This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Practical Mutation Testing at Scale
A view from Google
Goran Petrovi¢, Marko lvankovi¢, Gordon Fraser, René Just

Abstract—Mutation analysis assesses a test suite’s adequacy by measuring its ability to detect small artificial faults, systematically
seeded into the tested program. Mutation analysis is considered one of the strongest test-adequacy criteria. Mutation testing builds on
top of mutation analysis and is a testing technique that uses mutants as test goals to create or improve a test suite. Mutation testing
has long been considered intractable because the sheer number of mutants that can be created represents an insurmountable
problem—both in terms of human and computational effort. This has hindered the adoption of mutation testing as an industry standard.
For example, Google has a codebase of two billion lines of code and more than 150,000,000 tests are executed on a daily basis. The
traditional approach to mutation testing does not scale to such an environment; even existing solutions to speed up mutation analysis
are insufficient to make it computationally feasible at such a scale.

To address these challenges, this paper presents a scalable approach to mutation testing based on the following main ideas:

(1) mutation testing is done incrementally, mutating only changed code during code review, rather than the entire code base;

(2) mutants are filtered, removing mutants that are likely to be irrelevant to developers, and limiting the number of mutants per line and
per code review process; (3) mutants are selected based on the historical performance of mutation operators, further eliminating
irrelevant mutants and improving mutant quality. This paper empirically validates the proposed approach by analyzing its effectiveness
in a code-review-based setting, used by more than 24,000 developers on more than 1,000 projects. The results show that the proposed
approach produces orders of magnitude fewer mutants and that context-based mutant filtering and selection improve mutant quality
and actionability. Overall, the proposed approach represents a mutation testing framework that seamlessly integrates into the software
development workflow and is applicable to industrial settings of any size.

Index Terms—mutation testing, code coverage, test efficacy

+
1 INTRODUCTION public Buffer view() {

Buffer buf = new Buffer();
Software testing is the predominant technique for ensuring buf.append(this.internal_buf); //mutation: delete this line
software quality, and various approaches exist for assessing . return buf;

test suite efficacy (i.e., a test suite’s ability to detect software
defects). A common approach is code coverage, which is | public void testview() {
widely used at Google [1] and measures the degree to which Buffer b = new Buffer("internal buffer”);
a test suite exercises a program. Code coverage is intuitive,) assertNotNull(b.view());
cheap to compute, and well supported by commercial-grade
tools. However, code coverage alone is insufficient and
may give a false sense of efficacy, in particular if program
statements are covered but their expected outcome is not as-
serted upon [2], [3]. An alternative approach that addresses
this limitation is mutation analysis, which systematically
seeds artificial faults, called mutants, into a program and
measures a test suite’s ability to detect them [4]. Mutation
analysis addresses is widely considered the best approach
for evaluating test suite efficacy [5], [6], [7]. Mutation testing
is an iterative testing approach that builds on top of muta-
tion analysis and uses undetected mutants as concrete test
goals to guide the testing process.

As a concrete example, consider the following fully
covered, yet weakly tested, function view:

The test exercises the function, but does not assert upon
its effects on the returned buffer. In this case, mutation
analysis outperforms code coverage: even though the line
that appends some content to buf is covered, a developer
is not informed about the fact that no test checks for its
effects. The statement-deletion mutation highlighted in the
code example explicitly points out this testing weakness: the
test does not fail when inserting this artificial defect.
Google always strives to improve test quality, and thus
decided to implement and deploy mutation testing to eval-
uate its efficacy. The scale of Google’s code base with ap-
proximately 2 billion lines of code, however, rendered the
traditional approach to mutation testing infeasible: more
than 150,000,000 test executions per day are gatekeepers
for 40,000 change submissions to this code base, ensuring

e Goran Petrovi¢ and Marko Ioankovi¢ are with Google LLC. that 14,000 continuous integrations remain healthy on a
E-mail: goranpetrovic@google.com, markoi@google.con daily basis [8], [9]. First, systematically mutating the entire
e Gordon Fraser is with the University of Passau de b individual . b ial
E-mail: gordon. fraser@uni-passau.de code base, or even individua p}‘o]ects, cr.e;'ates a su stanFla
e René Just is with the University of Washington number of mutants, each potentially requiring the execution
E-mail: rjust@cs.washington.edu of many tests. Second, neither the traditionally computed
Manuscript received June 13, 2020; revised February 7, 2021. mutant-detection ratio, which quantifies test suite efficacy,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

—>
compute

coverage

Changelist

Covered diff Diff AST

Eligible AST

execute
tests

create
mutants

Code findings

Mutants Live mutants

Fig. 1: The Mutation Testing Service. For a given changelist, line coverage is computed and the code is parsed into an AST.
For AST nodes spanning covered lines, arid nodes are marked, using the arid node detection heuristics, and only non-arid
(eligible) nodes are mutated. The generated mutants are tested, and surviving mutants are reported as code findings.

nor simply showing all mutants that have evaded detection
to a developer would be actionable. Given that resolving a
single mutant takes several minutes [10], [11], the required
developer effort for resolving all undetected mutants would
be prohibitively expensive, even at a small scale.

To make matters worse, even when applying sampling
techniques to substantially reduce the number of mutants,
developers at Google initially classified 85% of reported mu-
tants as unproductive. An unproductive mutant is either triv-
ially equivalent to the original program or it is detectable,
but adding a test for it would not improve the test suite [11].
For example, mutating the initial capacity of a Java collec-
tion (e.g., new ArrayList(64) — new ArrayList(16)) creates
an unproductive mutant. While it is possible to write a test
that asserts on the collection capacity or expected memory
allocations, it is unproductive to do so. In fact, it is con-
ceivable that these tests, if written and added, would even
have a negative impact because their change-detector nature
(specifically testing the current implementation rather than
the specification) violates testing best practices and causes
brittle tests and false alarms.

Faced with the two major challenges in deploying mu-
tation testing—the computational costs of mutation analysis
and the fact that most mutants are unproductive—we have
developed a mutation testing approach that is scalable and
usable, based on three central ideas:

1) Our approach performs mutation testing on code changes: it
considers only changed lines of code and reports mutants
during code review (Section [2} based on our prior
work [12]). This greatly reduces the number of lines in
which mutants are created and matches a developer’s
unit of work for which additional tests are desirable.

2) Our approach uses transitive mutant suppression: it uses
heuristics based on developer feedback (Section
based on our prior work [12]). The feedback of more
than 20,000 developers on thousands of mutants over
six years enabled us to develop heuristics for mutant
suppression that reduce the ratio of unproductive mu-
tants from 85% to 11%.

3) Our approach uses probabilistic, targeted mutant selection:
it reports a restricted number of mutants based on
historical mutant performance, further avoiding unpro-
ductive mutants (Section [).

Our evaluation of the proposed approach involved 760,000
code changes and 2 million mutants reported during code
review, out of a total of almost 17 million generated mutants
(Section). The results show that our approach makes
mutation testing feasible and actionable—even for industry-
scale software development environments.

2 MUTATION TESTING AT GOOGLE

Mutation testing at Google faces challenges of scale, both
in terms of computation time as well as integration into the
developer workflow. Even though existing work on selec-
tive mutation and other optimizations [13] can substantially
reduce the number of mutants that need to be analyzed,
it remains prohibitively expensive to compute the mutant-
detection ratio for Google’s entire codebase due to its size.
It would be even more expensive to keep re-computing
the mutant-detection ratio, e.g., on a daily or weekly basis,
and it is infeasible to compute it after each commit. In
addition to the costs of computing that ratio, we were unable
to find a good way to report it to the developers in an
actionable way: it is neither concrete nor actionable, and
it does not guide testing. Reporting individual mutants at
scale to developers is also challenging, in particular due to
unproductive mutants.

Addressing the challenges of scale and unproductive
mutants, we designed and implemented a mutation test-
ing approach that differs from the traditional approach,
described in the literature [14]. For scalability, we designed
and implemented diff-based mutation testing, which only gen-
erates and evaluates mutants for covered, changed lines; for
productivity, we designed and implemented an approach
for mutant suppression and probabilistic mutant selection.

Mutation testing at Google starts when a developer
sends a code change for code review. The mutation testing
process consists of four high-level steps: code coverage anal-
ysis (Section [2.1), mutant generation (Section [2.2), mutation
analysis (Section 2.3), and reporting surviving mutants in
the code review process (Section [2.4).

Figure [I{details the Mutation Testing Service. (1) It starts
with a changelist submitted for code review. (2) Once code-
coverage metadata is available, it determines the set of lines
that are covered, and added or modified in the changelist.
(3) It then constructs an AST of each affected file and visits
each covered node. (4) It then labels arid nodes (nodes
that if mutated create unproductive mutants), based on
the heuristics accumulated using developer feedback about
mutant productivity over the years. Arid node labeling
happens before mutants are generated, and hence mutants
in arid nodes are never generated in the first place. (5)
Mutagenesis then generates mutants for eligible nodes (i.e.,
each node that is not arid and that is covered by at least one
test). (6) The Mutation Testing Service then evaluates the
mutants against the existing tests, and (7) reports a subset
of surviving mutants as code findings in the code review.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

s el el el do do e o o o s
N S " 'S‘ e Ey & & o Ey &

Fig. 2: Distribution of project line coverage.

2.1 Prerequisites: Changelists and Coverage

A changelist is an atomic update to the version control
system, and it consists of a list of files, the operations to
be performed on these files, and possibly the file contents
to be modified or added, along with metadata like change
description, author, etc.

Once a developer sends a changelist to peer developers
for code review, various static and dynamic analyses are
run for that changelist and findings are reported to the
developer and the reviewers. Line coverage is one such
analysis: during code review, overall and delta code coverage
is reported to the developers [1]]. Overall code coverage is
the ratio of the number of lines covered by tests in the
file to the total number of instrumented lines in the file.
The number of instrumented lines is usually smaller than
the total number of lines, since artifacts like comments or
pure whitespace lines are excluded. Delta coverage is the
ratio of number of covered added or modified lines to the
total number of added or modified lines in the changelist.
Figure [2| shows the line-coverage distribution per project,
indicating that line coverage of most projects is satisfactory.

Code coverage is a prerequisite for running mutation
analysis due to the high cost of generating and evaluating
mutants in uncovered lines, all of which would inevitably
survive because the code is not tested. Once line-level cov-
erage is available for a changelist, mutagenesis is triggered.

Google uses Bazel as its build system [15]]. Build targets
explicitly list their sources and dependencies, and corre-
spond to an arbitrary number of test targets, each of which
can involve multiple tests. Tests are executed in parallel.
Using the explicit dependency and source listing, the code-
coverage analysis provides information about which test
target covers which lines in the source code, thereby linking
lines of code to a set of tests covering them. Line-level
coverage is used to determine the set of tests that need
to be run in an attempt to kill a mutant. This approach is
also implemented in other mutation testing tools, including
PIT [16]] and Major [17], [18].

2.2 Mutagenesis

The mutagenesis service receives a request to generate point
mutations, i.e., mutations that produce a mutant which dif-
fers from the original in one AST node on the requested
line. For each supported programming language, a special
mutagenesis service capable of navigating the AST of a
compilation unit in that language accepts point mutation
requests and replies with potential mutants. The mutation
operators are implemented as AST visitors, an approach

TABLE 1: Implemented mutation operators.

OPERATOR EXAMPLE

AOR

a+b —{a, b,a-b,a*xb,a/b, a%b}

LCR a & b—{a, b, a || b, true, false}

ROR a>b —{a<b, a<=b, a> b, true, false}
UoI a — {a++, a--} (alsoa — !a, etc.)

SBR stmt —0

also taken by other mutation tools (e.g., [19]). For each
point mutation request, i.e., a (file, line) tuple, a mutation
operator is selected and a mutant is generated in that line
if that mutation operator is applicable to it. If no mutant
is generated by the mutation operator, another operator is
selected and so on until either a mutant is generated or all
mutation operators have been tried and no mutant could
be generated. There are two mutation operator selection
strategies, random and targeted, detailed in Section

The Mutation Testing Service generates at most one
mutant per line, for scalability reasons and based on the
insight that the vast majority of mutants for a given line
share the same fate—either all or none of them survive
the analysis [20]. This means that if a mutant generated
for a given line does not survive the mutation analysis, no
additional mutants are generated for that line.

The Mutation Testing Service implements mutagenesis
for 10 programming languages: C++, Java, Go, Python,
TypeScript, JavaScript, Dart, SQL, Common Lisp, and
Kotlin. For each language, the service implements five mu-
tation operators: AOR (Arithmetic operator replacement),
LCR (Logical connector replacement), ROR (Relational op-
erator replacement), UOI (Unary operator insertion), and
SBR (Statement block removal). These mutation operators
were originally introduced for Mothra [21]], and Table
gives an example for each. In Python, unary increment and
decrement are replaced by a binary operator to achieve the
same effect due to the language design. In our experience,
the ABS (Absolute value insertion) mutation operator pre-
dominantly created unproductive mutants, mostly because
it acted on time-and-count related expressions, which are
positive and nonsensical if negated. Therefore, the Mutation
Testing Service does not use the ABS operator. Note that our
observations may not hold in general and may be a function
of the style and features of our codebase.

2.3 Mutation Analysis

Once mutagenesis has generated a set of mutants for a
changelist, a temporary state of the version control system is
prepared for each of them, based on the original changelist,
and then tests are executed in parallel for all those states.
This allows for an efficient interaction and caching between
our version control system and build system, and evaluates
mutants in the fastest possible manner.

Once the mutation analysis results are available, the Mu-
tation Testing Service selects and reports mutants from the
set of surviving mutants. We limit the number of reported
mutants to at most 7 times the number of total files in
a changelist. This ensures that the cognitive overhead of
understanding all reported mutants is not too high, which
might otherwise cause developers to stop using mutation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

testing. We empirically determined 7 to be an appropriate
trade-off between test efficacy and cognitive load by col-
lecting data over the years of running the system. Finally,
the service reports selected surviving mutants in the code
review Ul to the author and the reviewers. Note that for
consistency, the Mutation Testing Service selects and reports
mutants in the same line(s) as before if an author adds
additional tests or otherwise updates the changelist, which
triggers a re-execution of the service.

2.4 Reporting Mutants in the Code Review Process

Most changes to Google’s codebase, except for a limited
number of fully automated changes, are reviewed by de-
velopers before they are merged into the source tree. Potvin
and Levenberg [9] provide a comprehensive overview of
Google’s development ecosystem. Reviewers can leave com-
ments on the changed code that must be resolved by the au-
thor. A special type of comment generated by an automated
analyzer is known as a finding. Unlike human-generated
comments, findings do not need to be resolved by the author
before submission, unless a human reviewer marks them as
mandatory. Many analyzers are run automatically when a
changelist is sent for review: linters, formatters, static code
and build dependency analyzers, etc. The majority of ana-
lyzers are based on the Tricorder code analysis platform [22].

The Mutation Testing Service reports selected mutants
to developers during the code review process, which max-
imizes the chances that these will be considered by the de-
velopers. The number of comments displayed during code
review can be large, so it is important that all tools produce
actionable findings that can be used immediately by the
developers. Reporting non-actionable findings during code
review has a negative impact on the author and the review-
ers. If a finding (e.g., a surviving mutant) is not perceived
as useful, developers can report that with a single click on
the finding. If any of the reviewers consider a finding to be
important, they can indicate that to the changelist author
with a single click. Figure [3| shows an example mutant
displayed in Critique, Google’s Code Review system [23],
including the “Please Fix” and “Not useful” links in the
bottom corners. This feedback is accessible to the owner of
the system that created the findings, so quality metrics can
be tracked, and non-actionable findings triaged and ideally
prevented in the future.

To be of any use to the author and the reviewers, code
findings need to be actionable and reported quickly, before
the review is complete. To that end, the Mutation Testing
Service performs mutant suppression (Section [3), and it
probabilistically selects mutants based on their historical
mutation operator performance (Section E])

3 SUPPRESSING UNPRODUCTIVE MUTANTS

Some parts of the code are less interesting than others.
Reporting live mutants in uninteresting statements (e.g.,
logging statements for debugging purposes) has a negative
impact on cognitive load and time spent analyzing mutants.
Because developers do not perceive adding tests to kill
mutants in uninteresting code as improving the overall
efficacy of the test suite, such mutants tend to survive and
be flagged as unproductive.

namespace testing { 3
namespace mutation { 4
namespace example { 5

int RunMe(int a, int b) { 7
iffa=b || b=1){ 8

¥ Mutants Changing this 1 line to
o if(al=b || b=—1 {
does not cause any test exercising them to fail.

Consider adding test cases that fail when the code is mutated to
ensure those bugs would be caught.

Mutants ran because goranpetrovic is whitelisted

Please fix Not useful

return 1;

return 2;

// namespace mutation

}

1} // namespace example 14
} -
} // namespace testing

Fig. 3: Mutant reported in the code review tool.

This section proposes an approach for suppressing un-
productive mutants, based on a set of heuristics for detect-
ing arid (i.e., uninteresting) AST nodes. There is a trade-off
between correctness and usability of the results; a heuristic
may prevent a mutation in very few non-arid nodes as a
side-effect of suppressing mutations in many arid nodes.
We argue that this is a good trade-off because the number
of possible mutants is orders of magnitude larger than
what the mutation service could reasonably report to the
developers within the existing developer tools. Moreover,
preventing non-actionable findings is more important than
reporting all actionable findings.

3.1 Detecting Arid Nodes

In order to prevent the generation of unproductive mu-
tants, the Mutation Testing Service identifies arid nodes
in the AST, which are related to uninteresting statements.
Examples of arid nodes include calls to memory-reserving
functions like std: :vector: :reserve and writing to stdout;
these are typically not tested by unit tests.

Mutation operators create mutants based on the AST of
a program. The AST contains nodes, which are statements,
expressions or declarations, and their child-parent relation-
ships reflect their connections in the source code [24]. Most
compilers differentiate between simple and compound AST
nodes. Simple nodes have no body; for example, a function-
call expression provides a function name and arguments,
but has no body. Compound nodes have at least one body;
for example, a for loop might have one body, while an if
statement might have two—the then and else branches.

Our heuristics-based approach for labeling nodes as arid
is two-fold:

expert(N)

. B if simple(N)
arid(N) = {1 i Naridle) = L¥e € N othera

otherwise
)
Here, N € T'is a node in the abstract syntax tree T" of a
program, simple is a boolean function determining whether a
node is a simple or compound node (compound nodes con-
tain their children nodes c), and expert is a partial boolean
function mapping a subset of simple nodes in 7' to the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

property of being arid. The first part of Equation [I| operates
on simple nodes, using the expert function, which encodes
knowledge that is manually curated for each programming
language and adjusted over time. The second part operates
on compound nodes and is defined recursively. A com-
pound node is arid iff all of its children nodes are arid.

The expert function flags simple nodes as arid and is
based on developer feedback on reported “Not useful”
mutants. This is a manual process: if we determine that a
certain mutant is indeed unproductive and that an entire
class of such mutants should not be created, a rule is added
to the expert function. This is a key component of the
Mutation Testing Service —without it, users would become
frustrated with non-actionable findings and opt out of the
system altogether. Targeted mutation and careful reporting
of mutants have been crucial for the adoption of mutation
testing at Google. So far, we have accumulated more than
one hundred rules for arid node detection.

3.2 Expert Heuristic Categories

The expert function consists of various rules, some of which
are mutation-operator-specific, and some of which are uni-
versal. We distinguish between heuristics that prevent the
generation of uncompilable vs. compilable yet unproductive
mutants. Most heuristics deal with the latter category, but
the former is also important, especially in Go, where the
compiler is very sensitive to mutations (e.g., an unused
import is a compiler error). For compilable mutants, we
further distinguish between heuristics for equivalent mu-
tants, killable mutants, and redundant mutants, as reported
in Table

Each of the four heuristic categories contains one or
more distinct groups of rules, which in turn contain one
or more related rules. For example, all rules that suppress
mutants in logging statements (multiple rules for multiple
types of logging statements and functions) form a distinct
group because they all apply to logging, and the entire
group aims to prevent unproductive killable mutants. The
frequency indicates how often a category is applicable to a
given changelist. For a detailed list of rules, please refer to
the supplementary materials, which can be found online at
<production staff will insert link>.

3.2.1 Heuristics to Prevent Uncompilable Mutants

A mutant should be a syntactically valid program—
otherwise, it would be detected by the compiler and would
not add any value for testing. There are certain mutations,
especially the ones that delete code, that violate this validity
principle. A prime example is deleting code in Go; any
unused variable or imported module produces a compiler
error. The proposed heuristic gathers all used symbols and
puts them in a container instead of deleting them so they
remain referenced and the compiler is appeased.

3.2.2 Heuristics to Prevent Equivalent Mutants

Equivalent mutants, which are semantically equivalent to
the mutated program, are a plague in mutation testing
and cannot generally be detected automatically. However,
there are some groups of equivalent mutants that can be
accurately detected. For example, in Java, the specification

5

TABLE 2: Arid node heuristics. Each category contains one
or more distinct groups of one or more related rules.

CATEGORY FREQUENCY DISTINCT GROUPS
Uncompilable Common 1
Equivalent Common 13
Unproductive killable =~ Very common 16
Redundant Uncommon 2

for the size method of a java.util.Collection is that it
returns a non-negative value. This means that mutations
such as collection.size() == @ —> collection.size() <= @
are guaranteed to produce an equivalent mutant.

Another example for this category is related to memoiza-
tion. Memoization is often used to speed up execution, but
its removal inevitably causes the generation of equivalent
mutants. The following heuristic is used to detect memoiza-
tion: an if statement is a cache lookup if it is of the form if
a, ok := x[vl]; ok return a,ie., if a lookup in the map
finds an element, the if block returns that element (among
other values, e.g., Error in Go). Such an if statement is a
cache lookup statement and is considered arid by the expert
function, as is its full body. The following example shows a
cache lookup in Go:

var cache map[stringlstring

func get(key string) string {

if val, ok := cachelkey]; ok {
return val
1
value := expensiveCalculation(key)
cachel[key] = value
return value

}

Removing the if statement just removes caching, but does
not change functional behavior, and hence yields an equiv-
alent mutant. The program still produces the same output
for the same input—albeit slower. Functional tests are not
expected to detect such changes.

As a third example, a heuristic in this category avoids
mutations of time specifications because unit tests rarely test
for time, and if they do, they tend to use fake clocks. State-
ments invoking sleep-like functionality, setting deadlines, or
waiting for services to become ready (like gRPC [25] server’s
Wait function that is always invoked in RPC servers, which
are abundant in Google’s code base) are considered arid by
the expert function.

\ sleep(); rpc.set_deadline(10);

\ sleep(200); rpc.set_deadline(20);

3.2.3 Heuristics to Prevent Unproductive Killable Mutants

Not all code is equally important: some code may result in
killable mutants but the tests that kill them are not valuable
and would not be written by experienced developers; such
mutants are bad test goals. Examples of this category are
increments of values in monitoring system frameworks, low
level APIs or flag changes: these are easy to mutate, easy to
test for, and yet mostly undesirable test goals.

A common way to implement heuristics in this category
is to match function names; indeed we suppress mutants in
calls to hundreds of functions, which is responsible for the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

largest proportion of suppressions by the expert function.
The prime example of this category is a heuristic that marks
any function call arid if the function name starts with the
prefix log or the object on which the function is invoked is
called logger. We validated this heuristic by randomly sam-
pling 100 nodes that were marked arid by the log heuristic,
and found that 99 indeed were correctly marked, while one
had marginal utility. In total, we have accumulated fuzzy
name suppression rules for more than 200 function families.

\ log.infof ("network speed: %v", bytes/time)

\ log.infof ("network speed: %v", bytes+time)

3.2.4 Heuiristics to Prevent Redundant Mutants

Recall that the Mutation Testing Service generates at most
one mutant per line and reports a restricted subset of
surviving mutants during code review. Heuristics in this
category suppress some mutants that are redundant (ie.,
functionally equivalent to other mutants) for two reasons.
First, while redundant mutants are functionally equivalent
to one another, some of them are easier to reason about
than others, rendering them as more productive. Second,
when a developer updates their changelist, possibly writing
tests to kill mutants, that change creates a new snapshot
and triggers a rerun of the mutation service, thereby testing
the change and possibly reporting new mutants. In order
to improve developer productivity and user experience, the
Mutation Testing Service should consistently generate the
same mutant out of a pool of equally productive ones and
avoid divergence from previously reported mutants, in par-
ticular for unchanged lines between snapshots. Such diver-
gence would cause confusion, introduce cognitive overhead,
and hence lower developer productivity.

As an example, in C++, the LCR mutation operator has a
special case when dealing with NULL (i.e., nullptr), because
of its logical equivalence with false:

ORIGINAL NODE POTENTIAL MUTANTS

if (x)

if (nullptr)

if (x == nullptr)
if (false)

if (true)

if (x != nullptr) +—

The mutants marked in bold are redundant because the
value of nullptr is equivalent to false. Likewise, the op-
posite example, where the condition is if (nullptr == x),
yields redundant mutants for the left-hand side.

3.2.5 Experience with Heuristics

In our experience of applying heuristics, the highest pro-
ductivity gains resulted from three heuristics implemented
in the early days: suppression of mutations in logging
statements, time-related operations (e.g., setting deadlines,
timeouts, exponential backoff specifications etc.), and finally
configuration flags. Most of the early feedback was about
unproductive mutants in such code, which is ubiquitous in
the code base. While it is hard to measure exactly, there
is strong indication that these suppressions account for

6

improvements in productivity from about 15% to 80%. Ad-
ditional heuristics and refinements progressivley improved
producitvity to 89%.

Heuristics are implemented by matching AST nodes
with the full compiler information available to the muta-
tion operator. Some heuristics are unsound: they employ
fuzzy name matching and recognize AST shapes, but may
suppress productive mutants. On the other hand, some
heuristics make use of the full type information (like match-
ing java.util.HashMap::size calls) and are sound. Sound
heuristics are demonstrably correct, but we have had much
more important improvements of perceived mutant useful-
ness from unsound heuristics.

4 MUTATION OPERATOR SELECTION STRATEGIES

After labeling arid nodes in the AST, the Mutation Test-
ing Service generates mutants for the remaining, non-arid
nodes. This involves two challenges. First, only generated
mutants that survive the tests are reported to developers
during code review; mutants that don’t survive just use
computational resources. Given that many mutants don’t
survive the tests and mutagenesis only generates a single
mutant per line, the goal is to create mutants that have a
high chance of survival. An iterative approach, where after
the first round of tests further rounds of mutagenesis could
be run for lines in which mutants were killed, would use the
build and test systems inefficiently, and would take much
longer because of multiple rounds. Similarly, generating all
mutants per line is computationally too expensive. Second,
not all surviving mutants are equally productive: depending
on the context, certain mutation operators may produce
better mutants than others. Therefore, the goal is to create
surviving mutants that have a high chance of being produc-
tive. An effective mutation operator selection strategy not
only constitutes a good trade-off between productivity and
costs, but is also crucial for making mutation analysis results
actionable during code review.

This section presents a basic random selection strategy
that generates one mutant per covered line, considering
information about arid nodes, and a targeted selection strat-
egy, which additionally considers the past performance of
mutation operators in similar context (Figure [4).

4.1 Random Selection

A basic random line-based mutant selection approach could,
for each line in a changelist, select one of the mutants
that can be generated for that line uniformly at random.
Alternatively, such an approach could randomly select a
mutation point in that line first and then randomly select
an applicable mutation operator.

Recall that our approach to mutation testing is based
on the identification of arid nodes, which should not be
mutated at all. Furthermore, our approach generates at most
a single mutant per line; no additional mutants are ever gen-
erated. Listing |1| describes our random selection algorithm
that accounts for these two design decisions. The mutation
operators available for a given language are randomly shuf-
fled and tried one by one, for each covered, changed line
corresponding to non-arid nodes in the changelist, until a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

mutants

(1) try operators in } l}

random order l}

A
(2) try operators in
ranked order

eligible AST

mutation context
analysis

similar mutants

operator rank

Fig. 4: Random (1) vs. Targeted (2) mutation selection.

mutant is generated for that line or all operators have been
tried. If multiple mutants can be generated in a line, only
one mutant is generated, but which one depends on the
random shuffle and the AST itself. For example, the ROR
mutation operator cannot generate a mutant in a line that
has no relational operators, but the SBR operator might—
most lines can be deleted.

function Mutagenesis(diff_ast)
mutants < ()
productive_ast = remove_arid_nodes(diff_ast)
ops = shuffle({UOI, ROR, SBR, LCR, AOR})
for line in covered_lines(productive_ast)
for op in ops
if can_generate(op, line)
mutants U= generate_mutant(op, line)
break
return mutants

Listing 1: Random selection with suppression.

4.2 Targeted Selection

In contrast to the random selection, the targeted selection
strategy ranks the mutation operators by their historical pro-
ductivity considering the AST context, as shown in Listing[2]

function Mutagenesis(diff_ast)
mutants < ()
productive_ast = remove_arid_nodes(diff_ast)
ops = {UOI, ROR, SBR, LCR, AOR}
for line in covered_lines(productive_ast)
ranked_ops = rank_by_historical_productivity(line, ops)
for op in ranked_ops
if can_generate(op, line)
mutants U= generate_mutant(op, line)
break
return mutants

Listing 2: Targeted selection with suppression.

The mutation operator ranking for a given AST node is
based on historical information, in particular survivability
and productivity. A mutation operator’s survivability is the

7

ratio of surviving mutants generated by that operator in
a given context. A mutation operator’s productivity is the
ratio of productive mutants generated by that operator in a
given context. Productivity is based on developer feedback:
during code review authors and reviewers can flag mutants
shown in a changelist as productive or unproductive. As
these developers understand the context of the mutants they
are flagging, unlike participants performing a labeling task
in a study, we consider this information a strong signal.

For each mutant, the AST context, which describes the
environment of the AST node that was mutated, is stored
along with the productivity feedback and whether the mu-
tant was killed or not. The targeted selection strategy uses
this information to identify AST nodes that are similar to
the mutated one, based on the AST context. The historical
information of the mutants generated for these similar AST
nodes is then used to rank the mutation operators, rather
than using a random order. Mutagenesis is then attempted
in the resulting order to maximize the probability that the
mutant will survive and will be productive.

4.3 Mutation Context

In order to apply historical information about survivability
and productivity, we need to decide how similar candidate
mutations are compared to past mutations. We define a
mutation to be similar if it happened in a similar context,
e.g., replacing a relational operator within an if condition
that is the first statement in the body of a for loop, as shown
in Listing 3]

for (int i = @; i < kMax; ++i) {
if (i < kMax / 2) {
return i / 2;
} else {
return i * 2;

3
}

Listing 3: C++ snippet: an if statement within a for loop.

To efficiently capture the similarity of the context of
two mutations, we use the hashing framework for tree-
structured data introduced by Tatikonda et al. [26], which
maps an unordered tree into a multiset of simple struc-
tures referred to as pivots. Each pivot captures information
about the relationship among the nodes of the tree (see
Section [4.4).

Finding similar mutation contexts is then reduced to
finding similar pivot multisets. To identify similar pivot
multisets, we produce a MinHash [27] inspired fingerprint
of the pivot multiset. Because the distance in the fingerprint
space correlates with the distance in the tree space, we can
find similar mutation contexts efficiently by finding similar
fingerprints of nodes under mutation.

4.4 Generating Pivots from ASTs

In order to capture the intricate relationship between nodes
in the AST, we translate the AST into a multiset of pivots. A
pivot is a triplet of nodes from the AST that encodes their
relationship; for nodes v and v, a pivot p is tuple (Ica, u, v),
where lca is the lowest common ancestor of nodes u and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

For

Init Cond Inc Block
| | |
< + If
1 \
i kMax i
Cond Then Else
\ \
L Return Return
A \ \
i 7 / *
P P ~
kMax 2 [P 2 iz

Fig. 5: AST for the C++ example in Listing

v. The pivot represents a subtree of the AST. The set of
all pivots involving a particular node describes the tree
from the point of view of that node. In mutation testing,
we are only interested in nodes that are close to the node
being mutated, so we constrain the set of pivots to pivots
containing nodes that are a certain distance from the node
considered for mutation.

In the example of replacing a relational operator in an
if condition within a body of the for loop in Listing 3} one
pivot might be (if, Cond, %), and another (Cond, i, kMax). All
combinations of two nodes within some distance from the
node being mutated in the AST in Figure|5|and their lowest
common ancestor make pivot structures.

Pivot multisets P precisely preserve the structural re-
lationship of the tree nodes (parent-child and ancestor rela-
tions), so the tree similarity of two AST subtrees T'1 and
T2 can be measured as the Jaccard index of the pivot
multisets [26] as shown in equation @

d(T1,T2) =Jaccard(P(T1), P(T2)) =

4.5 Fingerprinting Pivot Multisets

Pivot multisets are potentially quadratic in tree size, leading
to costly union and intersection operations. Even a trivial
if statement with a single return statement produces large
pivot sets, and set operations become prohibitive. To allevi-
ate that, a fingerprinting function is applied to convert large
pivot multisets into fixed-sized fingerprints.

We hash the pivot sets to single objects that form the
multiset of representatives for the input AST. The size of the
multiset can be large, especially for large programs. In order
to improve the efficiency of further manipulation, we use a
signature function that converts large pivot hash sets into
shorter signatures. The signatures are later used to compute
the similarity between the trees, taking into consideration
only the AST node type and ignoring everything else, like
type data or names of the identifiers.

We use a simple hash function to hash a single pivot p =
(lca, u,v) into a fixed-size value, proposed by Tatikonda and
Parthasarathy [26].

h(p) =(a-lca+b-u+c-v) mod K

a,b,c € Zp

8

For a, b, c we pick small primes, and for K a large prime
that fits in 32 bits. To be able to hash AST nodes, we assign
sparse integer hash values to different AST node types in
each language, e.g., a C++ FunctionDecl is assigned 8500,
and CXXMethodDecl 8600. For nodes in the pivot (lca,u,v)
we use these assigned hashes.

For example, given @ = 17, b = 59, ¢ = 83 and K =
15485863, we can calculate the hash of the pivot (if, <, %),
as simply as

h1l = (59%32800+17%22400+83+22400)%15485863 = 4175200

with 32800 and 22400 being the integer hash values
assigned to IfStmt and BinaryOperator C++ AST nodes.

The signature for such a bag of representatives is gen-
erated using a MinHashing technique. The set of pivots is
permuted and hashed under that permutation. To minimize
the false positives and negatives (i.e., different trees hash
to similar hashes, or vice versa), this is repeated %k times,
resulting in k-MinHashes.

The goal is that the signatures are similar for similar
(multi)sets and dissimilar for dissimilar ones. Jaccard sim-
ilarity between two sets can be estimated by comparing
their MinHash signatures in the same way [27], as shown
in equation 3} The MinHash scheme can be considered an
instance of locality-sensitive hashing, in which ASTs that
have a small distance to each other are transformed into
hashes that preserve that property.

|P(T1) N P(T2)| _ |hash(T1) N hash(T2)|
|P(T1) U P(T2)| ~ |hash(T1) U hash(T2%:\5)

When mutating a node, we calculate its pivot set and
hash it. We find similar AST contexts using nearest neighbor
search algorithms. We observe how different mutants be-
have in this context and which mutation operators produce
the most productive and surviving mutants. This is the basis
for targeted mutation selection.

d(T1,T2) =

5 EVALUATION

In order to bring value to developers, the Mutation Testing
Service at Google needs to report few productive mutants,
selected from a large pool of mutants—most of which
are unproductive. Recall that a productive mutant elicits
an effective test, or otherwise advances code quality [11].
Therefore, our goal is two-fold. First, we aim to select mu-
tants with a high survival rate and productivity to maximize
their utility as test objectives. Second, we aim to report
very few mutants to reduce computational effort and avoid
overwhelming developers with too many findings.

Since applying mutation testing on the entire code base
is simply infeasible, we focus on diff-based mutation in our
evaluation. In addition to the basic design decision of ap-
plying mutation testing at the level of changelists, two tech-
nical solutions reduce the number of mutants: (1) mutant
suppression using arid nodes and (2) one-per-line mutant
selection. Our evaluation uses two datasets (Section[5.1) and
answers four research questions. The first research question
concerns the effectiveness of our two technical solutions:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 3: Summary of the mutant dataset. (Note that SQL,
Common Lisp, and Kotlin are excluded from our analyses
because of insufficient data.)

LANGUAGE GENERATED MUTANTS SURVIVABILITY
COUNT RATIO PERCL
C++ 7,197,069 42.5% 23.2 12.5%
Java 2,894,772 17.1% 14.8 13.2%
Go 1,988,798 11.7% 27.6 12.5%
Python 1,689,382 10.0% 21.3 13.2%
TypeScript 1,006,531 5.9% 20.8 10.8%
JavaScript 908,014 5.4% 31.0 9.4%
Dart 581,109 3.4% 17.4 16.3%
SQL 478,975 2.8% 91.2 11.7%
Common Lisp 148,289 0.9% 179.3 2.2%
Kotlin 42,209 0.2% 20.7 11.0%
Total 16,935,148 100% 21.8 12.5%

e RQ1 Mutant suppression. How effective is mutant
suppression using arid nodes and 1-per-line mutant
selection? (Section |5.2)

To understand the influence of mutation operator selection
on mutant survivability and productivity in the remain-
ing non-arid nodes, we consider historical data, including
developer feedback. We aim to answer the following two
research questions:

e« RQ2 Mutant survivability. Does mutation operator
selection influence the probability that a generated mu-
tant survives the test suite? (Section[5.3)

e RQ3 Mutant productivity. Does mutation operator
selection influence developer feedback on a generated
mutant? (Section [5.4)

Having established the influence of individual mutation op-
erators on survivability and productivity, the final question
is whether mutation context can be used to improve both.
Therefore, our final research question is as follows:

o RQ4 Mutation context. Does context-based selection of
mutation operators improve mutant survivability and
productivity? (Section

5.1 Experiment Setup

For our analyses, we established two datasets, one with
data on all mutants, and one containing additional data on
mutation context for a subset of all mutants.

Mutant dataset. The mutant dataset contains 16,935,148
mutants across 10 programming languages: C++, Java, Go,
Python, TypeScript, JavaScript, Dart, SQL, Common Lisp,
and Kotlin. Table B summarizes the mutant dataset and
gives the number and ratio of mutants per programming
language, the average number of mutants per changelist
and the percentage of mutants that survive the test suite.
Table] breaks down the numbers by mutation operator.

We created this dataset by gathering data on all mu-
tants that the Mutation Testing Service generated since its
inauguration, which refers to the date when we made the
service broadly available, after the initial development of the
service and its suppression rules (see Section [3.2.5). We did
not perform any data filtering, hence the dataset provides
information about all mutation analyses that were run.

In total, our data collection considered 776,740 change-
lists that were part of the code review process. For these,

TABLE 4: Number of mutants per mutation operator.

OPERATOR GENERATED MUTANTS SURVIVABILITY
COUNT RATIO
SBR 11,522,932 68.0% 12.7%
UOI 3,137,375 18.5% 9.6%
LCR 1,305,499 7.7% 16.3%
ROR 672,009 4.0% 14.7%
AOR 297,333 1.8% 13.5%
Total 16,935,148 100% 12.5%

16,935,148 mutants were generated, out of which 2,110,489
were reported. Out of all reported mutants, 66,798 received
explicit developer feedback. For each considered changelist,
the mutant dataset contains information about:

o affected files and affected lines,

o test targets testing those affected lines,

o mutants generated for each of the affected lines,
o test results for the file at the mutated line, and

o mutation operator and context for each mutant.

Our analysis aims to study the efficacy and perceived
productivity of mutants and mutation operators across pro-
gramming languages. Note that our mutant dataset is likely
specific to Google’s code style and review practices. How-
ever, the code style is widely adopted [28], and the modern
code review process is used throughout the industry [29].

Information about mutant survivability per program-
ming language or mutation operator can be directly ex-
tracted from the dataset and allows us to answer research
questions RQ1, RQ2 and RQ3.

Context dataset. The context dataset contains 4,068,241
mutants (a subset of the mutant dataset) for the top-four
programming languages: C++, Java, Go, and Python. Each
mutant in this dataset is enriched with the information of
whether our context-based selection strategy would have
selected that mutant. When generating mutants, we would
also run the context-based prediction, and we persisted
the prediction information along with the mutants. If the
randomly chosen operator was indeed what the prediction
service picked, this mutant is the one with the highest
predicted value. For each mutant, the dataset contains:
¢ all information from the mutant dataset,
e predicted survivability and productivity for each muta-
tion in similar context, and
o information about whether the mutant has the highest
predicted survivability /productivity.

We created this dataset by using our context-based mu-
tation selection strategy during mutagenesis on all mutants
during a limited period of time. During this time, we
automatically annotated the mutants, indicating whether
a mutant would be picked by the context-based mutation
selection strategy along with the mutant outcome in terms
of survivability and productivity. This dataset enables the
evaluation of our context-based mutation selection strategy
and allows us to answer research question RQ4.

Experiment measures: Surviving the initial test suite is a
precondition for surfacing a mutant, but survivability alone
is not a good measure of mutant productivity. Developer
feedback indicating that a mutant is indeed (un)productive
is a stronger signal.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

104 type
I No suppression
E 1-per-line
I Arid-1-per-line

103
L

102

Mutants (log)

10!

10°

No suppression 1-per-line Arid-1-per-line

Fig. 6: Number of generated mutants per changelist for no
suppression (traditional mutagenesis), 1-per-line and arid-1-
per-line (our approach). (Note the log-scaled vertical axis.)

We measure mutant productivity via user feedback gath-
ered from Critique (Section , where each reported mu-
tant displays a Please fix (productive mutant) and a Not
useful (unproductive mutant) link. Please fix corresponds to
a request to the author of a changelist to improve the test
suite based on the reported mutant; not useful corresponds
to a false alarm or generally a non-actionable code finding.
82% of all reported mutants with feedback were labeled
as productive by developers. Note that this ratio is an
aggregate over the entire data set. Since the inauguration
of the Mutation Testing Service, productivity has increased
over time from 80% to 89% because we generalized the
feedback on unproductive mutants and created suppression
rules for the expert function, described in Section [3| This
means that later mutations of nodes in which mutants were
found to be unproductive will be suppressed, generating
fewer unproductive mutants over time. Reported mutants
without explicit developer feedback are not considered for
the productivity analysis.

5.2 RQ1 Mutant Suppression

In order to compare our mutant-suppression approach
with the traditional mutagenesis, we (1) randomly sampled
5,000 changelists from the mutant dataset, (2) determined
how many mutants traditional mutagenesis produces, and
(3) compared the result with the number of mutants gener-
ated by our approach. (Since traditional mutation analysis is
prohibitively expensive at scale, we adapted our system to
only generate all mutants for the selected changelists.) Fig-
ure 6] shows the results for three strategies: no suppression
(traditional), select one mutant per line, and select one mu-
tant per line after excluding arid nodes (our approach). We
include the 1-per-line approach in the analysis to evaluate
the individual contribution of the arid-node suppression,
beyond sampling one mutant per line.

As shown in Table [p} the median number of generated
mutants is 820 for traditional mutagenesis, 77 for 1-per-line
selection, and only 7 for arid-1-per-line selection. Hence,
our mutant-suppression approach reduces the number of
mutants by two orders of magnitude. Table 5 also shows the
results for a Mann-Whitney U test, which confirms that the
distributions are statistically significantly different.

10

TABLE 5: Mann-Whitney U test comparing the distributions
of the number of mutants generated by different strategies.

STRATEGY A STRATEGY B P-VALUE MEDIAN A MEDIAN B
No suppression 1-per-line <.0001 820 77
1-per-line Arid-1-per-line <.0001 77 7
No suppression Arid-1-per-line <.0001 820 7

20.0% A

> 16.3%
= 15.0% A 13.2% 13.2% 9 9
5 12.5% 12.5% 10.7% .
£ 10.0%1 9.3%
s
5 5.0%
n
00%- T T T T T T T
& @ o x o 3
£ ¢ §o & @ & N
< & RS
AR N
(a) Survivability per programming language.
04 <
2200 o5 =
Z 15.0%1 ; 13.5% 12 605
S 10.0%+ 9.5%
>
5 5.0%-
@)
00%- T T T T T
LCR ROR AOR SBR Uol

(b) Survivability per mutation operator.

Fig. 7: Mutant survivability.

Our mutant-suppression approach generates fewer than
20 mutants for most changelists; the 25th and 75th per-
centiles are 3 and 19, respectively. In contrast, the 25th
and 75th percentiles for 1-per-line are 31 and 138 mutants.
Traditional mutagenesis generates more than 450 mutants
for most changelists (the 25th and 75th percentiles are 460
and 1734, respectively), further underscoring that this ap-
proach is impractical, even at the changelist level. Presenting
hundreds of mutants, most of which are not actionable, to
a developer would almost certainly result in that developer
abandoning mutation testing altogether.

RQ1: Arid-node suppression and 1-per-line selection signifi-
cantly reduce the number of mutants per changelist, with a
median of only 7 mutants per changelist (compared to 820
mutants for traditional mutagenesis).

5.3 RQ2 Mutant Survivability

Mutant survivability is important because we generate at
most a single mutant per line—if that mutant is killed, no
other mutant is generated. To be actionable, mutants have to
be reported as soon as possible in the code review process,
as described in Section 4] Therefore, we aim to maximize
mutant survivability because it directly impacts the number
of reported mutants.

Overall, 87.5% of all generated mutants are killed by
the initial test suite. Note that this is not the same as
the traditional mutation score [30]] (ratio of killed mutants
to the total number of mutants) because mutagenesis is
probabilistic and only generates a subset of all mutants. This
means only a fraction of all possible mutants are generated
and evaluated, and many other mutants are never generated
because they are associated with arid nodes.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

5, 100%187.29% 86.9% 86.7% g83% g1 3%
S 75%- 74% 70.6%
S 50%-
e)
O 25%-
a
OOA)- T T T T T T T
¢ & & S @S
& fz& Q&
Q ¢
< N
a) Productivity per programming language.
Y per prog g languag
100% - p = =
? gy 841% 832% 82.7% 7540, 7450
S 50%-
=]
S 25%-
o
OOA)- T T T T T
ROR LCR SBR AOR uol

(b) Productivity per mutation operator.

Fig. 8: Mutant productivity.

Tables [l and] show the distribution of number of mu-
tants and mutant survivability, broken down by program-
ming language and mutation operator. Figure [7] visualizes
the mutant survivability data. Because the SBR mutation
operator can be applied to almost any non-arid node in the
code, it is no surprise that this mutation operator dominates
the number of mutants, contributing roughly 68% of all
mutants. While SBR is a prolific and versatile mutation oper-
ator, it is also the second least likely to survive the test suite:
when applicable to a changelist, SBR mutants are reported
during code review with a probability of 12.6%. Overall,
mutant survivability is similar across mutation operators,
with a notable exception of UOIL, which has a survivability
of only 9.5%. Mutant survivability is also similar across
programming languages with the exception of Dart, whose
mutant survivability is noticeably higher. We conjecture that
this is because Dart is mostly used for web development
which has its own testing challenges.

RQ2: Different mutation operators result in different mutant
survivability; for example, the survival rate of LCR is almost
twice as high as that of UOL

5.4 RQ3 Mutant Productivity

Mutant productivity is the most important measure, because
it directly measures the utility of a reported mutant. Since
we only generate a single mutant in a line, that mutant
ideally should not just survive the test suite but also be
productive, allowing developers to improve the test suite
or the source code itself. Given Google’s high accuracy
and actionability requirements for surfacing code findings
during code reviews, we rely on developer feedback as the
best available measure for mutant productivity. Specifically,
we consider a mutant a developer marked with Please fix
to be more productive than others. Likewise, we consider a
mutant a developer marked with Not useful to be less pro-
ductive than others. We compare the mutant productivity
across mutation operators and programming languages.
Figure [8| shows the results, indicating that mutant pro-
ductivity is similar across mutation operators, with AOR
and UOI mutants being noticeably less productive. For

11

Probability Mutant survives . Mutant is productive
Language Operator

150%
5

100%
5
>
o
E- - I I I I I I

0%+ -
C++ Go Java Pvthon AOR LCR ROR SBR UOI

Fig. 9: Improvements achieved by context-based selection.
(0% improvement corresponds to random selection.)

example, ROR mutants are productive 84.1% of the time,
whereas, UOI mutants are only productive 74.5% of the
time. The differences between programming languages are
even more pronounced, with Java mutants being productive
87.2% of the time, compared to Python mutants that are
productive 70.6% of the time. This could be due to code
conventions, language common usecase scenarios, testing
frameworks or simply the lack of heuristics. We have found
that Python code generally requires more tests because of
the lack of the compiler. Unlike Python which is mostly used
for backends, JavaScript, TypeScript and Dart are predomi-
nantly used in frontend code that is radically different.

RQ3: ROR, LCR, and SBR mutants show similar productivity,
whereas AOR and UOI mutants show noticeably lower produc-
tivity.

5.5 RQ4 Mutation Context

We examine whether context-based selection of mutation
operators improves mutant survivability and productivity.
Specifically, we determine whether context-based selection
of mutation operators increases the probability of a gener-
ated mutant to survive and to result in a Please fix request,
when compared to the random-selection baseline.

Figure (9| shows that selecting mutation operators based
on the AST context of the node under mutation substantially
increases the probability of the generated mutant to survive
and to result in a Please fix request. While improvements
vary across programming languages and across mutation
operators, the context-based selection consistently outper-
forms random selection. The largest productivity improve-
ments are achieved for UOI, AOR, and SBR, which generate
most of all mutants. Intuitively, these improvements mean
that context-based selection results in twice as many pro-
ductive UOI mutants (out of all generated mutants), when
compared to random selection. Figure [f]also shows to what
extent these improvements can be attributed to the fact that
simply more mutants survive. Since the improvements for
productivity increase even more than those for survivability,
context-based selection not only results in more reported
mutants but also in higher productivity of these mutants.
Overall, the survival rate increases by over 40% and the
probability that a reviewer asks for a generated mutant to
be fixed increases by almost 50%.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

It is important to put these improvements into context.
Probabilistic diff-based mutation analysis aggressively trims
down the number of considered mutants from thousands in
a representative file to a mere few, and enables mutants to be
effectively presented to developers as potential test targets.
The random-selection approach produces fewer surviving
mutants of lower productivity.

RQ4: Context-based selection improves the probability that a
generated mutant survives by more than 40% and the probabil-
ity that a generated mutant is productive by almost 50%.

6 RELATED WORK

There are several veins of research that are related to this
work. Just et al. proposed an AST-based program context
model for predicting mutant effectiveness [31]. Fernandez
et al. developed various rules for Java programs to detect
equivalent and redundant mutants [32]. The initial results
are promising for developing selection strategies that out-
perform random selection. Further, Zhang et al. used ma-
chine learning to predict mutation scores, both on successive
versions of a given project, and across projects [33]]. Finally,
the PIT project makes mutation testing usable by practicing
developers and has gained adoption in the industry [16].

There has been a lot of focus on computational costs and
the equivalent mutant problem [34]. There is much focus
on avoiding redundant mutants, which leads to increase of
computational costs and inflation of the mutation score [35],
and instead favoring hard-to-detect mutants [36], [37] or
dominator mutants [38]. Mutant subsumption graphs have
similar goals but mutant productivity is much more fuzzy
than dominance or subsumption.

Effectiveness for mutants is primarily defined in terms of
redundacy and equivalence. This approach fails to consider
the notion that non-reduntant mutants might be unpro-
ductive or that equivalent mutants can be productive [39].
From our experience, reporting equivalent mutants has been
a vastly easier problem than reporting unproductive non-
reduntant and non-equivalent mutants.

Our approach for targeted mutant selection (Section
compares the context of mutants using tree hashes. The
specific implementation was driven by the need for con-
sistency and efficiency, in order to make it possible to look
up similar AST contexts in real time during mutant creation.
In particular, the hash distances need to be preserved over
time to improve the targeted selection. There are approaches
to software clone detection [40] that similarly use tree-
distances (e.g., [41], [42]], [43], [44], [45]). Whether alternative
distance measurements can be scaled for application at
Google and whether they can further improve the targeted
selection remains to be determined in future work.

This approach is similar to tree-based approaches in
software clone detection [40], which aims to detect that a
code fragment is a copy of some original code, with or
without modification. The AST-based techniques can detect
additional categories of modifications like identifier name
changes or type aliases, that token-based detection cannot,
and the insensitivity of to variable names is important
for the mutation context. However, clone detection differs

12

drastically in its goal: it cares about detecting code with the
same semantics, in spite of the syntactical changes made
to it. While clone detection might want to detect that an
algorithm has been copied and then changed slightly, e.g.,
a recursion rewritten to an equivalent iterative algorithm,
mutation testing context cares only about the neighboring
AST nodes: in the iterative algorithm, the most productive
mutants will be those that thrived before in such code, not
the ones that thrived for a recursive algorithm. In order
to look up similar AST contexts in real time, as mutants
are created, we require a fast method that preserves hash
distance over time. For these consistency and efficiency
reasons, we opted for the described tree-hashing approach.

7 CONCLUSIONS

Mutation testing has the potential to effectively guide soft-
ware testing and advance software quality. However, many
mutants represent unproductive test goals; writing tests for
them does not improve test suite efficacy and, even worse,
negatively affects test maintainability.

Over the past six years, we have developed a scalable
mutation testing approach and mutant suppression rules
that increased the ratio of productive mutants, as judged
by developers. In the early phases of the project, the initial
mutant suppression rules improved the ratio of productive
mutants from 15% to 80%. As the product matured, addi-
tional mutant suppression rules improved the productivity
to 89%. Three strategies were key to success. First, we
devised an incremental mutation testing strategy, reporting
at most one mutant per line of code—targeting lines that
are changed and covered. Second, we have created a set
of rule-based heuristics for mutant suppression, based on
developer feedback and manual analyses. Third, we devised
a probabilistic, targeted mutant selection approach that con-
siders mutation context and historical mutation results.

Given the success of our mutation testing approach and
the positive developer feedback, we expect that further
adoption by development teams will result in additional
refinements of the suppression and selection strategies. Fur-
thermore, an important aspect of our ongoing research is
to understand the long-term effects of mutation testing on
developer behavior [20].

REFERENCES

[1] M. Ivankovi¢, G. Petrovi¢, R. Just, and G. Fraser, “Code coverage
at google,” in Proc. of ESEC/FSE, August 26-30 2019, pp. 955-963.

[2] A.]. Offutt and J. M. Voas, “Subsumption of condition coverage
techniques by mutation testing,” Department of Information and
Software Systems Engineering, George Mason University, Tech. Rep.
ISSE-TR-96-100, 1996.

[3] D. Schuler and A. Zeller, “Assessing oracle quality with checked
coverage,” in 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, 2011, pp. 90-99.

[4] R. A.DeMillo, R.]. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11,
no. 4, pp. 34-41, 1978.

[5] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage
criteria,” IEEE Transactions on Software Engineering, vol. 32, no. 8,
pp. 608624, 2006.

[6] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser, “ Are mutants a valid substitute for real faults in software
testing?” in Proceedings of the International Symposium on Founda-
tions of Software Engineering. ACM, 2014, pp. 654-665.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3107634, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

Y. T. Chen, R. Gopinath, A. Tadakamalla, M. D. Ernst, R. Holmes,
G. Fraser, P. Ammann, and R. Just, “Revisiting the relationship
between fault detection, test adequacy criteria, and test set size,”
in Proc. of ASE, September 21-25 2020, pp. 237-249.

J. Micco, “The state of continuous integration testing @google,”
2017.

R. Potvin and J. Levenberg, “Why Google stores billions of lines
of code in a single repository,” Communications of the ACM, vol. 59,
pp. 78-87, 2016.

D. Schuler and A. Zeller, “(un-)covering equivalent mutants,” in
Proc. of ICST, April 2010, pp. 45-54.

G. Petrovi¢, M. Ivankovi¢, B. Kurtz, P. Ammann, and R. Just, “An
industrial application of mutation testing: Lessons, challenges, and
research directions,” in Proc. of Mutation, Apr. 2018, pp. 47-53.

G. Petrovic and M. Ivankovic, “State of Mutation Testing at
Google,” in Proceedings of the 40th International Conference on Soft-
ware Engineering 2017 (SEIP), 2018.

Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE TSE, vol. 37, no. 5, pp. 649-678,
2011.

A.J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthog-
onal,” Mutation testing for the new century, pp. 34—44, 2001.

“Bazel build system,” https:/ /bazel.io/, 2015.

H. Coles, “Real world mutation testing,” http://pitest.org, last
accessed July 2021.

R. Just, G. M. Kapfhammer, and F. Schweiggert, “Using non-
redundant mutation operators and test suite prioritization to
achieve efficient and scalable mutation analysis,” in Proc. of ISSRE,
November 28-30 2012, pp. 11-20.

R. Just, “The Major mutation framework: Efficient and scalable
mutation analysis for Java,” in Proc. of ISSTA, July 2014, pp. 433-
436.

R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: An effi-
cient and extensible tool for mutation analysis in a Java compiler,”
in Proc. of ASE, November 9-11 2011, pp. 612-615.

G. Petrovi¢, M. Ivankovi¢, G. Fraser, and R. Just, “Does mutation
testing improve testing practices?” in Proc. of ICSE, May 23-29
2021.

A.]. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An
experimental determination of sufficient mutant operators,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 5, no. 2, pp. 99-118, 1996.

C. Sadowski, J. van Gogh, C. Jaspan, E. Soederberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Software
Conference (ICSE), 2015, 2015.

M. Ivankovic, G. Petrovic, R. Just, and G. Fraser, “Code coverage
at google,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 955-963.
S. S. Muchnick, Advanced compiler design implementation.
Kaufmann, 1997.

G. Inc., “gRPC: A high performance, open-source universal RPC
framework,” https:/ /grpc.io, 2006.

S. Tatikonda and S. Parthasarathy, “Hashing tree-structured data:
Methods and applications,” in 2010 IEEE 26th International Confer-
ence on Data Engineering (ICDE 2010). 1EEE, 2010, pp. 429-440.
A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” Journal of Computer and
System Sciences, vol. 60, no. 3, pp. 630—-659, 2000.

“Google Style Guides,” https://google.github.io/styleguide/.

A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in 2013 35th International Conference on
Software Engineering (ICSE). 1EEE, 2013, pp. 712-721.

R. A. DeMillo, R. J. Lipton, and E. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11,
no. 4, pp. 3441, Apr. 1978.

R. Just, R. J. Kurtz, and P. Ammann, “Inferring mutant utility from
program context,” in Proc. of ISSTA, July 2017, pp. 284-294.

L. Fernandes, M. Ribeiro, L. Carvalho, R. Gheyi, M. Mongiovi,
A. Santos, A. Cavalcanti, F. Ferrari, and J. C. Maldonado, “Avoid-
ing useless mutants,” in Proc. of GPCE, October 2017, pp. 187-198.
J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and
L. Zhang, “Predictive mutation testing,” in Proc. of ISSTA, July
2016, pp. 342-353.

Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE TSE, vol. 37, no. 5, pp. 649-678,
2011.

Morgan

13

[35] R. Just and F. Schweiggert, “Higher accuracy and lower run
time: efficient mutation analysis using non-redundant mutation
operators,” JSTVR, vol. 25, no. 5-7, pp. 490-507, 2015.

X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stub-
born mutation operators using human analysis of equivalence,” in
Proc. of ICSE, May 2014, pp. 919-930.

W. Visser, “What makes killing a mutant hard,” in Proc. of ASE,
September 2016, pp. 39-44.

P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoreti-
cal minimal sets of mutants,” in Proc. of ICST, 2014, pp. 21-31.

P. McMinn, C. J. Wright, C. J. McCurdy, and G. Kapfhammer,
“Automatic detection and removal of ineffective mutants for the
mutation analysis of relational database schemas,” IEEE TSE, 2017.
C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, pp.
64-68, 2007.

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). IEEE,
1998, pp. 368-377.

W. Yang, “Identifying syntactic differences between two pro-
grams,” Software: Practice and Experience, vol. 21, no. 7, pp. 739-755,
1991.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in International
Conference on Software Engineering (ICSE’07). 1IEEE, 2007, pp. 96—
105.

V. Wahler, D. Seipel,]J. Wolff, and G. Fischer, “Clone detection
in source code by frequent itemset techniques,” in Source Code
Analysis and Manipulation, Fourth IEEE International Workshop on.
IEEE, 2004, pp. 128-135.

W. S. Evans, C. W. Fraser, and F. Ma, “Clone detection via struc-
tural abstraction,” Software Quality Journal, vol. 17, no. 4, pp. 309—
330, 2009.

[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Goran Petrovi¢ Goran Petrovi¢ is a Staff Software Engineer at Google
Switzerland, Zlrich. He received an MS in Computer Science from
University of Zagreb, Croatia, in 2009. His main research interests are
software quality metrics and improvements, ranging from prevention
of software defects to evaluation of software design reusability and
maintenance costs and automated large scale software refactoring.

Marko Ivankovi¢ Marko Ivankovi¢ is a Staff Software Engineer at
Google Switzerland, Zirich. He received an MS in Computer Science
from University of Zagreb, in 2011. His work focuses on Software
Engineering as a discipline, large scale code base manipulation, code
metrics and developer workflows.

Gordon Fraser Gordon Fraser is a full professor in Computer Science
at the University of Passau, Germany. He received a PhD in computer
science from Graz University of Technology, Austria, in 2007, worked
as a post-doc at Saarland University, and was a Senior Lecturer at the
University of Sheffield, UK. The central theme of his research is improv-
ing software quality, and his recent research concerns the prevention,
detection, and removal of defects in software.

René Just René Just is an Assistant Professor at the University of
Washington. His research interests are in software engineering, soft-
ware security, and data science, in particular static and dynamic pro-
gram analysis, mobile security, and applied statistics and machine learn-
ing. He is the recipient of an NSF CAREER Award, and his research
in the area of software engineering won three ACM SIGSOFT Distin-
guished Paper Awards. He develops research and educational infras-
tructures that are widely adopted by other researchers and instructors
(e.g., Defects4J and the Major mutation framework).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://bazel.io/
https://grpc.io
https://google.github.io/styleguide/

