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Example: Information-flow malware

App Permissions Information flow

Sudoku

Read location
Internet

Camera

Read location
Internet

Location →
Internet

Map

Read location
Internet

Location →
Internet

Location →
BadGuy.com

Prevent malware using an
information flow type-system
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Approach: Overview

Collaborative verification model
I Leverage but don’t trust the developer

Information Flow Type-checker (IFT)
I Finer-grained permission model for Android
I False positives and declassifications
I Implicit information flow

Evaluation
I Effectiveness: Effective for real malware in real apps
I Usability: Low annotation and auditing burden
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(LOCATION -> INTERNET)

Annotated
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App
description

Declassification
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Verification of information flow

Information
flow policy

Annotated
source code

Type checker verifies:
annotations consistent
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Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

@Source(ANY) ≡ @Source({SMS, LOCATION, INTERNET, ...})

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

@Source(SMS)String sms = ...;
@Source({SMS, LOCATION})String smsLoc = sms;

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

@Source(SMS)String sms = ...;
@Source(LOCATION)String loc = sms;

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

@Sink({INTERNET, SMS})String toInetSms;
@Sink(SMS)String toSms = toInetSms;

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Type hierarchy for Sources and Sinks

@Source(ANY)

@Source({SMS, LOCATION})

@Source(SMS) @Source(LOCATION)

@Source({})

@Sink({})

@Sink(INTERNET) @Sink(SMS)

@Sink({INTERNET, SMS})

@Sink(ANY)

@Sink(SMS)String toSms;
@Sink(INTERNET)String toInet = toSms;

René Just, UW CSE Collaborative Verification of Information Flow for a High-Assurance App Store 10/24



Introduction Approach Evaluation Conclusion

Verification of information flow

Information
flow policy

Annotated
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Type checker verifies:
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Information Flow Type-checker (IFT): Overview

Type checker verifies:
annotations consistent

Guarantees of type-checking
1. Annotations are consistent with code (type correctness)

2. Annotations are consistent with flow policy

No undisclosed information flows in app
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Information Flow Type-checker (IFT): Example

Type checker verifies:
annotations consistent

LOCATION -> INTERNET

Flow policy

@Source(LOCATION)@Sink(SMS)String loc = readGPS();

sendSms(loc);

App code

Forbidden flow:
LOCATION -> SMS
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False positives and declassifications

@Source({LOCATION, SMS})String[] array;
array[0] = readGPS();
array[1] = readSMS();

@Source(LOCATION)String loc = array[0];

App code

Declassifications
I Developer can suppress false-positive warnings
I App store employee verifies each declassification
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False positives and declassifications

@Source({LOCATION, SMS})String[] array;
array[0] = readGPS();
array[1] = readSMS();
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Reducing false positives

@Source({LOCATION, SMS})String value;
if (...) {
value = readSMS();
...
}
...

App code

value: @Source(SMS)

value: @Source({LOCATION, SMS})

Flow sensitivity
I Type refinement with intra-procedural data flow analysis

Context sensitivity
I Polymorphism (e.g., String operations, I/O streams, etc.)

Indirect control flow
I Constant value propagation
I Reflection analysis
I Intent analysis
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Implicit information flow

@Source(USER_INPUT)long creditCard = getCard();
long i=0;
while (true) {
if (++i == creditCard) {
sendToInternet(i);

}
}

App code
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Implicit information flow

@Source(USER_INPUT)long creditCard = getCard();
long i=0;
while (true) {
if (++i == creditCard) {
sendToInternet(i);

}
}

App code

Card number implicitly leaked

Classic approach (Denning and Denning, CACM’77)
I Taint all computations in dynamic scope
I Over-tainting may lead to taint explosion
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Evaluation: Overview

Are our permission model and type system effective?
I Adversarial red team challenge
I Evaluation of effectiveness for real malware

Is our approach effective and efficient in a time-
constrained set up?
I Control team study
I Comparison of effectiveness and efficiency to control team

Is our verification model applicable for real-world apps?
I Usability study with annotators and auditors
I Evaluation of annotation and auditing burden

Apps are not pre-annotated
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Adversarial red team challenge

Setup
I 5 independent red teams
I 72 Android apps (47 malicious — information-flow malware)
I 8,000 LOC and 12 permissions on average

Results for 47 malicious apps

Android permissions
Additional Sources and Sinks
Parameterized permissions
Undetected

4%

20%

36%

40%

I 96% overall detection rate — 4% require modeling of
information flow paths (LOCATION -> ENCRYPT -> INTERNET)

I 60% of apps require our finer-grained sources and sinks
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Control team study

Setup
I Control team using dynamic and static analysis tools
I 18 Android apps (13 malicious)
I 7,000 LOC and 16 permissions on average

Results
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Introduction Approach Evaluation Conclusion

Usability study

Setup
I 2 groups acting as annotators and auditors
I 11 Android apps (1 malicious)
I 900 LOC and 12 permissions on average

Annotation burden
I 96% of type annotations are inferred
I Annotations required: 6 per 100 lines of code
I Annotation time: 16 minutes per 100 lines of code

Most time spent on reverse engineering
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Introduction Approach Evaluation Conclusion

Usability study cont.

Declassifications
I 50% of apps had no declassifications
I On average 3 declassification per 1,000 lines of code

IFT’s features effectively reduce false positives

Auditing burden
I Overall review time: 3 minutes per 100 lines of code
I 35% of time: review the flow policy
I 65% of time: review declassifications & conditionals

Only 23% of conditionals needed to be reviewed
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Related work: Information flow

Jif (Myers, POPL’99)

I A security-typed language (incompatible Java extension)
I Supports dynamic checks and focuses on expressiveness

FlowDroid (Arzt et al., PLDI’14), SuSi (Rasthofer et al., NDSS’14)

I FlowDroid propagates sources and sinks found by SuSi
I SuSi classifies Android API methods using machine learning

IFT makes static verification of Android apps practical
I Finer-grained sources and sinks at type level
I Compiler plug-in using standard Java type annotations
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Related work: Collaborative verification model

Verifying browser extensions
I IBEX (Guha et al., S&P’11)

I Verification of Fine (ML dialect) against complex policies
I Lerner et al., ESORICS’13

I Verification of private browsing using annotated JavaScript

IFT verifies information flow in Android apps
using a high-level flow policy

Automated policy verification
I Crowd-sourcing (Agarwal & Hall, MobiSys’13)
I Natural language processing (Pandita et al., USENIX’13)
I Clustering (Gorla et al., ICSE’14).

Could aid manual verification of flow policies
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Conclusions
Developer provides

Information
flow policy

Annotated
source code

App
description

Declassification
justifications

App store verifies

Analyst verifies:
acceptable behavior

1

Type checker verifies:
annotations consistent

2

Analyst verifies:
declassifications

3

Type checker verifies:
annotations consistent

Android APIApp code Flow policy

Collaborative verification model
I Low overall verification effort for

developer and app store analyst
I IFT combined with other analyses

Information Flow Type-checker (IFT)
I Context and flow-sensitive type system
I Fine-grained model for sources and sinks
I High-level information flow policy

Evaluation
I Detected 96% information-flow malware
I Low annotation and auditing burden
I Low false-positive rate

Android permissions
Additional Sources and Sinks
Parameterized permissions
Undetected

4%

20%

36%

40%

https://www.cs.washington.edu/sparta
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