuristic is not sound because it is
guessing the meaning of a class field based on its value and
location, and it might be wrong.

18

A.1.17 Cached lookups
Often, values are cached/memoized to avoid redundant
recalculation. Removing the cache lookup slows down the
program, but functionally does not change anything, pro-
ducing an equivalent, and thus unproductive, mutant.

def fib(n):
if n in cache:
return cache[n]

if n == 1:
value = 1

elif n == 2:
value = 1

elif n > 2:
value = fib(n - 1) + fib(n -2)

cache[n] = value
return value

Implementation. This is implemented using AST-level
arid node tagging, matching complex code structures. The
code structure that is considered a cached lookup must
fulfill the following: a) it must lookup an input parameter in
a dissociative container and return from it under that key if
found, b) it must store the value that it otherwise returns in
the same container under the same key.

Soundness. This heuristic is not sound because it only
checks for probable code structures.

A.1.18 Infinity
There are various representations of infinity in mathematical
libraries in various languages. Incrementing or decrement-
ing these produces an equivalent, and thus unproductive,
mutant.

x = a.replace([numpy.inf, -numpy.inf])

x = a.replace([numpy.inf + 1, -numpy.inf])

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound because it has the full
type and expression information available.

A.1.19 Insensitive Arguments
There are some functions that are insensitive to precise
values or use them as an indication only. These, if mutated,
should be mutated to a degree that they change not only
the value, but also the indication of that value. For example,
in Python the zip builtin makes an iterator that aggregates
elements from each of the iterables passed to it. The iterator
stops when the shortest input iterable is exhausted, meaning
that changing the size of one of the parameters is not
guaranteed to affect the result.

zip(a[i:j], b[j:k], c[k:m])

zip(a[i:j + 1], b[j:k], c[k:m])

Incrementing and decrementing indices within zip pa-
rameters has may likely create equivalent (unproductive)

mutants. Another example is given by comparator functions
in any context: It is very common for comparators to take
in two values, and return -1, 0 or 1, if one element is less
than the other, equal to it or greater than it, in whatever se-
mantics the author defines. Commonly, any negative value
implies the former, and any positive value implies the latter,
while zero implies equality. As an example, consider Java
Collections:

list.sort((Person p1, Person p2) -> p1.getAge() -
p2.getAge());

list.sort((Person p1, Person p2) -> p1.getAge() -
p2.getAge() + 1);

This mutant can only be helpful when the age difference
is exactly -1 or 0, for any other combination it is an equiva-
lent mutant and thus an unproductive test target.

Another Java example is the String::split method, for
which one of the overloaded versions takes two parameters,
the regex to define the split and the limit that controls the
number of times the pattern is applied, affecting the length
of the resulting array. According to the API specification,
if te limit is non-positive then the pattern will be applied
as many times as possible. This means that any negative
number has the same semantics.

String[] parts = key.split(",", -1);

String[] parts = key.split(",", -2);

Finally, another example is a loop spec with a step. When
changing the range condition, it has to be changed at least
the full step for the change to have an effect.

x = l[1:10 + 2 * 7:14]

x = l[1:10 + 2 * 7 + 1:14]

for (int i = 1; i < 10 + 2 * 7; i += 14) { std::cout << i
<< std::endl; }

for (int i = 1; i < 10 + 2 * 7 + 1; i += 14) { std::cout <<
i << std::endl; }

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound because it has the full
type and expression information available.

A.1.20 Collection Size
The size of a collection cannot be a negative number, so
when comparing the length of a container to zero, some
mutants resulting from the comparison may produce un-
reachable code and make for unproductive test goals.

19

if len(l) > 0:
return l[1]

if len(l) < 0:
return l[1]

The same also holds for collections in other languages,
although it is not always easy to detect when the length is
accessed. In Java, the length method can be detected for all
the standard library collections by checking the inheritance
chain. In Go and Python, the len builtin function can be
detected with ease, and for C++, the size method can be
checked for, along with iterators or inheritance chain.

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound because it has the
full type and expression information available, barring the
redefinition of a len function in Python or hotplugging a
patched class in Java standard library.

A.1.21 Trivial Methods
Most programming languages have different types of “boil-
erplate” code that is required, but rarely considered as
important to be tested by developers. For example, in Java
there are methods like equals, hashCode, toString, clone,
and they are usually implemented by using existing libraries
like the Objects API in Java or Abseil Hash in C++. While it
is possible that these methods do indeed contain bugs, the
developer feedback on the productivity of corresponding
mutants clearly indicates that mutants in such methods are
not productive.

@Override
public boolean equals(Object o) {
if (!(o instanceof CellData)) {
return false;

}
CellData that = (CellData) o;
return Objects.equals(exp, that.exp) &&

Objects.equals(text, that.text);
}

@Override
public boolean equals(Object o) {
if (false) {
return false;

}
CellData that = (CellData) o;
return Objects.equals(exp, that.exp) &&

Objects.equals(text, that.text);
}

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is not sound because it relies
on the code style recommendation on implementing such
methods.

A.1.22 Early Exit Optimizations
Linus Torvalds famously states that "...if you need more than 3
levels of indentation, you’re screwed anyway, and should fix your
program." in the kernel coding style. While this is sometimes

hard to accomplish, having less things to remember is a
good thing, so it is encouraged by the code style to return
early if possible.

Consider the following mutant:

log.infof("network speed: %v", bytes/time)
Map<String, Integer> ExtractPrices(List<Product> products) {
if (products.empty()) {
return ImmutableMap.of();
}
// Translation logic.

The early return just makes the code easier to under-
stand but has no effect on the behavior, and the produced
equivalent mutant is a unproductive test goal.

Implementation. This is implemented using AST-level
arid node tagging, matching expressions. This condition
triggers when an empty container (e.g., ImmutableMap.of())
is returned if one of the parameters is checked for emptiness.
The checks for emptiness range from zero or null-looking
expressions, invocations of len or size or empty methods
on a container of an appropriate type that depends on the
language (e.g., hash maps, lists, dictionaries, trees, stacks,
etc.). The empty container criterion checks for standard
library containers, commonly used libraries and internal
specialized container implementations.

Soundness. This heuristic is not sound because the mu-
tant might not be equivalent.

A.1.23 Equality and Equivalence
Some languages have equality (==) and equivalence (===)
comparison operators, where one checks whether the values
look the same versus are the same. The equivalence opera-
tors check for strict equality of both type and value, while
the standard equality is not strict and applies type coercion
and then compares values, making a string ’77’ equal to
an integer 77, because the string gets coerced to integer.
The overwhelming feedback points that strict-to-nonstrict
mutants and vice versa make for unproductive test goals.

if (value === CarType.ECO)

if (value != CarType.ECO)

To avoid dogmatic debates, == is only mutated to != and
=== only to !==.

Implementation. This is implemented using AST-level
arid node tagging, matching binary operators.

Soundness. This heuristic is not sound because it relies
on the code style recommendation on comparison operators.

A.1.24 Acceptable Bounds
Gating a computed result into an acceptable bound by
using Math.min, Math.max, or constrainToRange of Ints,
Longs, and friends is by design unlikely to change behavior
when one of the inputs is mutated. This is similar to the
Insensitive arguments heuristic, and resulting mutants are
usually unproductive.

20

long newCapacity = Math.min(Math.max((data.length * 2L),
minCapacity), MAX_BUFFER_SIZE);

long newCapacity = Math.min(Math.max((-(data.length * 2L)),
minCapacity), MAX_BUFFER_SIZE);

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is not sound; it can suppress
productive mutants that can result from mathematical oper-
ations.

A.2 JavaScript
A.2.1 Closure
Closure provides a framework for library management and
module registration and exporting. These are function calls
but their semantics are for the compiler at the language
level, and mutants in nodes containing them make for
unproductive test goals.

- goog.requireType(’goog.dom.TagName’);

Additional issues arise from the fact that the tests are
executed in a different environment than the final compiled
obfuscated minimized optimized code, where calls to these
functions are potentially removed, replaced or modified.

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound because it has the full
type and expression information available.

A.2.2 Annotations
A special case of the declaration heuristic is based on
JavaScript’s JSDoc method of signaling implicit match and
interface types, for example, @interface annotations. These
are variables specially tagged in comments, and require spe-
cial handling compared to other languages where interfaces
are first class citizen of the language.

- /**
- * @interface
- */

apps.action.Action = function() {};

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound because it has the full
type and expression information available.

A.3 Java
A.3.1 System & Runtime Classes
Mutants around the System and Runtime class that is used
for interacting with the operating system usually produce
mutants that are not good test goals. This is a special case of
the Low Level APIs heuristic.

- System.gc();

- Runtime.getRuntime().exec("rm -rf " + dirName);

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is not sound; it can suppress
productive mutants.

A.3.2 Dependency Injection Modules
Java frequently uses annotation-based automated depen-
dency injection such as Guice or Dagger. Modules provide
bindings for injecting implementations or constants, and
usually the tests will override the production modules and
register testing doubles (fakes, mocks or test implementa-
tions), so changing the production module often has no
effect on the tests because the tests override the setup. Such
mutants are unproductive testing goals.

- bindAsSingleton(binder, CarType.ECO, EcoImpl.class);

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is not sound; it assumes that
all automated dependency injection is overridden by tests.

A.4 Python
A.4.1 Main
Python’s main entry point of a program is usually an if
condition checking that the script is being invoked, and not
imported by another script:

if __name__ == ’__main__’:
app.run()

if __name__ != ’__main__’:
app.run()

Mutants in that expression are not a good test goal.
Implementation. This is implemented using AST-level

arid node tagging, matching expressions.
Soundness. This heuristic is sound, barring manipula-

tion of __name__ global.

A.4.2 Special Exceptions
In Python, exceptions like ValueError imply a programming
defect, something a compiler might catch if one was em-
ployed, not something for what a test should be written. In
that case, Python’s type system would be testable in each
function by calling the function with all possible types and
asserting that the interpreter works correctly; this is not a
good test goal. The AssertionError should usually mean
that the code is unreachable. Another special case is a virtual
method that raises NotImplementedError and is annotated
by abc.abstractmethod.

21

@abstractmethod
def virtual_method(self):
raise NotImplementedError()

@abstractmethod
def virtual_method(self):
pass

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is not sound, because it relies
on the consistent usage of control flow mechanisms.

A.4.3 Version Checks
Python has two major versions, namely 2 and 3, and code
can be written to work for both interpreters and language
specifications. The version can be determined by reading
sys.version_info. Mutants in those lines make for unpro-
ductive test goals.

if sys.version_info[0] < 3:
from urllib import quote

else:
from urllib.parse import quote

if @False@:
from urllib import quote

else:
from urllib.parse import quote

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is not sound, because a pro-
ductive mutant could conceivably appear in version detec-
tion code.

A.4.4 Multiple Return Paths
The code style requires Python programs to explicitly return
None in all leafs if there are multiple return statements: it
forbids the explicit return None that Python would return
when there is no return statement in some path. Removing
those return statements does not make for a good test goal.

log.infof("network speed: %v", bytes/time)
def GetBuilder(x):
if x < 10:
logging.info(’too small, ignoring’)
return None

elsif x > 100:
return LargeBuilder()

else:
return SmallBuilder()

Implementation. This is implemented using AST-level
arid node tagging, matching complex code structures. The
triggering condition is that all leaf nodes are a return state-
ment.

Soundness. This heuristic is not sound, because it relies
on the code style recommendation.

A.4.5 Print
In Python2, print is a first-class citizen of the AST; it is not a
function that is called using a CallExpr(call expression, e.g.

function or method invocation). While this is covered by
the Low Level API heuristics, it is worth noting that Python
requires handling this differently.

- print ’exiting...’

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is not sound.

A.5 Go
A.5.1 Memory Allocation
Go has a built-in make function to allocate and initialize
objects of type slice, map or chan. The size parameter is
used for specifying the slice capacity, the map size or the
channel buffer capacity. The initial capacity will be grown
by the runtime as needed, so changing it is undetectable
by functional tests. This is a special case of the generic
memory and capacity functionality, but it is worth explicitly
mentioning because of the builtin status of this function and
the AST handling.

buf := make([]byte, 4, 4+3*10)

buf := make([]byte, 4, 4+3/10)

Implementation. This is implemented using AST-level
arid node tagging, matching expressions.

Soundness. This heuristic is sound, since it relies on full
expression and type information. Suppressed mutants are
functionally equivalent.

A.5.2 Statement Deletion
Go has a strict opinionated compiler, and unlike most oth-
ers, it has very few flags that can affect the behavior. For
example, including an unused package is a compiler error,
and defining an unused identifier is also a compiler error. In
C++, it is easy to pass a flag to gcc or clang to make this only
a warning, whereas in Go that is impossible. Deleting state-
ments or blocks of statements almost invariably produces
unbuildable code and the mutant appears killed because
the test fails (to build). There is a way to work around this,
that is employed when deleting Go statements. First, the
statement under deletion is traversed by a recursive AST
visitor, and all symbols that are used are recorded. This
includes included package literals, variables and functions,
but excludes types and built-in functions. Once the list of
used symbols is computed, the deletion can proceed, in
a form of a replacement: everything that was used in the
statement under deletion is put into an unnamed slice of
type []interface. While this is a “hack”, this is the only
way to delete code without semantically analyzing the rest
of the translation unit, which then introduces many issues
with byte offsets.

- var v []string

_ = []interface{}{v}

22

v := "-42"
- i, err := strconv.Atoi(v)

v := "-42"
_ = []interface{}{strconv.Atoi, v}

Implementation. This is implemented using AST-level
arid node tagging, matching complex expressions. The

deleted code is recursively visited by a custom AST visitor
that collects information about variables and functions refer-
enced and extracts the full list of symbols that are referenced
therein. The replacement slice is constructed from all eligible
objects.

Soundness. This heuristic is sound in a sense that it will
produce compilable code, since it relies on full expression
and type information. It does not suppress mutants.

	1 Introduction
	2 Mutation Testing at Google
	2.1 Prerequisites: Changelists and Coverage
	2.2 Mutagenesis
	2.3 Mutation Analysis and Selection
	2.4 Surfacing Mutants in the Code Review Process
	2.5 Mutation Testing in Use at Google

	3 Arid Node Detection
	3.1 Detecting Arid Nodes
	3.2 Expert Heuristic Categories
	3.2.1 Heuristics to Prevent Uncompilable Mutants
	3.2.2 Heuristics to Prevent Equivalent Mutants
	3.2.3 Heuristics to Prevent Unproductive Killable Mutants
	3.2.4 Heuristics to Prevent Redundant Mutants
	3.2.5 Experience with Heuristics

	4 Mutant Selection Criteria
	4.1 Random Selection
	4.2 Targeted Selection
	4.3 Mutation Context
	4.4 Generating Pivots from ASTs
	4.5 Fingerprinting Pivot Multisets

	5 Evaluation
	5.1 Experiment Setup
	5.2 RQ1 Mutant Suppression
	5.3 RQ2 Mutant Survivability
	5.4 RQ3 Mutant Productivity
	5.5 RQ4 Mutation Context

	6 Related Work
	7 Conclusions
	References
	Biographies
	Goran Petrovic
	Marko Ivankovic
	Gordon Fraser
	René Just

	Appendix A: Arid Node Heuristics
	A.1 Language Independent Heuristics
	A.1.1 Logging Frameworks
	A.1.2 Memory and Capacity Functionality
	A.1.3 Monitoring Systems
	A.1.4 Time Related Code
	A.1.5 Tracing and Debugging
	A.1.6 Programming Model Frameworks
	A.1.7 Block Body Uncovered
	A.1.8 Arithmetic Operator with a no-op Child
	A.1.9 Logical Comparator of POD with Zero Values
	A.1.10 Logical Comparator with Null Child
	A.1.11 Floating Point Equality
	A.1.12 Expression and Statement Deletion
	A.1.13 Program Flags
	A.1.14 Low-level APIs
	A.1.15 Stream Operations
	A.1.16 Gate Configuration
	A.1.17 Cached lookups
	A.1.18 Infinity
	A.1.19 Insensitive Arguments
	A.1.20 Collection Size
	A.1.21 Trivial Methods
	A.1.22 Early Exit Optimizations
	A.1.23 Equality and Equivalence
	A.1.24 Acceptable Bounds

	A.2 JavaScript
	A.2.1 Closure
	A.2.2 Annotations

	A.3 Java
	A.3.1 System & Runtime Classes
	A.3.2 Dependency Injection Modules

	A.4 Python
	A.4.1 Main
	A.4.2 Special Exceptions
	A.4.3 Version Checks
	A.4.4 Multiple Return Paths
	A.4.5 Print

	A.5 Go
	A.5.1 Memory Allocation
	A.5.2 Statement Deletion

