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Abstract—Large language models (LLMs) can perform a
variety of tasks given a user prompt that contains a description of
the task. To enhance the performance of LLMs, recent research
has focused on augmenting LLMs with external tools, such as
Python APIs, REST APIs, and other deep learning models. Much
of the research on tool-augmented LLMs (TALLMs) has focused
on improving their capabilities and accuracy. However, research
on understanding and characterizing the kinds of failures that
can occur in these systems is lacking. To address this gap, this
paper proposes a taxonomy of failures in TALLMs and their
root causes, details an analysis of the failures that occur in
two published TALLMs (Gorilla and Chameleon), and provides
recommendations for testing and repair of TALLMs.

Index Terms—Large language models, tool-augmented LLMs,
software testing, fault localization, repair.

I. INTRODUCTION

Large Language Models (LLMs) have demonstrated re-
markable capabilities across a wide range of domains, per-
forming tasks simply through text inputs that contain instruc-
tions and examples for the task. However, their effective-
ness becomes limited in task domains that require nuanced
reasoning, such as mathematics, or in more complex tasks
that require interacting with external databases, APIs, or other
software systems. To address these limitations, tool-augmented
LLMs (TALLMs) extend the capabilities of LLMs by enabling
them to use external tools, such as search engines, other
deep learning models, modules for controlling physical agents,
and domain-specific functionality implemented in traditional
software libraries. By enabling an LLM to utilize tools to
acquire the most relevant and up-to-date information as well
as interact with real-world systems, TALLMs can perform a
wide range of tasks, such as question answering [1], embodied
agent task planning [2], automatic program repair [3], and even
customer-service chatbots [4].

The increased investment in research and deployment of
TALLMs in real-world settings underscores the need for
robust methods for testing and repair of TALLMs. Although
prior work has developed benchmark datasets [5], [6] and
failure detection methods [7], [8], systematic approaches to
testing and repairing these systems are needed for a safe and
wide-spread deployment of TALLMs. To achieve this goal,
it is important to develop a comprehensive understanding of
TALLM failure modes, which go beyond failures that can be
localized to LLMs. Repair of TALLMs requires more than
simply re-training an LLM, and thus mapping failures to root
causes in these compositional systems is a crucial first step.
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Fig. 1: Common components of TALLMs.

This paper focuses on developing a systematic understand-
ing of failures in TALLMs. It enumerates possible failures
and their root causes, based on a literature survey and an
in-depth analysis of two published TALLMs. Furthermore, it
emphasizes the importance of end-to-end system testing and
provides recommendations for leveraging fault localization and
root cause analysis to evaluate, test, and repair TALLMs.

Specifically, this paper makes the following contributions:
• A systems and software engineering perspective on

TALLMs in literature (Section II).
• A systematic analysis of failures and root causes observed

in two published TALLMs (Section III).
• Recommendations for TALLM evaluation, testing, and

repair (Section IV).
This paper aims to lay the foundation for enabling a more

structured approach to building robust TALLMs, based on
insights into failure types and root causes. We hope that
our work inspires future research on the development of
systematic, comprehensive, and effective approaches to testing,
debugging, and repairing TALLMs.

II. A SYSTEMS AND SOFTWARE ENGINEERING
PERSPECTIVE ON TALLMS

TALLMs (Figure 1) are modular software systems com-
posed of multiple components with well-defined interfaces,
the central component being the LLM. This section provides
a view of TALLMs from a systems design and software
engineering perspective that aims at informing systematic
methods for TALLM testing and repair.



TABLE I: Summary of TALLMs included in our literature survey.

TALLM Tools Agents

Examples
Tool
provisioning

Timing of
Invocation

# of
Invocations

# of
Agents

# of
Turns

Chameleon [1] LLMs, vision models, web search, Python functions,
and heuristics-based modules

IC PI > 1 1 1

RepairAgent [3] 14 program repair-specific tools IC PI > 1 1 > 1

React [9] 3 Wikipedia APIs IC PI > 1 1 > 1

API-Bank [5] Over 2000 APIs from github.com/public-apis IC / FT PI 1 1 > 1

HuggingGPT [10] HuggingFace models IC PI > 1 1 > 1

Gorilla [11] ML APIs FT / RAG PI 1 1 1

ToolAlpaca [12] 400 real-world tool APIs FT PI > 1 1 > 1

α-UMI [13] Various APIs FT PI > 1 > 1 > 1

ART [14] Google search, codex, Python interpretor IC ILD > 1 1 > 1

ToolkenGPT [2] Math tools, database APIs, robot APIs FT ILD > 1 1 1

TALM [15] Text-to-text APIs FT / RAG ILD > 1 1 1

Toolformer [16] LLMs, calculator, Wikipedia search, calendar API FT ILD > 1 1 1

ToolLLM [17] REST APIs FT / RAG PI > 1 1 > 1

IC: in-context learning, FT: fine-tuning, RAG: retrieval-augmented generation, PI: post-inference, ILD: in LLM decoding

A. System Components

Prior work has introduced numerous TALLMs, each tai-
lored to specific use cases and designed to improve on pre-
viously introduced state-of-the-art systems. By comparing the
designs of these systems, we can identify a design space for
TALLMs and a common set of components essential to their
functionality. Figure 1 summarizes these components:

LLM The LLM is the reasoning component of a TALLM
and is trained and prompted to perform task planning, tool
usage, and response generation. It is often deployed with a
system prompt—text that is prepended to every user prompt
with contextual information and instructions for the LLM.

Retriever An information retriever module is optionally
used to retrieve a subset of tools that are most relevant to the
user prompt and also to retrieve the latest tool documentation.
An algorithm, such as BM25 [18], or a model-based approach,
such as GPT-index [19], can be used.

Tool set The tool set is a collection of tools and their doc-
umentation. Tools are modules or APIs external to the LLM
that can be invoked to enhance the LLM’s capabilities. Tool
usage allows the LLM to retrieve information not embedded
in model training and to interact with third-party libraries or
services. The tool set for a TALLM is the set of all tools that
the LLM is aware of and can invoke; this set can be manually
curated or scraped from an existing repository of tools, such
as GitHub or HuggingFace. The tool set may be specifically
created for a target use case, such as program repair and travel
booking, or it may contain generic APIs.

The tool documentation must be explicitly provided for all
tools and must include information about the tool’s interface.

Tool executor A tool executor is a software component
that parses a structured output of the LLM and executes tools
corresponding to the API calls produced by the LLM.

Response verifier A response verifier can be optionally
added to check and/or augment the LLM response. This
component may enforce safety constraints or apply formatting
and gate-keeping rules to improve response quality.

B. System Design Considerations

TALLMs, such as those listed in Table I1, differ across
multiple characteristics. Based on our literature survey, we
identified the following five key characteristics.
Tool provisioning There are three main approaches to
enabling an LLM to interface with external tools. These
approaches affect the orange components in Figure 1.

1) IC: In-context learning [20] enables an LLM to interface
with tools by including tool documentation and example
usages (from the tool set) in the system prompt. In-
context learning is a fast way to augment an existing
LLM with tool usage capabilities as it does not require
additional model training for each added tool. However,
the number of tools and the comprehensiveness of tool
documentation that can be provided is limited by the
context length of the LLM. Chameleon, RepairAgent,
REACT, API-Bank, HuggingGPT, and ART utilize in-
context learning and are thus limited to a smaller tool
set (< 80 tools for these TALLMs).

2) FT: Fine-tuning an LLM on examples of tool usage
can be more effective and scalable to larger tool sets.
This method embeds tool information in the LLM itself
by training on a dataset that contains pairs of user
prompts and example tool usage for all tools in the
tool set. It is, however, more expensive due to dataset
curation and training costs. Gorilla, ToolAlpaca, α-UMI,
ToolkenGPT, TALM, and Toolformer utilize fine-tuning.

1We conducted a literature survey in January 2024. The literature on
TALLMs has since grown, but the design considerations are still valid.



3) RAG: Retrieval-augmented generation [21] allows fur-
ther scalability to retrieve the latest and most relevant
tools and documentation for the requested task. How-
ever, this requires training and updating a dedicated
retriever module. Reta-LLM [22] uses a retriever module
in addition to in-context learning. TALM, Tool-LLM,
and one version of the Gorilla model are fine-tuned and
inferenced with a retriever module.

Timing of tool invocations TALLMs vary in the timing
of tool invocations. Some TALLMs, such as Toolformer,
ToolkenGPT, ART, and TALM, are trained to produce special
tokens during LLM decoding that can trigger a tool invoca-
tion. The generation of such a token pauses LLM decoding
to retrieve the output of the tool invocation. The output
is then appended to the response, and the LLM continues
decoding tokens. On the contrary, the majority of TALLMs
(Chameleon, RepairAgent, REACT, API-Bank, HuggingGPT,
Gorilla, ToolAlpaca, α-UMI) invoke tools after LLM infer-
ence. Such systems can produce executable code that can
contain API calls, or the LLM could generate a plan or set
of instructions for tool invocation that the tool executor must
parse to invoke the actual tools.
Number of tool invocations The TALLM can be designed
to accomplish a task with a single tool or with multiple tools
that operate in sequence or in parallel. For example, Gorilla
and API-Bank invoke exactly one tool for a given user prompt,
whereas other systems may invoke multiple tools.
Number of agents A single LLM agent is often used
for task planning, tool invocation, and response generation.
Alternatively, multiple specialized LLM agents can be used.
For example, the α-UMI framework uses three separate LLMs
for tool planning, tool call construction, and response summa-
rization. While the multi-agent approach can work better due
to the agent specialization, it can increase the training and
inference costs and introduce multiple points of failure.
Number of agent turns The LLM can accomplish the task
in a single pass or might be trained to interact with itself, other
components of the system, or the user. In such an interactive
approach, the outputs of tool invocations are fed back to the
LLM, which acts as a planning agent and decision-making
agent to determine the next step to complete the task.

C. System Failures

Traditional software engineering distinguishes between
functional and non-functional requirements [23]. Similarly,
failures in TALLMs can result from violations of functional
requirements, such as incorrect responses, or non-functional
requirements, such as poor reliability or high latency. Here
we provide examples specific to TALLMs.
Functional failures A functional failure in a TALLM is one
in which the TALLM does not produce the expected response
or accomplish the requested task. This can manifest in a raised
exception or an incorrect response.

1) Raised exception: A raised exception can occur at vari-
ous points in the execution of a TALLM. LLM inference

itself might raise an exception, if the length of the text
input exceeds the token limit for the model or if auxiliary
input, which could include modalities such as image,
video, or audio, exceed the memory requirements of
the model inference. Hallucination of a non-existent tool
or argument would result in an invalid tool invocation.
Input type mismatches and internal errors can also raise
exceptions at any point during tool execution.

2) Empty or incorrect response: A TALLM might be
produce no or an incorrect response, even without raising
an exception. For example, a TALLM may generate
code that runs successfully but does not produce any
output (e.g., due to a missing return or print statement).

Defining functional correctness for a TALLM can be tricky
depending on the use case. For some tasks, such as question
answering, there is one, known ground truth, while for other
tasks such as code generation or chatbots, there may be a
range of correct and valid responses. Furthermore, since the
input contains free-form text, a deployed TALLM needs to
correctly reject and accept inputs based on the defined and
enforced set of requirements and use cases for the system.

Non-functional failures TALLMs, just like traditional soft-
ware systems, are subject to non-functional requirements such
as reliability, security, and cost/latency.

1) Reliability: While we have discussed individual failures,
an important requirement for deploying a TALLM is
correctness or reliability across a set of representative
inputs, known as an evaluation dataset. This evaluation
dataset should contain a sufficiently wide range of
inputs, including edge and critical cases.

2) Consistency: There is often a tradeoff between cre-
ativity/exploration and hallucination/inconsistency for
LLM-based systems. Due to the non-deterministic nature
of LLMs, consistency across multiple executions of
the same task prompt is important. However, multiple
runs of the same prompt may result in different code
execution paths or task plans.

3) Security: Since TALLMs interact with external tools,
potential security risks can arise, especially if tools can
modify databases and if data passed around can create
various attack surfaces or affect privacy. The tool set
must be vetted to prevent the TALLM from selecting
tools that violate compliance requirements. Furthermore,
a TALLM should respect user permissions or access
rules for tool usage or data access.

4) Cost/latency: LLMs can select tools from a plethora
of options and can plan multiple invocations. Without
proper constraints, it is possible to exceed latency and
cost budgets. For example, two tools with the same
functionality may have different inference latencies and
computational costs (e.g., a 7B vs. a 12B parameter
foundation model), and the TALLM should be able
to appropriately selected between them while balancing
correctness and computational resources. This requires
that the tool documentation contain such information.
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Fig. 2: Design differences between Gorilla and Chameleon.

III. TALLM FAILURES AND ROOT CAUSES

To gain insights into the failures that arise in TALLMs, we
selected two published TALLMs as case studies to analyze
failures and enumerate possible root causes.

We selected two TALLMs, Gorilla [11] and Chameleon [1]
(compared in Figure 2), based on the following criteria:

• Published model and evaluation code.
• Published evaluation results, including inference results

and the outputs of intermediate steps.
• Differences in the TALLM system design (Section II).
Gorilla is a fine-tuned LLaMA-based model that generates

code to invoke machine learning APIs given a prompt describ-
ing a task [11]. We refer to these APIs as “tools”. Specifically,
the output of the Gorilla LLM is a single ML tool invocation,
including the tool name and the required arguments. Invoking
one of these tools downloads the requested ML model from
the repository and enables local inference. The output of the
LLM can be integrated into a code generation component
that embeds the selected tool invocation in the correct code
context and an executor component that executes the code.
While Gorilla is only trained on generating the correct tool
call, the model is also prompted to return example code as
well. Gorilla is trained and evaluated on three datasets that
contain ML tool calls in Python from HuggingFace Model
Hub (HuggingFace), TensorFlow Hub (TFHub), or PyTorch
Hub (TorchHub). The tool calls span various ML domains,
varying in the input modality (e.g., image, language, audio)
and the task type (e.g., classification, question answering).

Chameleon uses an off-the-shelf LLM (e.g., GPT-4) that
is made aware of tools through in-context learning to solve
complex reasoning tasks [1]. Instead of generating a single

line of code, like Gorilla, the LLM is prompted to produce
a tool plan to achieve the task using tools from an inventory.
These tools include a knowledge retriever, image captioner
model, web search, Python program generator, and program
executor, some of which are LLMs themselves. These are
then executed sequentially according to the plan after LLM
inference completes, with the output of one tool feeding into
the next as input. Chameleon is evaluated on two question
answering datasets: ScienceQA [24], a multimodal scientific
benchmark, and TabMWP [25], a mathematical benchmark
involving tabular data.

We answered three research questions to gain insights into
common failures observed in TALLMs and their root causes:

• RQ1: What is the distribution of failures observed in
TALLMs?

• RQ2: What data characteristics are associated with cor-
rectness in TALLMs?

• RQ3: What are the root causes for failures in TALLMs?
To answer these research questions, we used a combination

of manual and automated analysis of the published evaluation
results for Gorilla and Chameleon. The published results from
Gorilla for each of the three evaluation datasets contain the
user prompt, the raw LLM output, the parsed LLM output. The
LLM output is parsed into the tool call and the example code.
Evaluation results for Chameleon on the two datasets include
tool plans, intermediate outputs of each tool invocation, and
final results.

A. What is the distribution of failures observed in TALLMs?
1) Methodology: To identify failures for each TALLM,

we used the evaluation methodology and correctness criteria
defined by the respective authors of the TALLM. At a high
level, Gorilla’s evaluation methodology focuses only on tool
plan generation by the LLM, and Chameleon’s evaluation
methodology focuses on evaluating response generation by the
system. For Gorilla, failures are identified based on whether
the tool extracted from the generated output (1) is contained
in the tool set and (2) is in the same ML domain as the ground
truth tool (e.g., audio classification, NLP summarization). The
authors of Gorilla selected this evaluation methodology to
reduce the number of false negatives as multiple tools might be
suitable for the same user prompt. Furthermore, this eliminates
the need for (potentially expensive) execution of ML tool calls.
However, the downside to this approach is that it only partially
evaluates correctness. In contrast, Chameleon is evaluated
on multiple-choice question-answering datasets, with exactly
one ground-truth answer for every question. The authors of
Chameleon used the expected answers to define correctness.

We automatically identified the distribution of the failures
in Gorilla and Chameleon by implementing Python functions
that classify the LLM output according to the evaluation
methodology and correctness definitions described above:

• Incorrect Output: Incorrect tool selection (Gorilla) or the
tools produced an incorrect answer (Chameleon).

• No Output: No tool or a hallucinated tool (Gorilla) or the
tools produced an empty answer (Chameleon).



TABLE II: Aggregation of ML domains into groups for Gorilla.

Group HuggingFace TFHub TorchHub

Image CV Depth Estimation, CV Image Classification, CV Image Segmen-
tation, CV Image-to-Image, CV Object Detection, CV Unconditional
Image Gen, CV Zero-Shot Image Classification

Image classification, Image feature
vector, Image object detection, Image
pose detection, Image segmentation

Semantic Segmentation,
Object Detection

Language NLP Conversational, NLP Feature Extraction, NLP Fill-Mask, NLP
QA, NLP Sentence Similarity, NLP Summarization, NLP Table QA,
NLP Text Classification, NLP Text Gen, NLP Text2Text Gen, NLP
Token Classification, NLP Translation, NLP Zero-Shot Classification

Text classification, Text embedding,
Text language model, Text preprocess-
ing

Text-To-Speech, Text-to-
Speech

Audio Audio Audio Classification, Audio Audio-to-Audio, Audio Auto-
matic Speech Recognition, Audio Classification, Audio Text-to-
Speech, Audio Voice Activity Detection

Audio embedding, Audio event classi-
fication

Audio Separation

Video CV Video Classification Video classification Video Classification
Tabular Tabular Tabular Classification, Tabular Tabular Regression
Multimodal Multimodal Document QA, Multimodal Feature Extraction, Multi-

modal Graph Machine Learning, Multimodal Image-to-Text, Multi-
modal Text-to-Image, Multimodal Text-to-Video, Multimodal Visual
QA, Multimodal Zero-Shot Image Classification

RL RL, RL Robotics
General Classification

RL: Reinforcement Learning; CV: Computer Vision; NLP: Natural Language Processing

TABLE III: Summary of observed failures.

Dataset Output

Name Size Correct Incorrect None

TALLM: Gorilla

HuggingFace 904 626 (69.0%) 178 (20.0%) 100 (11.0%)
TFHub 685 564 (82.0%) 74 (11.0%) 47 ( 7.0%)
TorchHub 186 140 (75.0%) 15 ( 8.0%) 31 (17.0%)

TALLM: Chameleon

TabMWP 7686 7592 (98.8%) 65 ( 0.8%) 29 (0.4%)
ScienceQA 4241 3670 (86.5%) 571 (13.5%) 0 (0.0%)

2) Results: For Gorilla, Table III shows between 18% and
31% failures for each of the three evaluation datasets, in
line with Gorilla’s reported results. Considering the overall
distribution of failures, we observe that for HuggingFace and
TFHub, there are roughly twice as many failures in which
an incorrect output is produced as no output, but the opposite
trend holds for TorchHub. This is likely because TorchHub has
fewer ML domains represented, and thus the tool selection is
an easier task for the TALLM.

For Chameleon, the failure counts in Table III align with
Chameleon’s reported results on the two datasets. Chameleon
has a higher accuracy on TabMWP compared to ScienceQA.
This could be due to focused modality of tabular data and the
inclusion of tabular-specific tools for TabMWP as opposed to
the broader domain of science with different input modalities.
We also note that roughly 30% (29/94) of all failures in
TabMWP produce no output instead of an incorrect output,
compared to 0% for ScienceQA. RQ3 investigates this further.

3) Conclusion: 40% of all Gorilla failures and 4% of all
Chameleon failures manifest as empty output, which may
indicate masked failures or inadequate failure handling.

B. What data characteristics are associated with correctness
in TALLMs?

1) Methodology: To gain a more comprehensive under-
standing of the distribution of failures in the two TALLMs,
we studied associations between data characteristics and cor-
rectness. By identifying data characteristics that are negatively
associated with correctness, we can identify areas in which
better training data or specialized tools can improve perfor-
mance. For each TALLM, we fit a logistic regression model—
modeling correctness as a function of data characteristics.

For Gorilla, we fit a single model across datasets on the
following data characteristics:

• Source dataset: HuggingFace, TFHub, or TorchHub.
• ML domain group: Aggregated ML domain group, as

summarized in Table II.
• Number of tools: Number of tools in a particular ML

domain.
For Chameleon, we fit separate models on the two datasets

as they differ in question type and data characteristics. For
TabMWP, we consider the following data characteristics:

• Question difficulty (“grade”): Grade levels, ranging from
1 to 8, used as a proxy for difficulty, where higher grade
levels are considered more difficult.

• Question type (“question type”): Indicates whether a free
text response or a multiple-choice selection is expected.

• Answer type (“answer type”): The format of the correct
answer, such as text or number (see [25] for details).

For ScienceQA, we consider the following data characteristics:
• Question difficulty (“grade”): Same as TabMWP above.

Here, values range from 1 to 12.
• Question type (“has image”): Indicates whether the ques-

tion is asked about an attached image.
• Question domain (“subject”): The subject (language sci-

ence, natural science, and social science) of the question.



TABLE IV: Correctness model for Gorilla.

Feature Coefficient P value

Intercept 0.83 < 0.01
Dataset: TFHub -0.70 < 0.01
Dataset: TorchHub 0.04 0.92
ML Domain Group: General -0.48 0.34
ML Domain Group: Image -0.24 0.29
ML Domain Group: Language -0.41 0.05
ML Domain Group: Multimodal -0.03 0.92
ML Domain Group: RL -1.29 < 0.01
ML Domain Group: Tabular -1.24 < 0.01
ML Domain Group: Video 1.37 0.03
Num. Tools in ML Domain 0.01 < 0.01
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Fig. 3: Gorilla failure distribution per ML domain group.
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2) Results: For Gorilla, Table IV shows the coefficients
and p values for the logistic regression model, which models
correctness as a function of the data characteristics. These
results indicate that the domains of reinforcement learning
(RL) and tabular data (Tabular) have a significant negative

TABLE V: Correctness model for Chameleon.

Feature Coefficient P value

Dataset: TabMWP

Intercept (Answer Type: True/False) 8.30 < 0.01
Grade -0.23 < 0.01
Answer Type: Decimal -0.42 0.19
Answer Type: Extractive 0.24 0.61
Answer Type: Integer 0.66 0.06
Answer Type: Other 0.09 0.89
Num. Table Columns -0.91 < 0.01
Num. Table Rows -0.10 0.14

Dataset: ScienceQA

Intercept (Subject: Language Science) 2.15 < 0.01
Grade 0.03 0.36
Image -2.17 < 0.01
Subject: Natural Science 1.62 < 0.01
Subject: Social Science 4.13 < 0.01
Grade x Subject: Natural Science -0.03 0.53
Grade x Subject: Social Science -0.63 < 0.01

influence on correctness (relative to Audio), while video inputs
(Video) have a positive influence. Figure 3 visualizes the
failure distributions per ML domain group and supports this
observation. Taking a closer look, we observe that RL has
many hallucinations, but 6 of these were incorrectly classified
as hallucinations because the LLM output was not able to be
parsed even though a tool call was selected. In the Tabular
domain, many of the failures are due to selecting a tabular
tool for classification instead of regression, indicating that
the LLM may not understand the semantic differences in the
user prompt between the two tasks. The video domain is
most likely to have a high accuracy due to only having one
subdomain (Table II).The three failures in this domain were
due to incorrectly selecting a tool from the NLP domain.

Furthermore, we observe only a weak correlation between
the number of tools in a ML domain and correctness (Fig-
ure 4). The correlation is even weaker when the three outliers
are removed. We leave a deeper investigation and a controlled
study for future work.

For Chameleon, Table V shows the logistic regression mod-
els for predicting correctness on the two datasets. The results
indicate that for the TabMWP dataset, grade level and number
of table columns have a significant negative influence on
correctness, indicating that question difficulty and complexity
reduce correctness for Chameleon. For ScienceQA, we observe
that the presence of an image in the question has a significant
negative influence on correctness. By adding an interaction
term between grade level and social science questions, we see
that its negative and significant value indicates that correctness
decreases as grade level increases for social science topics,
while not for the other subjects. The number of questions
that ask to identify a highlighted country, continent, or ocean
from an image with no text increase as grade levels increase
for social sciences. Given the available tools, this task seems
especially hard for Chameleon, as reflected in Figure 5. For
other subjects, we do not observe such a trend.
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3) Conclusion: We observe a significant negative associa-
tion between the domain groups of reinforcement learning and
tabular data for the Gorilla model. For Chameleon, we observe
significant negative associations for grade and number of table
columns or TabMWP, and for the presence of images for
ScienceQA. We also observe an interaction effect specifically
between grade and the subject of social science.

C. What are the root causes for failures in TALLMs?

1) Methodology: We analyzed the failures observed in
Gorilla and Chameleon (last two columns in Table III) to
identify root causes. For Gorilla, we automatically classified
the entire dataset by iteratively implementing classification
rules. First, we started with a random sample of about 5%
of failures in each dataset. Second, we manually inspected
each failure and added a free-text failure description. Third,
we categorized the text descriptions into a smaller set of failure
modes and implemented corresponding classification rules.

For Chameleon, the dataset is substantially larger and not
amenable to automatic classification. Thus, we randomly sam-
pled 10% of the failures in each dataset and categorized the
failure descriptions for each into a smaller set of failure modes.
While the sample may have missed rare failure modes, we
observed quick saturation during our manual analysis and our
failure modes match those reported by the Chameleon authors.

2) Results: For Gorilla, we identified four root causes—
two related to tool selection and two related to LLM decoding.
Figure 6 summarizes the results.

1) Tool selection: incorrect tool: One cause for failures
is selecting an incorrect tool—one that exists in the
tool set but in the wrong ML domain. Figure 7 shows
the distribution of predicted ML domain groups for
each ground truth group of all “incorrect tool” failures.
For many groups (image, language, audio, tabular), the
majority of failures involve selecting tools that are still
within the same group (e.g., 82% of image “incorrect
tool” failures did select an image tool, even though
the specific ML domain was incorrect). For tabular,
multimodal, and general, the most common predicted
group was language.

2) Tool selection: hallucinated tool: Another cause for
failures is hallucination—selecting a tool that does not
exist in the tool set and resulting in no output. As shown
in Table VI, the hallucinated tool names often resemble
tools in the tool set, with a few words replaced by
keywords from the question. Of the 61 hallucinations
observed in the HuggingFace dataset, 13 were script



TABLE VI: Examples of hallucinations in Gorilla.

Question Hallucinated Tool Closest Real Tool

Generate a new image based on the online database of bedroom art. lllyasviel/control v11p sd15 bedroom lllyasviel/control v11p sd15 inpaint
We want to develop a chatbot that can engage with multilingual users. microsoft/GODEL-v1 1-base-

multilingual-encoder-decoder
microsoft/GODEL-v1 1-base-seq2seq

We are building a robot for hopping in an environment, trained using
Decision Transformers.

edbeeching/decision-transformers-
gym-hopper-medium

edbeeching/decision-transformer-
gym-walker2d-expert

executions (run.sh) or binary invocations (mlagents-
load-from-hf, load model ensemble and task from-
hf hub) were present in the training data unable to be

parsed from the LLM output in the evaluation.
3) LLM decoding: undetected tool: Another root cause in-

volves LLM constrained decoding. The LLM is expected
to produce output in a constrained format that can be
parsed to identify the selected tool. The tool invocation
is identified by a string token in the LLM output, and
the prompt to the LLM asks the model to produce
output abiding by this format. However, even though the
response may contain the correct tool call, this identifier
token may be missing, preventing the tool executor from
detecting the selected tool.

4) LLM decoding: no tool: The LLM might also fail to
select a tool, preventing the tool executor from executing
any tools. For instance, for a user prompt requesting
to summarize a news article, the LLM hallucinated an
article instead of selecting a text summarization tool.

For Chameleon, we identified three root causes.

1) Tool selection: missing tool: One root cause for failures
in Chameleon was suboptimal tool plan generation by
the LLM. For example, in several instances, Chameleon
did not select tools for gaining semantic information
about the input question. In other cases, Chameleon gen-
erated a tool plan that directly generated the final answer
without using external tools to retrieve knowledge or
process certain data, thus resulting in misunderstanding
of the question and an incorrect result.

2) Tool: faulty tool: Another root cause for failures are
defects within tools. In Chameleon, we observed the
image captioning tool providing incorrect captions for
some images, leading to overall failures. Additionally,
we discovered a subtle bug in the program generator and
executor tools (Python implementation that operates on
a string representing code) which affected some inputs.

3) Tool set: missing tool: A third root cause is where the
tool set lacks certain required tools. The TALLM might
select the best tool available in the tool set, but this may
not be able to accomplish the task correctly.

3) Conclusion: We identified six unique root causes for
failures in Gorilla and Chameleon, covering tool selection
(incorrect tool, hallucinated tool, missing tool), LLM decoding
(undetected tool, no tool), tool execution (faulty tool), and tool
set (missing tool). Not all of these lie within the LLM and

TABLE VII: Analysis of sampled correct responses in Gorilla.

Dataset Tool Selection Code Execution Code Correctness

Functional Available w/o Repair w/ Repair

HuggingFace 10 9 0 5 4
TFHub 10 9 0 6 0
TorchHub 10 10 0 0 0

require model retraining, underscoring the need for holistic
system testing.

IV. RECOMMENDATIONS

From our literature survey of TALLMs and our analysis
of failures in Gorilla and Chameleon, we observed a need
for contextualized evaluation methodologies, a comprehensive
understanding of failure modes and root causes, and robust
testing and repair mechanisms for deployment and adoption.
In this section, we outline recommendations in these areas.

A. Evaluation Methodologies

Methodologies that assess the accuracy of TALLMs must
precisely define correctness and clearly identify what compo-
nents are being evaluated. This is crucial to enable fair com-
parisons and proper contextualization of results. The definition
of correctness affects which components of the system are
evaluated and what types of failures are surfaced or masked.

For example, Gorilla’s definition of correctness buckets
all tools within the same ML domain and does not execute
tools—effectively measuring the proportion of how often a
selected tool exists and falls into the expected ML domain, as
opposed to the proportion of correct tool selections and system
responses. While this minimizes execution costs and false
negatives (multiple tools may be suitable for the same task),
it does not fully capture task correctness. Our manual analysis
of 30 sampled examples (Table VII) demonstrates this:

• Tool functionality: Whether the tool selected provides the
necessary functionality to accomplish the user task. This
is determined manually by comparing the user prompt to
the tool documentation.

• Tool availability: Whether the selected tool is still avail-
able in the tool set and not deprecated.

• Code execution: Whether the code can run successfully
without runtime errors either with no changes (w/o Re-
pair) or with trivial changes (w/ Repair). A trivial change
is strictly one of the following: updating placeholders
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Fig. 8: TALLM failure root causes and affected components.

with actual paths to input data, fixing escaped quotations
from the string parsing of the LLM output.

• Code correctness: Whether the generated example code
fully accomplishes the intended task and produces the
correct output requested in the user prompt. Note that
a prerequisite for code correctness is that the code is
executable (with or without trivial repairs).

While the tool selection for all examples was adequate,
none of the examples contained code that could be executed
without repairs. 19 out of the 30 examples required non-trivial
repairs to be executed, and only 4 examples produced code that
actually accomplished the task. These results are expected, as
the training objective for Gorilla was to produce a single tool
invocation and not the surrounding code context. However,
this demonstrates how such a correctness metric limits the
evaluation to only the LLM and not the entire system.

As another example, in Chameleon’s evaluation, 28% of
correct answers resulted from a design rule defaulting to
the first choice if the tools fail to generate a valid result.
This artificially inflates performance in an nontransparent
manner and demonstrates how implicit and non-evaluated
design choices may distort evaluation results. While such a
design choice might be suitable, it must be documented and
accounted for in the evaluation methodology to avoid skewed
results. Furthermore, it may be better for a system to issue no
response instead of guessing answers.

B. Root Causes

Based on our empirical analysis and our literature survey,
we identified six main TALLM failure root causes and what
system components may be affected (Figure 8). While these
may not be comprehensive, they provide a starting point for
designing testing and repair approaches for TALLMs.

1) Tool selection: Root causes in this category include
incorrectly selecting no tool, selecting a wrong tool (or tools),
and selecting a tool that does not exist (hallucination). These
can occur due to bugs in the LLM, the retriever module, or
the tool documentation.

2) Tool input construction: Failures can also be caused
by poor tool input/argument construction. For example, the
argument name might be hallucinated, or the input might
fail a precondition (e.g., data type). Failures with this root
cause often stem from missing, incorrect, or misinterpreted
documentation. Alternatively, they may also indicate a poorly
generalizing LLM or retriever.

3) Tool output parsing: Another root cause is incorrect
parsing of the output of an invoked tool. This could also occur
due to missing, incorrect, or misinterpreted documentation.
Similar to tool input construction, failures with this root cause
are due to bugs in the LLM or the tool documentation.

4) LLM constrained decoding: Constrained decoding is a
common method to ensure that the LLM produces output in
a constrained and consistent format such as JSON, which can
be parsed for tool invocations. Failures in LLM constrained
decoding can manifest in different ways. One way is that the
output of the LLM might contain a correctly selected tool but
formatted incorrectly and thus undetected. Alternatively, the
output of the LLM might be completely invalid and not even
contain any tool selection. Failures with this root cause often
localize to a bug in the LLM and can be repaired with either
LLM training or prompt tuning.

5) Tool set: Some failures might be root caused to a poor
composition of tools in the tool set. Specifically, missing
functionality in the tool set would require new tools to be
added; deprecated tools must be removed.

6) Tool error: Failures can also occur within specific tools
and can manifest by exceptions raised during usage or sub-
optimal performance as detected by inspecting stack traces
and intermediate outputs.

C. End-to-End Testing

The structured analysis of TALLM failures highlights di-
verse points of failure and corresponding root causes, empha-
sizing the need for holistic testing beyond the LLM itself.

Similar to traditional software, TALLMs have multiple
points of failure. Thus, comprehensive test coverage across all
the components of the system, the whole tool set, and various
input arguments is critical. Furthermore, testing various com-
binations of tools used and these different factors improves test
coverage. As discussed by [26], intrinsic evaluation and real-
world evaluation can diverge significantly, as observed in their
work in deploying a TALLM for code review, and hence end-
to-end testing is critical for bridging the gap between beating
a benchmark and usable deployment (see also Table VII).

D. Continuous Testing

Another area of testing that is critical for TALLMs is
continuous testing. As we noticed when executing some of
the tool invocations produced by Gorilla, tool functionality,
documentation, and availability can change over time. And if
the overall system is not robust to these changes, it can cause
runtime failures. Thus, TALLM testing must account for the
evolution of tools and documentation in the real-world.

E. Non-Functional Testing

It is also important to test TALLMs for their non-functional
requirements. One of the non-functional requirements pre-
viously discussed is consistency across similar invocations,
which is not typically covered by LLM tests. Many TALLM
systems operate on free text user input, and slight variations
in phrasing could result in different LLM responses. A form



of fuzz testing could be used to test such robustness. Such
fuzz testing can even be used to test and expose security
vulnerabilities in TALLMs [27]. Furthermore, TALLMs can
be tested on their ability to respect constraints regarding the
cost and accuracy of tools [11]. Depending on the target use
case, TALLMs should be able to balance the cost of tool
invocations against performance and accuracy.

F. Repair Methods

The failure root cause can inform the method of repair.
1) Repairing the LLM: A common repair method is repair-

ing the LLM itself, either through in-context learning or fine-
tuning. In-context learning modifies the system prompt with
additional details or constraints, while fine-tuning augments
training data with failure cases or corner cases. If failures can
be correlated with specific data characteristics, the LLM may
be fine-tuned on additional data with the same characteristics.

2) Repairing the tool set: Failures can also be caused
by inadequacies in the tool set, which can be repaired by
adding, removing, or replacing tools. In some cases, improving
documentation quality and coverage may also improve the
TALLM performance. Furthermore, another approach to make
a TALLM more resilient to issues in the tool set is to
combine usage with a document retriever that retrieves the
latest documentation and tools at inference time [11].

3) Runtime assertions and heuristics: Another method of
repair involves runtime assertions and rules that can be applied
to the output of LLM inference or tool invocations (e.g.,
[7]). This can be used to modify the LLM prompt or output
of the LLM to re-trigger LLM inference with a slightly
different input and constraint. For example, as demonstrated by
Chameleon, this can be used to restrict the TALLM from using
a certain deprecated tool without LLM re-training or enforce
a certain pre-condition for a tool that the LLM is observed to
not respect. However, applying such rules can mask underlying
failures, as we observed.

V. RELATED WORK

A. Benchmarks for TALLMs

Recent work has developed benchmarks to evaluate the
task planning and tool usage capabilities of LLMs. APIBank
[5] was one of the first benchmarks for TALLMs, providing
training/evaluation datasets and defining evaluation metrics
specifically for TALLMs. Other benchmarks developed in-
cludebToolQA [28], TaskBench [29], MetaTool [30], and
UltraTool [6]. Furthermore, various datasets (APIBench [11],
ToolQA [28], ToolBench [17], ToolAlpaca [12]) have been
constructed to be used for fine-tuning and evaluation of
TALLMs. These benchmark datasets can be manually created
or generated by an LLM. Often, these benchmarks evaluate
some combination of the tool planning, tool retrieval, and tool
usage capabilities of LLMs. However, such benchmarks con-
tain a fixed set of example inputs and downstream tasks, and
the evaluation metrics are often limited. TALLM evaluation
sometimes avoids executing external tools due to complexity,
cost, and LLM non-determinism, and instead relies on on

heuristics or another LLM for evaluation. With regards to
failure analysis, ToolQA identified common failures like argu-
ment errors, hallucinations, and infeasible actions, but lacked
detailed analysis to uncover their root causes [28].

B. Evaluation Metrics for TALLMs

TALLMs are often evaluated on benchmark datasets con-
structed for certain tasks. Depending on the type of TALLM,
the text output of the LLM might be the final response
to the task prompt or the text output might contain a tool
usage plan or generated code that must be executed by a
separate module. Evaluation may include computing accuracy
and quality metrics on either the text generated or the final
response [28]. Prior works have observed hallucinations in
both the API name and the argument names [11], and this has
become a common metric, in addition to accuracy and quality.
Using GPT-4 or another LLM as a quality and correctness
evaluator for both the process and final answer has been a
common paradigm as well [31].

VI. CONCLUSION

Augmenting LLMs with tools provides a powerful way to
boost capabilities of LLMs. However, testing TALLMs is chal-
lenging due to their interactions and complex execution paths
involving external tools and due to potentially expensive tool
invocations. Our analyses highlight the need for better testing
and repair methods for TALLMs. Our analyses informed a set
of actionable recommendations around the need for end-to-end
testing and repair methods.

Future work should focus on developing approaches for cre-
ating comprehensive test suites for TALLMs for deployment
as well methods for localizing failures to data characteristics
and components of the system and repairing them. Given the
powerful applications unlocked by TALLMs and the increas-
ing research in this space, such work around understanding
TALLM failures and developing testing and repair approaches
is critical for successful and safe deployment of TALLMs.

Our work demonstrates that even the state of the art
TALLMs, such as Gorilla, suffer from various failures and
hallucinations that need to be addressed to improve reliability
and robustness. Furthermore, the observed failures are often
in very similar ML domains, making it difficult to evaluate
whether a selected tool would actually produce a correct result
without execution.

Future work in this area could explore different methods
for test data generation and data sampling for retraining. The
combination of repeated testing and repair can help improve
both the performance of TALLMs and their robustness, in the
presence of distribution shifts.
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