
Collaborative Verification of Information Flow
for a High-Assurance App Store

Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl*,
Stuart Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros,
Ravi Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu

University of Washington

*University of Waterloo

November 6, 2014



Introduction Approach Evaluation Conclusion

Current commercial app stores

Approval process
Several hundred

new apps per day

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 1/24



Introduction Approach Evaluation Conclusion

Current commercial app stores

Approval process
Several hundred

new apps per day

Problem: Every major app store has approved malware!

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 1/24



Introduction Approach Evaluation Conclusion

Current commercial app stores

Approval process
Several hundred

new apps per day

Problem: Every major app store has approved malware!

Best effort solution: Malware removed when encountered

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 1/24



Introduction Approach Evaluation Conclusion

High-assurance app stores

Needed in multiple domains
I Government app stores (e.g., DoD)
I Corporate app stores (e.g., financial sector)
I App stores for medical apps

Require stronger guarantees
I Verified absence of (certain types of) malware

Verification is costly
I Effort is solely on app store side
I Analyst needs to understand/reverse-engineer the app

Our solution: Collaboratively verify absence of malware

Our focus: Information-flow malware

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 2/24



Introduction Approach Evaluation Conclusion

High-assurance app stores

Needed in multiple domains
I Government app stores (e.g., DoD)
I Corporate app stores (e.g., financial sector)
I App stores for medical apps

Require stronger guarantees
I Verified absence of (certain types of) malware

Verification is costly
I Effort is solely on app store side
I Analyst needs to understand/reverse-engineer the app

Our solution: Collaboratively verify absence of malware

Our focus: Information-flow malware

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 2/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions

Sudoku

Read location
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions

Sudoku

Read location
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions

Sudoku

Read location
Internet

Camera

Read location
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions

Sudoku

Read location
Internet

Camera

Read location
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions Information flow

Sudoku

Read location
Internet

Camera

Read location
Internet

Location →
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions Information flow

Sudoku

Read location
Internet

Camera

Read location
Internet

Location →
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions Information flow

Sudoku

Read location
Internet

Camera

Read location
Internet

Location →
Internet

Map

Read location
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions Information flow

Sudoku

Read location
Internet

Camera

Read location
Internet

Location →
Internet

Map

Read location
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions Information flow

Sudoku

Read location
Internet

Camera

Read location
Internet

Location →
Internet

Map

Read location
Internet

Location →
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions Information flow

Sudoku

Read location
Internet

Camera

Read location
Internet

Location →
Internet

Map

Read location
Internet

Location →
Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions Information flow

Sudoku

Read location
Internet

Camera

Read location
Internet

Location →
Internet

Map

Read location
Internet

Location →
Internet

Location →
BadGuy.com

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions Information flow

Sudoku

Read location
Internet

Camera

Read location
Internet

Location →
Internet

Map

Read location
Internet

Location →
Internet

Location →
BadGuy.com

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Example: Information-flow malware

App Permissions Information flow

Sudoku

Read location
Internet

Camera

Read location
Internet

Location →
Internet

Map

Read location
Internet

Location →
Internet

Location →
BadGuy.com

Prevent malware using an
information flow type-system

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 3/24



Introduction Approach Evaluation Conclusion

Approach: Overview

Collaborative verification model
I Leverage but don’t trust the developer

Information Flow Type-checker (IFT)
I Finer-grained permission model for Android
I False positives and declassifications
I Implicit information flow

Evaluation
I Effectiveness: Effective for real malware in real apps
I Usability: Low annotation and auditing burden

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 4/24



Introduction Approach Evaluation Conclusion

Collaborative verification model

Developer provides

Information
flow policy

High-level description of
information flows in app
(LOCATION -> INTERNET)

Annotated
source code

App
description

Declassification
justifications

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24



Introduction Approach Evaluation Conclusion

Collaborative verification model

Developer provides

Information
flow policy

Annotated
source code

App
description

Declassification
justifications

App store verifies

Analyst verifies:
acceptable behavior

1

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24



Introduction Approach Evaluation Conclusion

Collaborative verification model

Developer provides

Information
flow policy

Annotated
source code

App
description

Declassification
justifications

App store verifies

Analyst verifies:
acceptable behavior

1

Type checker verifies:
annotations consistent

2

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24



Introduction Approach Evaluation Conclusion

Collaborative verification model

Developer provides

Information
flow policy

Annotated
source code

App
description

Declassification
justifications

App store verifies

Analyst verifies:
acceptable behavior

1

Type checker verifies:
annotations consistent

2

Analyst verifies:
declassifications

3

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24



Introduction Approach Evaluation Conclusion

Collaborative verification model

Developer provides

Information
flow policy

Annotated
source code

App
description

Declassification
justifications

App store verifies

Analyst verifies:
acceptable behavior

1

Type checker verifies:
annotations consistent

2

Analyst verifies:
declassifications

3

Developer and analyst do tasks that are easy for them

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 5/24



Introduction Approach Evaluation Conclusion

Verification of information flow

Information
flow policy

Annotated
source code

Type checker verifies:
annotations consistent

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 6/24



Introduction Approach Evaluation Conclusion

Verification of information flow

Information
flow policy

Annotated
source code

Type checker verifies:
annotations consistent

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 6/24



Introduction Approach Evaluation Conclusion

Information flow policy

High-level description of permitted information flows

READ_SMS -> INTERNET

READ_CLIPBOARD -> DISPLAY

USER_INPUT -> CALL_PHONE

ACCESS_FINE_LOCATION -> INTERNET(maps.google.com)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 7/24



Introduction Approach Evaluation Conclusion

Information flow policy

High-level description of permitted information flows

READ_SMS -> INTERNET

READ_CLIPBOARD -> DISPLAY

USER_INPUT -> CALL_PHONE

ACCESS_FINE_LOCATION -> INTERNET(maps.google.com)

Source flows to Sink

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 7/24



Introduction Approach Evaluation Conclusion

Information flow policy

High-level description of permitted information flows

READ_SMS -> INTERNET
READ_CLIPBOARD -> DISPLAY

USER_INPUT -> CALL_PHONE
ACCESS_FINE_LOCATION -> INTERNET(maps.google.com)

Source flows to Sink

Not sufficient to
model information flow!

Sources and Sinks
I Default Android permissions (145)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 7/24



Introduction Approach Evaluation Conclusion

Information flow policy

High-level description of permitted information flows

READ_SMS -> INTERNET

READ_CLIPBOARD -> DISPLAY
USER_INPUT -> CALL_PHONE

ACCESS_FINE_LOCATION -> INTERNET(maps.google.com)

Source flows to Sink

Sources and Sinks
I Default Android permissions (145)
I Additional sensitive resources (28)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 7/24



Introduction Approach Evaluation Conclusion

Information flow policy

High-level description of permitted information flows

READ_SMS -> INTERNET

READ_CLIPBOARD -> DISPLAY

USER_INPUT -> CALL_PHONE

ACCESS_FINE_LOCATION -> INTERNET(maps.google.com)

Source flows to Sink

Sources and Sinks
I Default Android permissions (145)
I Additional sensitive resources (28)
I Parameterized permissions

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 7/24



Introduction Approach Evaluation Conclusion

Verification of information flow

Information
flow policy

Annotated
source code

Type checker verifies:
annotations consistent

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 8/24



Introduction Approach Evaluation Conclusion

Information flow types: Sources and Sinks

@SourceWhere might a value come from?
@SinkWhere might a value flow to?

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24



Introduction Approach Evaluation Conclusion

Information flow types: Sources and Sinks

@SourceWhere might a value come from?
@SinkWhere might a value flow to?

void sendToInternet(String message);

String readGPS();

Android API

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24



Introduction Approach Evaluation Conclusion

Information flow types: Sources and Sinks

@SourceWhere might a value come from?
@SinkWhere might a value flow to?

void sendToInternet(String message);

String readGPS();

Android API
To Internet

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24



Introduction Approach Evaluation Conclusion

Information flow types: Sources and Sinks

@SourceWhere might a value come from?
@SinkWhere might a value flow to?

void sendToInternet(@Sink(INTERNET)String message);

String readGPS();

Android API

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24



Introduction Approach Evaluation Conclusion

Information flow types: Sources and Sinks

@SourceWhere might a value come from?
@SinkWhere might a value flow to?

void sendToInternet(@Sink(INTERNET)String message);

String readGPS();

Android API

From Location

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24



Introduction Approach Evaluation Conclusion

Information flow types: Sources and Sinks

@SourceWhere might a value come from?
@SinkWhere might a value flow to?

void sendToInternet(@Sink(INTERNET)String message);

@Source(LOCATION)String readGPS();

Android API

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24



Introduction Approach Evaluation Conclusion

Information flow types: Sources and Sinks

@SourceWhere might a value come from?
@SinkWhere might a value flow to?

void sendToInternet(@Sink(INTERNET)String message);

@Source(LOCATION)String readGPS();

Android API

String loc = readGPS();

sendToInternet(loc);

App code

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24



Introduction Approach Evaluation Conclusion

Information flow types: Sources and Sinks

@SourceWhere might a value come from?
@SinkWhere might a value flow to?

void sendToInternet(@Sink(INTERNET)String message);

@Source(LOCATION)String readGPS();

Android API

@Source(LOCATION)@Sink(INTERNET)String loc = readGPS();

sendToInternet(loc);

App code

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24



Introduction Approach Evaluation Conclusion

Information flow types: Sources and Sinks

@SourceWhere might a value come from?
@SinkWhere might a value flow to?

void sendToInternet(@Sink(INTERNET)String message);

@Source(LOCATION)String readGPS();

Android API

@Source(LOCATION)@Sink(INTERNET)String loc = readGPS();

sendToInternet(loc);

App code

API annotations are pre-verified

Developer annotations are not trusted

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 9/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

@Source(ANY) ≡ @Source({SMS, LOCATION, INTERNET, ...})

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

@Source(SMS)String sms = ...;
@Source({SMS, LOCATION})String smsLoc = sms;

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

@Source(SMS)String sms = ...;
@Source(LOCATION)String loc = sms;

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

@Sink({INTERNET, SMS})String toInetSms;
@Sink(SMS)String toSms = toInetSms;

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

@Sink(SMS)String toSms;
@Sink(INTERNET)String toInet = toSms;

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Verification of information flow

Information
flow policy

Annotated
source code

Type checker verifies:
annotations consistent

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 11/24



Introduction Approach Evaluation Conclusion

Information Flow Type-checker (IFT): Overview

Type checker verifies:
annotations consistent

Guarantees of type-checking
1. Annotations are consistent with code (type correctness)

2. Annotations are consistent with flow policy

No undisclosed information flows in app

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 12/24



Introduction Approach Evaluation Conclusion

Information Flow Type-checker (IFT): Overview

Type checker verifies:
annotations consistent

Android APIApp code Flow policy

Guarantees of type-checking
1. Annotations are consistent with code (type correctness)

2. Annotations are consistent with flow policy

No undisclosed information flows in app

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 12/24



Introduction Approach Evaluation Conclusion

Information Flow Type-checker (IFT): Example

Type checker verifies:
annotations consistent

LOCATION -> INTERNET

Flow policy

@Source(LOCATION)@Sink(INTERNET)String loc = readGPS();

sendToInternet(loc);

App code

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24



Introduction Approach Evaluation Conclusion

Information Flow Type-checker (IFT): Example

Type checker verifies:
annotations consistent

LOCATION -> INTERNET

Flow policy

@Source(LOCATION)@Sink(INTERNET)String loc = readGPS();

sendToInternet(loc);

App code

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24



Introduction Approach Evaluation Conclusion

Information Flow Type-checker (IFT): Example

Type checker verifies:
annotations consistent

LOCATION -> INTERNET

Flow policy

@Source(LOCATION)@Sink(INTERNET)String loc = readGPS();

sendSms(loc);

App code

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24



Introduction Approach Evaluation Conclusion

Information Flow Type-checker (IFT): Example

Type checker verifies:
annotations consistent

LOCATION -> INTERNET

Flow policy

@Source(LOCATION)@Sink(INTERNET)String loc = readGPS();

sendSms(loc);

App code

Incompatible sinks:
INTERNET 6<: SMS

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24



Introduction Approach Evaluation Conclusion

Information Flow Type-checker (IFT): Example

Type checker verifies:
annotations consistent

LOCATION -> INTERNET

Flow policy

@Source(LOCATION)@Sink(SMS)String loc = readGPS();

sendSms(loc);

App code

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24



Introduction Approach Evaluation Conclusion

Information Flow Type-checker (IFT): Example

Type checker verifies:
annotations consistent

LOCATION -> INTERNET

Flow policy

@Source(LOCATION)@Sink(SMS)String loc = readGPS();

sendSms(loc);

App code

Forbidden flow:
LOCATION -> SMS

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 13/24



Introduction Approach Evaluation Conclusion

False positives and declassifications

@Source({LOCATION, SMS})String[] array;
array[0] = readGPS();
array[1] = readSMS();

@Source(LOCATION)String loc = array[0];

App code

Declassifications
I Developer can suppress false-positive warnings
I App store employee verifies each declassification

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 14/24



Introduction Approach Evaluation Conclusion

False positives and declassifications

@Source({LOCATION, SMS})String[] array;
array[0] = readGPS();
array[1] = readSMS();

@Source(LOCATION)String loc = array[0];

App code

@Source(LOCATION)

Declassifications
I Developer can suppress false-positive warnings
I App store employee verifies each declassification

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 14/24



Introduction Approach Evaluation Conclusion

False positives and declassifications

@Source({LOCATION, SMS})String[] array;
array[0] = readGPS();
array[1] = readSMS();

@Source(LOCATION)String loc = array[0];

App code

@Source(LOCATION)

@Source(LOCATION, SMS)

Declassifications
I Developer can suppress false-positive warnings
I App store employee verifies each declassification

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 14/24



Introduction Approach Evaluation Conclusion

False positives and declassifications

@Source({LOCATION, SMS})String[] array;
array[0] = readGPS();
array[1] = readSMS();
@SuppressWarnings("flow") // Always returns location data
@Source(LOCATION)String loc = array[0];

App code

Declassifications
I Developer can suppress false-positive warnings
I App store employee verifies each declassification

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 14/24



Introduction Approach Evaluation Conclusion

Reducing false positives

@Source({LOCATION, SMS})String value;
if (...) {
value = readSMS();
...
}
...

App code

value: @Source(SMS)

value: @Source({LOCATION, SMS})

Flow sensitivity
I Type refinement with intra-procedural data flow analysis

Context sensitivity
I Polymorphism (e.g., String operations, I/O streams, etc.)

Indirect control flow
I Constant value propagation
I Reflection analysis
I Intent analysis

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 15/24



Introduction Approach Evaluation Conclusion

Reducing false positives

@Source({LOCATION, SMS})String value = ...;
String substring = value.substring(0,8);

App code

Returns @Source({LOCATION, SMS})

Flow sensitivity
I Type refinement with intra-procedural data flow analysis

Context sensitivity
I Polymorphism (e.g., String operations, I/O streams, etc.)

Indirect control flow
I Constant value propagation
I Reflection analysis
I Intent analysis

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 15/24



Introduction Approach Evaluation Conclusion

Reducing false positives

Flow sensitivity
I Type refinement with intra-procedural data flow analysis

Context sensitivity
I Polymorphism (e.g., String operations, I/O streams, etc.)

Indirect control flow
I Constant value propagation
I Reflection analysis
I Intent analysis

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 15/24



Introduction Approach Evaluation Conclusion

Implicit information flow

@Source(USER_INPUT)long creditCard = getCard();
long i=0;
while (true) {
if (++i == creditCard) {
sendToInternet(i);

}
}

App code

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 16/24



Introduction Approach Evaluation Conclusion

Implicit information flow

@Source(USER_INPUT)long creditCard = getCard();
long i=0;
while (true) {
if (++i == creditCard) {
sendToInternet(i);

}
}

App code

Card number implicitly leaked

Classic approach (Denning and Denning, CACM’77)
I Taint all computations in dynamic scope
I Over-tainting may lead to taint explosion

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 16/24



Introduction Approach Evaluation Conclusion

Implicit information flow

@Source(USER_INPUT)long creditCard = getCard();
long i=0;
while (true) {
if (++i == creditCard) {
sendToInternet(i);

}
}

App code

USER_INPUT -> CONDITIONAL

Our approach: Prune irrelevant conditions
I Add additional Sink CONDITIONAL
I Type-checking warning for conditions with sensitive Source

I Analyst is aware of context
I No need to analyze dynamic scope for irrelevant conditions

(e.g., null checks, malicious conditions, or trigger)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 16/24



Introduction Approach Evaluation Conclusion

Implicit information flow

@Source(USER_INPUT)long creditCard = getCard();
long i=0;
while (true) {
if (++i == creditCard) {
sendToInternet(i);

}
}

App code

USER_INPUT -> CONDITIONAL

Our approach: Prune irrelevant conditions
I Add additional Sink CONDITIONAL
I Type-checking warning for conditions with sensitive Source
I Analyst is aware of context
I No need to analyze dynamic scope for irrelevant conditions

(e.g., null checks, malicious conditions, or trigger)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 16/24



Introduction Approach Evaluation Conclusion

Evaluation: Overview

Are our permission model and type system effective?
I Adversarial red team challenge
I Evaluation of effectiveness for real malware

Is our approach effective and efficient in a time-
constrained set up?
I Control team study
I Comparison of effectiveness and efficiency to control team

Is our verification model applicable for real-world apps?
I Usability study with annotators and auditors
I Evaluation of annotation and auditing burden

Apps are not pre-annotated

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 17/24



Introduction Approach Evaluation Conclusion

Evaluation: Overview

Are our permission model and type system effective?
I Adversarial red team challenge
I Evaluation of effectiveness for real malware

Is our approach effective and efficient in a time-
constrained set up?
I Control team study
I Comparison of effectiveness and efficiency to control team

Is our verification model applicable for real-world apps?
I Usability study with annotators and auditors
I Evaluation of annotation and auditing burden

Apps are not pre-annotated

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 17/24



Introduction Approach Evaluation Conclusion

Adversarial red team challenge

Setup
I 5 independent red teams
I 72 Android apps (47 malicious — information-flow malware)
I 8,000 LOC and 12 permissions on average

Results for 47 malicious apps

Android permissions
Additional Sources and Sinks
Parameterized permissions
Undetected

4%

20%

36%

40%

I 96% overall detection rate — 4% require modeling of
information flow paths (LOCATION -> ENCRYPT -> INTERNET)

I 60% of apps require our finer-grained sources and sinks

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 18/24



Introduction Approach Evaluation Conclusion

Adversarial red team challenge

Setup
I 5 independent red teams
I 72 Android apps (47 malicious — information-flow malware)
I 8,000 LOC and 12 permissions on average

Results for 47 malicious apps

Android permissions
Additional Sources and Sinks
Parameterized permissions
Undetected

4%

20%

36%

40%

I 96% overall detection rate — 4% require modeling of
information flow paths (LOCATION -> ENCRYPT -> INTERNET)

I 60% of apps require our finer-grained sources and sinks

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 18/24



Introduction Approach Evaluation Conclusion

Control team study

Setup
I Control team using dynamic and static analysis tools
I 18 Android apps (13 malicious)
I 7,000 LOC and 16 permissions on average

Results

Detection rate Analysis time
0

20

40

60

80

100

R
at

io
in

%

Control

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 19/24



Introduction Approach Evaluation Conclusion

Control team study

Setup
I Control team using dynamic and static analysis tools
I 18 Android apps (13 malicious)
I 7,000 LOC and 16 permissions on average

Results

Detection rate Analysis time
0

20

40

60

80

100

R
at

io
in

%

Control

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 19/24



Introduction Approach Evaluation Conclusion

Usability study

Setup
I 2 groups acting as annotators and auditors
I 11 Android apps (1 malicious)
I 900 LOC and 12 permissions on average

Annotation burden
I 96% of type annotations are inferred
I Annotations required: 6 per 100 lines of code
I Annotation time: 16 minutes per 100 lines of code

Most time spent on reverse engineering

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 20/24



Introduction Approach Evaluation Conclusion

Usability study

Setup
I 2 groups acting as annotators and auditors
I 11 Android apps (1 malicious)
I 900 LOC and 12 permissions on average

Annotation burden
I 96% of type annotations are inferred
I Annotations required: 6 per 100 lines of code
I Annotation time: 16 minutes per 100 lines of code

Most time spent on reverse engineering

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 20/24



Introduction Approach Evaluation Conclusion

Usability study cont.

Declassifications
I 50% of apps had no declassifications
I On average 3 declassification per 1,000 lines of code

IFT’s features effectively reduce false positives

Auditing burden
I Overall review time: 3 minutes per 100 lines of code
I 35% of time: review the flow policy
I 65% of time: review declassifications & conditionals

Only 23% of conditionals needed to be reviewed

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 21/24



Introduction Approach Evaluation Conclusion

Usability study cont.

Declassifications
I 50% of apps had no declassifications
I On average 3 declassification per 1,000 lines of code

IFT’s features effectively reduce false positives

Auditing burden
I Overall review time: 3 minutes per 100 lines of code
I 35% of time: review the flow policy
I 65% of time: review declassifications & conditionals

Only 23% of conditionals needed to be reviewed

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 21/24



Introduction Approach Evaluation Conclusion

Related work: Information flow

Jif (Myers, POPL’99)

I A security-typed language (incompatible Java extension)
I Supports dynamic checks and focuses on expressiveness

FlowDroid (Arzt et al., PLDI’14), SuSi (Rasthofer et al., NDSS’14)

I FlowDroid propagates sources and sinks found by SuSi
I SuSi classifies Android API methods using machine learning

IFT makes static verification of Android apps practical
I Finer-grained sources and sinks at type level
I Compiler plug-in using standard Java type annotations

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 22/24



Introduction Approach Evaluation Conclusion

Related work: Collaborative verification model

Verifying browser extensions
I IBEX (Guha et al., S&P’11)

I Verification of Fine (ML dialect) against complex policies
I Lerner et al., ESORICS’13

I Verification of private browsing using annotated JavaScript

IFT verifies information flow in Android apps
using a high-level flow policy

Automated policy verification
I Crowd-sourcing (Agarwal & Hall, MobiSys’13)
I Natural language processing (Pandita et al., USENIX’13)
I Clustering (Gorla et al., ICSE’14).

Could aid manual verification of flow policies

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 23/24



Introduction Approach Evaluation Conclusion

Conclusions
Developer provides

Information
flow policy

Annotated
source code

App
description

Declassification
justifications

App store verifies

Analyst verifies:
acceptable behavior

1

Type checker verifies:
annotations consistent

2

Analyst verifies:
declassifications

3

Type checker verifies:
annotations consistent

Android APIApp code Flow policy

Collaborative verification model
I Low overall verification effort for

developer and app store analyst
I IFT combined with other analyses

Information Flow Type-checker (IFT)
I Context and flow-sensitive type system
I Fine-grained model for sources and sinks
I High-level information flow policy

Evaluation
I Detected 96% information-flow malware
I Low annotation and auditing burden
I Low false-positive rate

Android permissions
Additional Sources and Sinks
Parameterized permissions
Undetected

4%

20%

36%

40%

https://www.cs.washington.edu/sparta

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 24/24

https://www.cs.washington.edu/sparta

