
Productive Coverage:
Improving the Actionability of Code Coverage

Marko Ivanković

markoi@google.com

Google Switzerland GmbH

Zurich, Switzerland

Goran Petrović

goranpetrovic@google.com

Google Switzerland GmbH

Zurich, Switzerland

Yana Kulizhskaya

ykulizhskaya@google.com

Google Switzerland GmbH

Zurich, Switzerland

Mateusz Lewko

mlewko@google.com

Google Switzerland GmbH

Zurich, Switzerland

Luka Kalinovčić
∗

kalinovcic@gmail.com

René Just

rjust@cs.washington.edu

University of Washington

Seattle, WA, USA

Gordon Fraser

gordon.fraser@uni-passau.de

University of Passau

Passau, Germany

ABSTRACT
Code coverage is an intuitive and widely-used test adequacy mea-

sure. Established coverage measures treat each test goal (e.g., state-

ment or branch) as equally important, and code-coverage adequacy

requires every test goal to be covered. However, this is in contrast

to how code coverage is used in practice. As a result, simply visu-

alizing uncovered code is not actionable, and developers have to

manually reason which uncovered code is critical to cover with

tests and which code can be left untested. To make code coverage

more actionable and further improve coverage in our codebase,

we developed Productive Coverage — a novel approach to code

coverage that guides developers to uncovered code that should be

tested by (unit) tests. Specifically, Productive Coverage identifies

uncovered code that is similar to existing tested and/or frequently in

production executed code. We implemented and evaluated Produc-

tive Coverage for four programming languages (C++, Java, Go, and

Python), and our evaluation shows: (1) The developer sentiment,

measured at the point of use, is strongly positive; (2) Productive

Coverage meaningfully increases test quality, compared to a strong

baseline; (3) Productive Coverage has no negative effect on code

authoring efficiency; (4) Productive Coverage modestly improves

code-review efficiency; (5) Productive Coverage improves code

quality and prevents defects from being introduced into the code.

ACM Reference Format:
Marko Ivanković, Goran Petrović, Yana Kulizhskaya, Mateusz Lewko, Luka

Kalinovčić, René Just, and Gordon Fraser. 2024. Productive Coverage: Im-

proving the Actionability of Code Coverage. In 46th International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP ’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3639477.3639733

∗
Work done while at Google

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0501-4/24/04.

https://doi.org/10.1145/3639477.3639733

1 INTRODUCTION
Code coverage was one of the first metrics used to quantify soft-

ware testing, the idea being first published in 1963 by Miller and

Maloney [13]. Many different code coverage criteria have been pro-

posed over time [22], and many tools to measure code coverage

are available [21]. Code coverage is a validation requirement in

safety-critical domains [1], and it is widely used in other domains—

in commercial and open-source projects alike. Code coverage has

an intuitive interpretation, coverage tools are available for a wide

variety of programming languages, and prior work has found that

developers generally perceive code coverage as useful [9].

At a high level, there are two common use cases for computing

code coverage during development: (1) computing a code coverage

ratio (e.g., the ratio of covered to all statements) and comparing it to

a pre-defined threshold; (2) visualizing code coverage and exposing

untested code to authors and reviewers. The second use case is

aligned with code-review practices commonly found in commercial

and open source projects [19, 20].

To better understand to what extent code coverage actually

guides developers towards writing tests and/or improves the effi-

ciency of the code review process, we conducted a field experiment

at Google, hiding code coverage information during 30k randomly

selected code reviews. Our results were as follows:

• We found evidence that displaying code coverage informa-

tion during code review significantly reduces the overall

code review duration.

• We found no evidence that showing code coverage during

code review improves coverage more than the improvement

already provided by the code review process itself.

Overall, our findings suggest that code coverage visualization

improves code review efficiency: When reviewers find untested

but important code, they may ask for more tests, and the visual-

ization can help them identify what is not tested. However, even

with such visualization coverage reaches a saturation point that

still leaves some critical code uncovered. While Google’s codebase

has a very high degree of code coverage after using code coverage

automation for over a decade, we conjecture that saturation is, to

some extent, a result of the lack of actionability of code coverage

findings: Code coverage can expose untested code, but established

coverage metrics treat each line, statement or branch of code as

https://doi.org/10.1145/3639477.3639733
https://doi.org/10.1145/3639477.3639733

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Marko Ivanković, Goran Petrović, Yana Kulizhskaya, Mateusz Lewko, Luka Kalinovčić, René Just, and Gordon Fraser

equally important. This is not only in stark contrast to how devel-

opers actually use code coverage [9], but importantly code authors

and reviewers need to use their intuition to separate code into

“important” and “less important” to focus their testing and quality

assurance efforts accordingly.

Motivated by these findings, we designed a novel approach to

code coverage—termed Productive Coverage—that automatically

generates actionable test goals which actively guide developers

to untested and important code. Instead of developer intuition,

Productive Coverage relies on two key bits of information to decide

what is important: (1) is similar code well tested in the existing code

base and (2) is similar code frequently running in production? We

developed and deployed an implementation of Productive Coverage,

and we evaluated it, focusing on the following research questions:

RQ1 How do developers perceive Productive Coverage guidance?

RQ2 Does Productive Coverage improve code coverage?

RQ3 Does Productive Coverage affect code review duration?

Our results show that:

RA1 Developers generally find Productive Coverage useful and

report a positive experience.

RA2 Productive Coverage improves code coverage over tradi-

tional code coverage visualization.

RA3 Productive Coverage significantly reduces the time review-

ers spend on the code review, with a small effect; it has no

significant effect on the time the authors spend on the review.

The remainder of the paper is structured as follows: Section 2 pro-

vides background information and a summary of the code coverage

infrastructure at Google. Section 3 details our field experiment of us-

ing traditional code coverage during modern code review. Section 4

introduces Productive Coverage and section 5 details its evaluation.

Section 6 describes related work, and section 7 concludes the paper.

2 BACKGROUND
The research presented in this paper was conducted in an industrial

setting at Google. The software testing and reviewing practices

at Google are established and similar to what is done at other

companies and in open source projects [19].

2.1 Change-based code review
A central aspect of software development at Google is the code

review process [20], which is change-based (i.e., incrementally ap-

plied to all changes in the code base) and tool-assisted (i.e., infor-

mation produced by automated analyses are available to authors

and reviewers during the review).

At Google, tens of thousands of changes are reviewed per day.

Changes are contained in a changelist: an atomic update to the

company’s centralized version control system, which consists of a

list of files, the operations to be performed on these files, and the

file contents to be modified or added. Once a developer is satisfied

with a (local) code change, they create a changelist and send it to

the code review system for review. The author and the reviewers ex-

change comments through the review system. In response to these

comments, the author may modify the contents of the changelist.

Once the author and the reviewers are satisfied with the changelist,

it is merged into the version control system.

Figure 1: Baseline code coverage visualization (line numbers
only): the color coding of a line number indicates whether
it is covered (green) or uncovered (orange).

Developers’ time is the most expensive aspect of the code review

process at Google. All changelists are reviewed, and developers par-

ticipate in the review process as author or reviewer multiple times

per day. Around 70% of changelists have one reviewer (98% have

three or fewer). Even though most changelists are small (43% of the

changelists have 10 or fewer lines and 98% have fewer than 200 lines)

and relatively quick to review, the total cost of the review process is

significant. Optimizing the review process without compromising

on quality is an important business goal; even a 1% improvement to

review duration equals hundreds of developer-hours saved per day.

2.2 Code coverage infrastructure
Google has an extensive suite of analyses integrated in the code

review process (e.g., linters, formatters, and automated testing) that

aid authors and reviewers. Code coverage is among those analyses.

Google’s coverage infrastructure supports more than ten pro-

gramming languages and has been in use for about a decade. Our

research focuses on the following languages: C++, Java, Python,

Go, JavaScript, TypeScript and Dart. We selected these based on

number of changelists and diversity of use cases (e.g., back-end vs.

front-end development). Some changelists (about 3%) involve mul-

tiple languages, mostly combinations of a back-end and a front-end

language (e.g., Java and JavaScript). The term (code) coverage in

this paper refers specifically to line coverage, not counting empty

lines and comments. Line coverage is automatically computed for

almost all human-authored changelists, and in Google’s code base,

line coverage strongly correlates with statement coverage [9].

We refer readers interested in the development and evolution

of this infrastructure, or how code coverage is used outside of the

code review process, to the corresponding publication [9].

If coverage information is available, it is automatically displayed

as part of the code review UI, as shown in Figure 1. Developers

may choose to consume, and possibly act on, the code coverage
visualization, or they can simply ignore it. Additionally, developers

can click on a small “chip” in the code review UI to retrieve a detailed
code-coverage execution log, which developers commonly use to

investigate failures during coverage computation, e.g., failing tests.

Note that developers can consume the code-coverage visualization

without viewing this detailed report.

Productive Coverage: Improving the Actionability of Code Coverage ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

3 CODE COVERAGE DURING CODE REVIEW
Code coverage computation and visualization (using color-coded

line numbers) have been available during code review at Google

for a decade, and developers generally perceive code coverage as

useful [9]. To quantify the effects of visualizing code coverage we

conducted an experiment between March, 26 and June, 27 in 2019.

Our experiment sampled changelists submitted for code review

and grouped them into an experiment group and a control group.

The changelists were selected randomly, based on the last few dig-

its of the changelist ID using different digit ranges for the two

groups. The changelist ID is suitable for sampling: it is monotoni-

cally increasing across the code base and is not computed from any

changelist data or meta data.

We modified the existing code-coverage infrastructure to fully

compute the coverage information, but not display it for change-

lists in the experiment group: all coverage information was hidden,

and any attempt to retrieve detailed code-coverage execution logs

(through a report “chip”) resulted in a custom message, which re-

placed that report and informed the developer that the changelist

was part of an experiment. This custom message also allowed the

developer to opt out of the experiment: a “Show coverage” link im-

mediately displayed code coverage in the code review UI as usual.

Retrieving the detailed code-coverage execution logs is an ex-

plicit user action, which signals active interaction with the code-

coverage infrastructure. Our experiment takes this into account

and distinguishes between changelists for which this signal was

observed and changelists for which it was not.

3.1 Datasets
As shown in Figure 2, our experiment sampled, over the duration of

3 months, 29,149 changelists for the experiment group and 28,577

changelists for the control group
1
.

For the Experiment group, our experiment randomly selected

29,149 changelists. For 1,005 (3.4%) of these, developers attempted

to retrieve the detailed code-coverage execution logs, and hence

viewed the experiment notice and the opt-out instructions. We sub-

divided the Experiment dataset into two non-overlapping datasets:

• Experiment (no logs): For 28,144 changelists, the developers

did not attempt to retrieve the execution logs, and hence did

not view the experiment notice.

• Experiment (logs): For 398 changelists, the developers explic-

itly opted into the experiment: they attempted to retrieve the

execution logs, viewed the experiment notice, but continued

without code coverage information. For the remaining 607

changelists, the developers explicitly opted out of the exper-

iment: they attempted to retrieve the execution logs, viewed

the experiment notice, and clicked the “Show coverage” link.

For the Control group, our experiment randomly selected 28,557

changelists that are disjoint from the Experiment dataset, using the

same sampling methodology during the same time period:

• Control (no logs): For 26,915 changelists, the developers could

observe the code coverage visualization but did not retrieve

the execution logs.

1
Due to confidentiality reasons, we cannot disclose all three of: (1) the experiment

duration, (2) the exact sampling ratio, and (3) the total number of changelists. We

opted to not disclose the exact sampling ratio, which is least important in our opinion.

Control (No logs)
[n = 26,915]

Control (Logs)
[n = 1,642]

Opt-out
[n = 607]

Logs not viewed [94.4% of all CLs]

Logs viewed [5.6% of all CLs]

3 months

E

Experiment (No logs)
[n = 28,144]

Experiment (Logs)
[n = 398]

EE

E

C

C
C

C

C E

Figure 2: Summary of the datasets.
In the grey shaded “Logs” datasets, the detailed coverage execution log was

viewed. In the white ones, it was not. The sizes of the boxes are not to scale.

• Control (logs): For 1,642, the developers could observe the

code coverage visualization and retrieved the detailed exe-

cution logs.

3.2 Measures of interest
Our research is concerned with the effects of showing code cover-

age during code review on the change in code coverage and the

code-review duration. This section details how we measured these

two variables of interest and what changelist characteristics we

accounted for to minimize the risk of confounding.

We compare these measures for Control (no logs) vs. Experiment

(no logs) to study differences resulting from withholding coverage

information in the cases where developers did not (attempt to) view

the detailed execution logs, and for Control (logs) vs. Experiment

(logs) to study the differences in those cases where developers did.

3.2.1 Code coverage increase. The coverage infrastructure auto-

matically computes coverage at the start of the code review, and

repeatedly during the code review if the changelist is updated. To

study the relationship between visualizing code coverage and code

coverage increase, we measured the following:

(1) Change in coverage percentage: the difference between

the coverage percentage at the end and at the start of the

review. We computed this difference for all changelists for

which coverage was computed more than once; for all other

changelists, the difference is zero.

3.2.2 Review duration. We quantify the review duration for a

changelist using three different measures:

(1) Total wall-clock time: the time (in minutes) between the

changelist being emailed to the reviewers for the first time

and it being submitted to the code base. This includes peri-

ods where no developer is in any way interacting with the

changelist, for example night time.

(2) Active shepherding time: the time (in seconds) spent by

the author of the changelist viewing and responding to re-

viewer comments and actively working on the changelist,

between requesting the code review and merging the change-

list in the code base. This includes time spent in the main

code review tool and any other tools (e.g., editors) but does

not include offline time, such as in-person conversations.

(3) Active reviewing time: the time (in seconds) spent by the

reviewer in providing feedback. This includes time spent

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Marko Ivanković, Goran Petrović, Yana Kulizhskaya, Mateusz Lewko, Luka Kalinovčić, René Just, and Gordon Fraser

in the main code review tool and time spent in other tools

doing review related tasks, such as looking up APIs or docu-

mentation but not offline time spent on the review, such as

in-person conversations or thinking about the code while

drinking coffee.

These measures are available to us because the development

environments and all tools used during the code review process are

instrumented. The definitions of the active time measures follow

the definitions described by Egelman et al. [5].

3.3 Experimental controls
Code coverage ratios and review times can be influenced by many

factors. Based on feedback collected from developers and our own

experience, we collected the following covariates for each changelist

and used them as statistical controls:

(1) Number of reviewers: 70% of changelists have one reviewer

and 98% have three or fewer. Changelists with more review-

ers have longer total wall-clock time and unsurprisingly use

more active reviewing and shepherding time.

(2) Previous changelists with coverage: familiarity of the au-

thor with coverage in particular and the code review process

in general. To control for the fact that authors with longer

tenure naturally have more changelists, only the 90 days

before the changelist being studied are considered.

(3) Previous changelists with the same reviewers: familiar-

ity of the reviewers with the author and vice versa.

(4) Number of files in the changelist: log-transformed num-

ber of files in the changelist. More files to review requires

more time to review.

(5) Instrumented lines at start of the review: log-transformed

number of instrumented lines, representing the order of mag-

nitude of the changelist size. Instrumented lines are lines of

code that have been instrumented by the coverage analysis

infrastructure. Note that only executable lines can be instru-

mented. Comments, blank lines and other non-executable

lines are not counted towards the changelist size.

(6) Programming language: one-hot encoded variable that

indicates the primary programming language of the change-

list. Since code coverage ratios for changelists vary across

programming languages, we control for it.

3.4 Sampling method validation
To ensure that the Control and Experiment datasets are not system-

atically different we performed a logistic regression. Specifically,

we modelled the group (Experiment vs. Control) as the outcome

variable and used all variables listed in section 3.3 as predictors. In

this model, none of predictor coefficients were statistically signifi-

cant, with the lowest p-value being 0.064. Based on this analysis,

we conclude that our sampling approach did not introduce bias

and that the resulting datasets do not have systematically different

characteristics that may confound the results.

3.5 Results
3.5.1 Change in Coverage. In total, there were 13,779 changelists

with multiple coverage measurements in the Control (no logs) group

Figure 3: Code coverage percentage at the start of the code
review process for all changelists per dataset.
The outliers are not plotted for readability.

Figure 4: Change in code coverage percentage (start vs. end
of the code review process) for all changelists per dataset.
The outliers are not plotted for readability.

and 13,870 in the Experiment (no logs) group. (There were 625 in

the Control (logs) group and 229 in the Experiment (logs) group).

Figure 3 shows the distribution of code coverage percentages at

the start of the review. Given that code coverage is very high at the

start of most changelists, with a median above 90%, the possible

increase in code coverage is quite limited.

Figure 4 shows a boxplot of the change in coverage percentage.

The median in all datasets is 0%, i.e., the coverage percentage did

not change during the review. There are no statistically significant

differences between the Control (no logs) and Experiment (no logs)

datasets, nor between the Control (logs) and Experiment (logs)

datasets. While Control (logs) shows higher variance in change

percentage, the median in both datasets is still 0%.

This result indicates that visualizing test coverage during the

code review process might not increase test coverage, beyond the

increase already provided by the review process. These findings are

consistent with prior work, showing that code review itself leads

to improvements in both code and test quality [12].

However, the baseline coverage in our code base is very high

and the code coverage visualization has been available for a decade.

Productive Coverage: Improving the Actionability of Code Coverage ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Mann-Whitney U test comparing the distributions
of reviewduration betweenExperiment andControl groups.
“Execution logs” indicates whether a developer attempted to retrieve the

detailed code-coverage execution logs.

Execution logs Median duration Difference p-value

Control Experiment

Total wall-clock time (min)

No 1062 1116 5% < 0.01

Yes 2663 3242 18% 0.35

Active shepherding time (sec)

No 1374 1429 4% < 0.01

Yes 4344 4409 1% 0.53

Active reviewing time (sec)

No 584 658 11% < 0.01

Yes 1816 1980 8% 0.56

Controlling for related learning and saturation effects would require

us to consistently deny visualization to a subset of engineers, which

would neither be practical nor ethical.

3.5.2 Change in review duration. We examined what effect show-

ing code coverage has on code review duration. We hypothesized

that visualizing code coverage (color-coded line numbers) speeds

up the code review: When reviewing a changelist, a reviewer may

want to check whether a given line is covered by tests. If code

coverage is not visualized, this will take longer since the reviewer

will have to inspect test files and verify that a corresponding test

case exists.

Table 1 summarizes the statistical analysis of total wall-clock

time in review. We can see a statistically significant difference

between the Control (no logs) and Experiment (no logs) datasets

with a 54 minute (5%) change in the median. The table also shows

similar, significant results for active shepherding time and active

reviewing time, with a change in the median of 55 seconds (4%) and

74 seconds (11%), respectively.

We found no statistically significant difference between the

datasets where the developers attempted to retrieve the detailed

execution logs. However, these datasets are considerably smaller

and the observed differences are consistent with the other datasets.

Result: In our experimental setting, visualizing line coverage

does not significantly improve code coverage, beyond what is

already provided by the review process. It does however make

the review process more efficient.

4 ACTIONABLE CODE COVERAGE
Based on the observations from our field experiment, we developed

a novel approach to code coverage—Productive Coverage—that aims

at making code coverage more actionable. Given a changelist, it

analyzes the changed code and identifies code that is uncovered but

should be tested, if any such code exists. Figure 5 shows an example

message posted by Productive Coverage during code review. Note

the thumbs up and down buttons, which allow developers to provide

feedback on each individual message, and the “Please fix” button,

Figure 5: Productive coverage message in the code review
system.

which allows reviewers to request changes. (Clicking the “Please

fix” button adds a comment in the reviewer’s name on the same

line containing prefilled text.)

We developed Productive Coverage based on two key insights:

(1) Google’s codebase is stored in a monolithic repository that con-

tains the aggregate knowledge of tens of thousands of developers;

(2) untested code (added or changed) should be tested if it is similar

to existing code that is well tested or frequently executed in pro-

duction. Developing Productive Coverage, therefore, required us to

define three measures: code similarity, code testedness, and code

execution frequency.

4.1 Code similarity
Defining and measuring code similarity requires a suitable abstrac-

tion over source code. We chose an abstraction based on our expe-

rience with the codebase, especially with source-code lines that are

usually not tested. Here are two examples: (1) A call to log.Info
aids debugging but is usually not subject to unit testing. (2) A

statement of the form throw new Exception may generally be

important to test, but the exception message itself (e.g., throw new
Exception("this should never happen")) may indicate other-

wise. Capturing this intuition, we chose an abstraction over identi-

fiers and string literals, enabling Productive Coverage to identify

and reason over such patterns.

Productive Coverage analyzes the abstract syntax tree (AST) and

finds all nodes that represent identifiers (e.g., function calls or enum

values) or string literals. It then processes these nodes as follows:

• A statement with a single identifier is used as-is (unigram).

• A statement that involves multiple identifiers is transformed

into a sequence of bigrams.

• A string literal is transformed into a sequence of trigrams.

Consider the following example code (Python):

s e t C o n t e x t ()

x = c o m p l i c a t e d . F u n c t i o n (2 3 8)

y = common . F u n c t i o n (" One ␣ two ␣ t h r e e ␣ f o u r ")

The first line is a function call with a single identifier (setContext),

which is used as-is. The second line is an assignment that con-

tains three identifiers, which are transformed into 2 bigrams: [x,
complicated]) and [complicated, Function]. The third line

is an assignment with three identifiers, which are transformed as

before, and one string literal, which is transformed into 2 trigrams:

["One", "two", "three"] and ["two", "three", "four"].

Given this abstraction, a statement is represented by a set of

n-grams and code similarity between two statements corresponds

to the ratio of matching n-grams (exact matches).

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Marko Ivanković, Goran Petrović, Yana Kulizhskaya, Mateusz Lewko, Luka Kalinovčić, René Just, and Gordon Fraser

Table 2: Code abstraction and similarity model summary

C++ Go Java Python Total

Number of n-grams 9,023 12,445 20,497 7,791 49,756

Identifiers 70.6% 61.7% 89.5% 66.8% 75.5%

Strings 29.4% 38.3% 10.5% 33.2% 24.5%

We chose this similarity metric because it scales very well to

the size of our codebase. The model easily fits in the memory of

a single average developer workstation and requires a very small

amount of processor time to query. At the same time, the model

performs well for our use case, as can be seen in Section 5.

4.2 Code testedness
For each individual n-gram (and the statement associated with it),

Productive Coverage relies on code coverage and mutation testing

information to compute 4 values: (1) number of times the n-gram

occurs in the existing codebase, (2) number of times it was covered

by existing unit tests, (3) number of times the associated statement

was mutated, and (4) number of times a mutant of the associated

statement was detected by existing unit tests.

Note that Productive Coverage computes these n-grams and the

corresponding values across the entire codebase regularly, using

historical analysis data for code coverage and mutation testing.

These values are then normalized (coverage and mutation score

individually to range from 0 to 1) and combined into a single test-

edness score per n-gram (product of coverage and mutation score).

To ensure robust estimates of testedness for any given n-gram, we

arbitrarily chose a threshold of 25 occurrences in the exiting code

base—the testedness of an n-gram above this threshold is the com-

bined score; the testedness of an n-gram below this threshold is set

to 1, which prevents Productive Coverage from filtering it.

The testedness of an AST node is computed as the average test-

edness of all n-grams that form that node. The testedness of a

statement is the aggregated testedness of all AST nodes that form

that statement.

4.3 Code execution frequency
Google samples all code running in production. Productive Cov-

erage scores each AST node based on the number of CPUseconds

of the corresponding code: 𝑠𝑐𝑜𝑟𝑒 = log
2
(1.0 +𝐶𝑃𝑈𝑠𝑒𝑐𝑜𝑛𝑑𝑠). Small

scores are set to 0; we chose 0.01 CPUseconds as the threshold.

The CPU usage is propagated up the AST. For example, a node

representing an if statement will have a CPU usage that equals

the total CPU usage of all statements contained in its body.

4.4 Final scoring model
As a performance optimization and to minimize model size, we

chose to only store n-grams whose testedness score is below 0.5—

that is, n-grams with sufficient occurrences that are “not tested

enough”. During inference, an n-gram not present in the stored

model is treated as “well tested” and assigned the maximum score

of 1.0. This optimization also treats any never-before-seen n-gram

as maximally important, which is a conservative choice to bias the

model towards “code should generally be tested”.

As of the writing of this paper, the code abstraction and similarity

model contains 49,756 n-grams with a testedness score of less than

0.5. Table 2 summarizes the most important high-level measures

of the model. Due to industrial confidentiality reasons, we cannot

disclose more information about the n-grams in the model.

4.5 System architecture
After a developer creates or modifies a changelist, the existing

coverage service runs tests and computes line coverage. A success-

ful computation of line coverage is a prerequisite of Productive

Coverage, which involves four main steps:

(1) Productive Coverage filters out all test and test helper code.

(2) Productive Coverage creates an AST for all changed code

and scores all AST nodes.

(3) Productive Coverage filters low-scoring AST nodes.

(4) Productive Coverage returns the highest scoring nodes.

Processing a single changelist is fast and Productive Coverage is

trivially parallelizable across changelists; it can be deployed as a

distributed service that scales with the number of changelists.

4.5.1 Filtering tests and test helper code. Unit test code is itself code

and is also reviewed as part of the code review process. However,

the only way unit test code can be not covered by unit tests is

if the tests did not run. While this can happen if the project is

misconfigured, other much simpler tools exist to detect this problem.

The same applies to test helper code, i.e., test libraries that are only

used to avoid code duplication in test code. To reduce the noise

in the system, Productive Coverage removes tests and test helper

code from all computations. Tests are easily identified because

they directly import the unit testing framework. Test helpers are

identified using the dependency graph. This step eliminates entire

files and is done as a significant resource optimization.

4.5.2 Scoring AST nodes. Productive Coverage parses all changed

code into an AST and its model can score any AST node based on

that node’s similarity to other nodes corresponding to code already

in the codebase. This model has a small memory footprint and can

be kept in memory. Specifically, Productive Coverage uses a hash

map to score all AST nodes, where nodes with multiple n-grams

are scored by aggregating the scores of the individual n-grams.

4.5.3 Filtering low-scoring AST nodes. AST nodes that are already

covered by tests can be trivially filtered out: the automated cover-

age infrastructure provides covered lines and during parsing each

AST node preserves the line range of the source code it represents.

Productive Coverage operates on AST nodes, but the coverage in-

frastructure computes coverage at the line level. However, modern

parsers annotate AST nodes with their byte and line range. If the

AST node represents only a single line, or part of a line, then map-

ping that to coverage is trivial. If the AST node represents multiple

lines, we consider the node covered if all lines represented by the

node are covered. The AST node is uncovered if no lines represented

by the node are covered. If some lines are covered and some are not,

the node is mixed. Comments, whitespace and other non-code lines

are ignored. In this step, all fully covered and mixed AST nodes are

filtered. Figure 6 shows the ratio of the number of comments by

the number of lines of code represented by that comment. 98.5% of

all comments cover fewer than 15 lines.

Productive Coverage: Improving the Actionability of Code Coverage ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Figure 6: Number of lines of code represented by productive
coverage comments.

Remaining uncovered AST nodes are then filtered based on their

testedness score—nodes with a score below 0.5 are discarded.

4.5.4 Selecting the highest scoring nodes. For each changed file in

a changelist, we limit the number of lines Productive Coverage

can post a message on, to prevent the developer from being over-

whelmed. To that end, the AST nodes are sorted by their aggregated

testedness score and only the top scoring nodes are selected.

4.6 Deployment
Productive coverage was deployed in 2022. Figure 7 shows the

timeline of the deployment. The deployment was spread out over a

period of 7 months to allow us to improve the quality of the tool

based on user feedback. Productive Coverage was initially posting

comments on a very limited set of changelists, randomly selected

based on the last two digits of their ID. Two improvements that were

implemented during the rollout period were the test helper filtering,

implemented in September, and the code execution frequency signal,

implemented in October. We chose to initially validate our idea on

two languages, C++ and Go. Once the idea proved viable, Java and

Python were implemented based on business priorities.

While Productive Coverage was posting comments only on a

percentage of changes, it was computing testedness scores for all

changes during the entire period and storing comments it would

have posted, but did not, in a database for analysis. This set of

“counterfactual comments” that were never posted offers a baseline

for measuring the effect of the tool.

Productive Coverage uses our existing mutation testing system,

which suppresses mutants based on arid node heuristics [16, 17].

Arid nodes are AST nodes that developers are generally not inter-

ested in testing, and hence they are never mutated [15]. This has

implications for Productive Coverage’s testedness score, which is

low for such nodes. While a low testedness score is arguably the

correct score for such AST nodes, we leave a deeper investigation

into the effects of arid node suppression for future work.

Figure 7: Timeline of Productive coverage deployment.
Note that identical percentages were used for C++, Go, and Java. The lines

are slightly moved to avoid visual overlap.

Figure 8: Ratio of hidden and shown comments.

5 EVALUATION
During deployment, 554,067 comments were shown by the tool

to developers. During the roll-out, comments were posted only

on a percentage of changes but the analysis was performed on all

applicable changes. Figure 8 shows the ratio of hidden and shown

comments per week of roll-out. Due to industrial confidentiality

reasons we cannot disclose the total number of shown and hidden

comments per week or month.

5.1 Developer sentiment
Figure 9 shows the ratio of positive, negative and mixed developer

sentiments across the deployment period. Positive feedback means

that one or more developers clicked either the “Thumbs up” or the

“Please fix” buttons shown in Figure 5. Negative feedback means that

one or more developers clicked the “Thumbs down” button shown

in Figure 5. Mixed feedback means that the comment received both

positive and negative feedback, sometimes from different people.

It should be noted that the higher volatility at the start of the year

is due to smaller total number of comments at those times. The

overall trend of decreasing negative feedback shows the effect of

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Marko Ivanković, Goran Petrović, Yana Kulizhskaya, Mateusz Lewko, Luka Kalinovčić, René Just, and Gordon Fraser

Figure 9: Percentage of comments by type of feedback they
received.
Note the log-scaled y-axis. Also note that the volatility of the last data points

is due to smaller populations (winter holiday period).

Figure 10: Percentage of negative, positive and comments
without feedback by size of change.
The "Mixed feedback" category is not plotted for clarity. It is the smallest

category and lacks sufficient data points (see Figure 9).

continuous improvements to arid node heuristics, the testedness

model and the rollout of the execution frequency signal.

Figure 9 shows that developers are 10 times more likely to be sat-

isfied by the comments posted by the tool than be dissatisfied by it.

However, it should also be noted that for almost 90% of comments

the developers did not provide any explicit feedback. Figure 10

shows one significant factor that explains this; developers are more

likely to provide feedback on comments posted on larger change-

lists. Since most changelists are small, this leads to relatively small

overall feedback rate. Note that the positive feedback rate increases

with changelist size and the negative rate remains constant.

RQ1: Developers are generally satisfied with the actionability

of the comments provided by Productive Coverage.

Figure 11: Ratio of comments where coverage was improved,
by human feedback.
The "Mixed feedback" category is not plotted for clarity. It is the smallest

category and lacks sufficient data points (see Figure 9). The high volatility

of each line during some periods is due to smaller populations.

5.2 Change in coverage
During the lifetime of the changelist, tests can be added, changed

or removed, changing the coverage of the lines of code represented

by the AST node that any comment is attached to. For any given

individual comment, we can first determine which, if any, lines

at the end of the code review map to the lines represented by the

comment. We then compute the coverage of both sets of lines and

say that the coverage has improved if the coverage percentage of

the lines represented by the comment at the end of the review

is greater than the coverage percentage of the lines represented

by the comment at the start of the review. Figure 11 shows the

ratio of comments where the line where the comment was posted

was covered by tests more at the end of the code review than

at the start of the review. Note that the high volatility of each

line during some periods is due to smaller populations. As can

be clearly shown from the chart, when the automated comment

receives positive feedback, it leads to improved coverage more than

50% of the time. If the comment does not receive any feedback the

coverage will improve 12% of the time, and even comments with

negative feedback still lead to improved coverage 13% of the time.

The baseline, coverage improvement due to the review process itself

and previous automation is 8%.

Another way to improve coverage during the review is to modify

the code under test. We track the lifetime of the comment using a

modified, high performance re-implementation of GumTreeDiff [6].

During the lifetime of a changelist, the code that the comment is

attached to can change in 4 ways:

• Not moved: There are no changes to the file containing the

code. The code maps to the exact same location.

• Moved: The code in the file was modified, moving the code

represented by the comment to different line numbers, but

the code representing the comment was not modified at all,

or was only slightly changed. The code maps to a single

location at the end of the review.

Productive Coverage: Improving the Actionability of Code Coverage ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Figure 12: Location of code represented by the productive
coverage comment at the end of the review.
The distribution was stable across the deployment period. Only the "Positive"

feedback group significantly differs from the baseline.

• Refactored: The code represented by the comment was

refactored and moved into multiple new places, but the con-

nection between the new locations and old can still be seen;

for example, if the inner code of a for loop is refactored into

a separate function. The code maps to two or more code

locations at the end of the review.

• Removed: The code was deleted or modified beyond recog-

nition. The code maps to no location at the end of the review.

Figure 12 shows the percentage of comments in each category.

The baseline, no feedback, mixed and negative have no significant

differences, but the positive comments are more likely to have the

lines where the comment was posted no longer present at the end

of the review. We manually examined 200 randomly selected com-

ments from the “Removed” category: 100 with positive feedback and

100 baseline counterfactuals; we found no difference between the

two. From the 200 comments we examined, 4 categories emerged:

(1) The lines of code were unnecessary and should not have

been included in the change. The author deleted the lines.

Roughly 20% of comments were in this group.

(2) The lines of code were refactored keeping the logic of the

code exactly the same, but changing the code so much that

the diffing algorithm was no longer able to identify the code

as moved. The most common case here is moving the code

from one file to the other, since we did not even attempt

cross-file diffing. Roughly 30% are in this group.

(3) The code was modified changing the behaviour of the code.

Commonly, the change was in the error handling code and

the way errors are propagated or not was changed. Less

frequently, the code had a bug and the bug was fixed. Roughly

30% are in this group.

Figure 13: Change in code coverage percentage (start vs. end
of the code review process), with and without Productive
Coverage comments shown in the review process.
The change is 0 in 47% of the changes where the comments were hidden

and 41% of changes where the comments were shown. The median in both

categories is 0. The outliers are not plotted for readability.

(4) The review stretched for so long that the codebase advanced

and a sync to head was required. The author possibly re-

verted the change completely and started from a fresh client,

or they performed a three way merge that significantly

changed to code making all previous analysis obsolete. Roughly

10% are in this group.

Based on this, we conclude that Productive Coverage leads to im-

provements in code quality. The 5% increase in removed code in the

positive feedback category (13%) compared to all other categories

(8%) provides us with a lower bound for this code improvement.

Given that roughly 10% of all productive coverage comments re-

ceive positive feedback we estimate that at least 1 in every 200

productive coverage comments leads to direct code improvements.

To illustrate how this happens, we provide the following com-

ment exchange between a reviewer and an author; a real example

we observed during our examination:

Reviewer: Please fix.

Maybe add a test case that verifies that the [codename]

keeps going, if it is straightforward to stage data that

will cause the call above to fail?

Author: Done.

This caught a bug here (the continue) so was well

worth adding.

Figure 13 shows the change in coverage at the start and at the

end of the code review. This chart is provided for comparison to

the withholding experiment described in section 3.5.1.

Based on the observed improvements to tests and code, we con-

clude that:

RQ2: Productive coverage leads to a meaningful improvement

in test and code quality, despite a strong baseline.

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Marko Ivanković, Goran Petrović, Yana Kulizhskaya, Mateusz Lewko, Luka Kalinovčić, René Just, and Gordon Fraser

Table 3: Mann-Whitney U test comparing the distributions
of review duration between the baseline code coverage visu-
alization (line numbers only) and Productive Coverage.

Median duration Difference p-value

Line numbers only Productive Coverage

Total wall-clock time (min)

1732 1728 -0.23% 0.80

Active shepherding time (sec)

1954 1959 0.26% 0.76

Active reviewing time (sec)

1495 1460 -2.34% < 0.01

5.3 Change in review duration
We examined the effects of showing Productive Coverage comments

on code review duration, using the same three time measures de-

scribed in Section 3.2. Table 3 summarizes the results.

The active reviewing time differs significantly (two-sided Mann-

Whitney U test; 𝑝 < 0.01) between the changes where the comments

were not shown (line numbers only) and those were they were

(Productive Coverage). The medians of active reviewing time are

1495 and 1460 seconds when the comments are hidden and shown

respectively, showing a 2.34% decrease in active review time when

productive coverage is used.

In contrast to active reviewing time, we did not observe a sig-

nificant difference in the total wall-clock time, nor in the active

shepherding time. The differences in medians of -0.23% and 0.26%,

respectively, are not statistically significant. Note that the review

times in tables 1 and 3 are not directly comparable due to different

populations (difference in number of programming languages and

all changelists vs. coverage-eligible changelists).

RQ3: Productive Coverage significantly reduces the time re-

viewers spend on the code review, with a small effect; it has no

significant effect on the time the authors spend on the review.

5.4 Threats to validity
The primary limitation of our study, regarding external validity,

is the experiment context and research setting, which is limited

to a single company. While developers, programming languages,

and tools all form a large and diverse sample, it may still be too

company-specific. For example, the unit testing practices and high

code coverage baseline may not be representative.

Regarding construct validity, our chosen proxy measures such

as review time may not accurately capture the conceptual variables

of interest, such as reviewer effort and process efficiency. We tried

to mitigate this threat as much as possible by incorporating precise

measures such as active review time.

A threat to internal validity are potential carry-over-effects.

Our dataset contains very few observations of established projects

choosing to adopt coverage late in the development process. Be-

cause coverage has been established at Google for many years,

older projects have adopted it many years ago, and new projects

are using it from the start. This means that our results do not nec-

essarily reflect what would happen in the short term if coverage is

introduced into existing projects with weak baseline coverage.

6 RELATEDWORK
Code coverage has been studied extensively since it was introduced,

however the focus of studies has been test suite quality. Marick [11]

considers many ways in which such use can go wrong. Inozemtseva

and Holmes [8] analyzed five projects with up to 724 KLOC. They

found low to moderate correlation between coverage and defects,

and Kochar et al. [10] analyzed two projects with 120 KLOC and

found moderate to strong correlation between coverage and defects.

Chen et al. [4] analyzed the relationship between a test set’s size, its

code coverage adequacy, and its fault detection capability. None of

these studies, however, explore the effects of code coverage on any

other metric, and while test suite quality is important, industrial

practitioners must consider the developer workflow holistically.

Some research does analyze other metrics, often to increase the

prediction power. Chen et al. [3] for example augment testing time

with coverage. Antinyan et al. [2] report the results of an analysis of

adequacy of unit test coverage criteria at Ericsson, and give results

of a literature survey that lists 8 related works. Their analysis was

performed on a single 2 MLOC project worked on by 150 engineers.

They found very low correlation between coverage and defects.

Piwowarski et al. [18] report on a case study from 1991, performed

at IBM on a single 780 KLOC project. They found that the cost of

removing errors dropped by 20% when coverage computation was

added to the developer workflow and when improving coverage

was set as a goal. Most of the reduction in error removal cost came

as a result of fewer errors in the shipped product. Mockus et al. [14]

report on two case studies from 2009 performed at Microsoft and

Avaya, on two project with 40+ MLOC and 1 MLOC respectively.

They found that improving coverage reduced the number of errors

in the released product, and that the effort required to improve

coverage increases disproportionally with coverage, with the study

concluding that “the optimal levels of coverage are likely to be

well short of 100%.”. As shown in this paper, while 100% is indeed

difficult to achieve, ‘well short’ is perhaps a bit too pessimistic.

Gopinath et al. [7] provide a large-scale analysis, having analyzed

1,254 open source projects. They found that statement coverage is

“probably the best coverage criteria for predicting test suite quality

in their context, over testing effort lifetime”, but more interestingly

they commented that the best criteria for research purposes differ

from those for practitioners, and that the focus of practitioners is not

on evaluating testing methods but on producing quality software.

Our findings seem to be in line with this observation.

7 CONCLUSIONS
Code coverage is an intuitive and established test adequacy measure.

However, not all parts of the code base are equally important, and

hence additional testing may be critical for some uncovered code,

whereas it may not be worthwhile for other uncovered code. As a

result, simply visualizing uncovered code is not actionable.

This paper proposes a novel approach to code coverage — termed

Productive Coverage — that aims to make code coverage findings

actionable by pointing out uncovered code that should be tested.

Productive Coverage: Improving the Actionability of Code Coverage ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Productive Coverage is based on the principle that uncovered code

should be tested if it is similar to existing code that is well tested

and/or frequently executed in production. Conversely, if uncovered

code is similar to code that is rarely, if ever, tested, alerting a devel-

oper to the fact that the code is uncovered would likely result in a

false-positive warning.

We implemented Productive Coverage for four programming

languages (C++, Java, Go, and Python), and our evaluation shows:

• The developer sentiment towards Productive Coverage, mea-

sured at the point of use, is strongly positive.

• Productive Coverage meaningfully increases code coverage

above a strong baseline—an established code review process

and color-coded line numbers.

• Productive Coverage has no adverse effect on code authoring

efficiency.

• Productive Coverage modestly improves the code-review

efficiency, by reducing the active review time.

• In addition to improving test quality, Productive Coverage

measurably improves code quality and prevents defects from

being introduced into the codebase.

REFERENCES
[1] DO-178C — Software Considerations in Airborne Systems and Equipment Certi-

fication, December 2021.

[2] Antinyan, V., Derehag, J., Sandberg, A., and Staron, M. Mythical unit test

coverage. IEEE Software 35 (05 2018), 73–79.

[3] Chen, M.-H., Lyu, M. R., and Wong, W. E. Effect of code coverage on software

reliability measurement. IEEE Transactions on reliability 50, 2 (2001), 165–170.

[4] Chen, Y. T., Gopinath, R., Tadakamalla, A., Ernst, M. D., Holmes, R., Fraser,

G., Ammann, P., and Just, R. Revisiting the relationship between fault detection,

test adequacy criteria, and test set size. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering (2020), pp. 237–249.

[5] Egelman, C. D., Murphy-Hill, E., Kammer, E., Hodges, M. M., Green, C., Jaspan,

C., and Lin, J. Predicting developers’ negative feelings about code review. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE) (2020),

IEEE, pp. 174–185.

[6] Falleri, J., Morandat, F., Blanc, X., Martinez, M., and Monperrus, M. Fine-

grained and accurate source code differencing. In ACM/IEEE International Con-
ference on Automated Software Engineering, ASE ’14, Vasteras, Sweden - September
15 - 19, 2014 (2014), pp. 313–324.

[7] Gopinath, R., Jensen, C., and Groce, A. Code coverage for suite evaluation

by developers. In Proceedings of the 36th International Conference on Software
Engineering (2014), ACM, pp. 72–82.

[8] Inozemtseva, L., and Holmes, R. Coverage is not strongly correlated with test

suite effectiveness. In Proceedings of the 36th International Conference on Software
Engineering (2014), ACM, pp. 435–445.

[9] Ivanković, M., Petrović, G., Just, R., and Fraser, G. Code coverage at google. In

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (New York,

NY, USA, 2019), ESEC/FSE 2019, ACM, pp. 955–963.

[10] Kochhar, P. S., Thung, F., and Lo, D. Code coverage and test suite effectiveness:

Empirical study with real bugs in large systems. In 2015 IEEE 22nd international
conference on software analysis, evolution, and reengineering (SANER) (2015), IEEE,

pp. 560–564.

[11] Marick, B. How to misuse code coverage. In Proceedings of the International
Conference on Testing Computer Systems (ICTCS) (June 1999), pp. 16–18.

[12] McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. An empirical study of the

impact of modern code review practices on software quality. Empirical Software
Engineering 21, 5 (2016), 2146–2189.

[13] Miller, J. C., and Maloney, C. J. Systematic mistake analysis of digital computer

programs. Commun. ACM 6, 2 (Feb. 1963), 58–63.

[14] Mockus, A., Nagappan, N., and Dinh-Trong, T. T. Test coverage and post-

verification defects: A multiple case study. In Proceedings of the 2009 3rd Inter-
national Symposium on Empirical Software Engineering and Measurement (USA,

2009), ESEM ’09, IEEE Computer Society, p. 291–301.

[15] Petrović, G., Ivanković, M., Fraser, G., and Just, R. Does mutation testing

improve testing practices? In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE) (2021), IEEE, pp. 910–921.

[16] Petrović, G., Ivanković, M., Fraser, G., and Just, R. Practical mutation testing

at scale: A view from google. IEEE Trans. Softw. Eng. 48, 10 (oct 2022), 3900–3912.

[17] Petrović, G., Ivanković, M., Fraser, G., and Just, R. Please fix this mutant: How

do developers resolve mutants surfaced during code review? In 2023 IEEE/ACM
45th International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP) (2023), IEEE, pp. 150–161.

[18] Piwowarski, P., Ohba, M., and Caruso, J. Coverage measurement experience

during function test. In Proceedings of the 15th international conference on Software
Engineering (1993), IEEE Computer Society Press, pp. 287–301.

[19] Rigby, P. C., and Bird, C. Convergent contemporary software peer review

practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-
ware Engineering (New York, NY, USA, 2013), ESEC/FSE 2013, Association for

Computing Machinery, p. 202–212.

[20] Sadowski, C., Söderberg, E., Church, L., Sipko, M., and Bacchelli, A. Modern

code review: A case study at google. In International Conference on Software
Engineering, Software Engineering in Practice track (ICSE SEIP) (2018).

[21] Yang, Q., Li, J. J., and Weiss, D. M. A survey of coverage-based testing tools.

The Computer Journal 52, 5 (2009), 589–597.

[22] Zhu, H., Hall, P. A., and May, J. H. Software unit test coverage and adequacy.

ACM Computing Surveys (CSUR) 29, 4 (1997), 366–427.

	Abstract
	1 Introduction
	2 Background
	2.1 Change-based code review
	2.2 Code coverage infrastructure

	3 Code Coverage During Code Review
	3.1 Datasets
	3.2 Measures of interest
	3.3 Experimental controls
	3.4 Sampling method validation
	3.5 Results

	4 Actionable Code Coverage
	4.1 Code similarity
	4.2 Code testedness
	4.3 Code execution frequency
	4.4 Final scoring model
	4.5 System architecture
	4.6 Deployment

	5 Evaluation
	5.1 Developer sentiment
	5.2 Change in coverage
	5.3 Change in review duration
	5.4 Threats to validity

	6 Related work
	7 Conclusions
	References

