
What Types of Automated Tests
do Developers Write?

Marko Ivanković∗§, Luka Rimanić†, Ivan Budiselić†, Goran Petrović†, Gordon Fraser∗, and René Just‡§
∗University of Passau, Passau, Germany

†Google Switzerland GmbH, Zurich, Switzerland
‡University of Washington, Seattle, WA, USA

§Work done at Google.
marko@ivankovic.me, {rimanic, ibudiselic, goranpetrovic}@google.com, gordon.fraser@uni-passau.de, rjust@cs.washington.edu

Abstract—Software testing is a widely adopted quality assur-
ance technique that assesses whether a software system meets
a given specification. The overall goal of software testing is to
develop effective tests that capture desired program behaviors
and reveal defects. Automated software testing is an essential part
of modern software development processes, in particular those
that focus on continuous integration and deployment. Existing
test classifications (e.g., unit vs. integration vs. system tests)
and testing best practices offer general conceptual frameworks,
but instantiating these conceptual models requires a definition
of what is considered a unit, or even a test. These conceptual
models are rarely explicated in the literature or documenta-
tion which makes interpretation and generalization of results
(e.g., comparisons between unit and integration testing efficacy)
difficult. Additionally, comparatively little is known about how
developers operationalize software testing in modern industrial
contexts, how they write and automate software tests, and how
well those tests fit into existing classifications. Since software
engineering processes have substantially evolved, it is time to
revisit and refine test classifications to support future research
on software testing efficacy and best practices. This is especially
important with the advent of AI-generated test code, where those
classifications may be used to automatically classify the types of
generated tests or to formulate the desired test output.

This paper presents a novel test classification framework, de-
veloped using insights and data on what types of tests developers
write in practice. The data was collected in an industrial setting
at Google and involves tens of thousands of developers and tens
of millions of tests. The developed classification framework is
precise enough that it can be encoded in an automated analysis.
We describe our proof-of-concept implementation and report on
the development approach and costs. We also report on the results
of applying the automated classification to all tests in Google’s
repository and on what types of automated tests developers write.

I. INTRODUCTION

Software testing is generally accepted as an important
quality assurance technique in software engineering, but it
remains more art than science [1]. While the general concepts
of software testing, including high-level distinctions such as
unit tests vs. integration tests vs. system tests appear rel-
atively straightforward, the exact details of how each term
is defined in practice varies from work to work and often
involves significant subjective human judgement. As a result,
scientific conclusions about the efficacy, value, and cost of
software testing are subject to a specific conceptual model

of what is considered a test, which is often not explicated.
Arguably, generalizations have become even more difficult as
software engineering processes have evolved. For example,
tests developed as part of a test-driven-development (TDD)
approach are different from those that are developed by test
engineers in a dedicated testing phase of a waterfall model or
tests developed to reproduce and debug a reported defect.

Perhaps the most common ambiguity is what the definition
of a unit test is. While existing textbook definitions make sense
at a high level, they are not comprehensive or precise enough
to be directly instantiated and used in a given industrial or open
source contexts. Notably, what exactly constitutes a “unit”
is often under-specified. For example, in an object oriented
system, is a unit a method, a class, a package (i.e., a collection
of related classes), or something else? Similarly, is a test that
executes more than one unit an integration test, even if one of
the units is part of the language’s standard library?

Many test-execution frameworks are termed “unit-testing
frameworks”, such as JUnit (and others in the xUnit family),
Jasmine, or Go’s framework around the “go test” command.
While it seems plausible that the developers of unit-testing
frameworks had a particular notion of unit testing in mind
when designing and developing them, the tests that framework
users write and execute vary widely in complexity and what
properties and behaviors they are testing. For example, in
the context of Java, software libraries such as the Apache
Commons [2] libraries commonly use the JUnit framework to
test individual methods with input-output pairs. In contrast,
software systems such as Closure Compiler [3] rely on the
JUnit framework for automation and integration into build
systems. Many of the JUnit tests in Closure Compiler are
arguably neither unit nor integration tests because they run
the entire compiler end-to-end, asserting on the compiler’s
behavior (e.g., error reporting vs. success) as opposed to the
correctness of the compiled output or intermediate results.

This ambiguity is further amplified in day-to-day devel-
opment where the terms testing and unit testing are used
somewhat interchangeably, resulting in confusing terminol-
ogy and a lack of understanding of what software testing
entails. Recently, such ambiguity has lead to an entire new
set of problems: creating training and evaluation datasets for



Build system System Under Test

Test target

Build rule (λ)

Test case

Test file

Test
function (λ)

Test case

Test target invocations

Manual target
invocation

CI target
invocation

CI config

Test results

Fig. 1. Individual test cases, either defined in a build-system rule or in a test function. The λ indicates parametrization.

learning-based artificial intelligence (AI) systems. As AI is
increasingly used to generate code, including tests, precise
classification rules that can be automated to classify those tests
are more important than ever. Our work is motivated by this
use case and the ambiguity of existing classifications. In this
paper, we propose a new classification that is precise enough
to be implemented as an automated analysis. Our proof-of-
concept implementation is rule-based and efficient enough
that it can analyze tests in real time (e.g., in developers’
IDEs). The classification can also be used for other purposes,
for example to improve generalizability and comparability of
research results or to streamline software testing efforts.

A. Contributions

This paper explores the following research questions:
RQ1: What types of automated tests do developers write?
RQ2: Are test types amenable to automated classification?
RQ3: How common are different test types in practice?

Its main results are as follows:
RA1: Developers encode a wide range of dynamic and

static analyses on top of common test automation frame-
works (e.g., the xUnit family), implying a broad definition
of what constitues a test. These automated tests cover
artifacts such as configuration, data, and documentation,
going well beyond source-code tests. Based on these
observations, we developed a test type classification that
covers eight categories of test characteristics.

RA2: It is possible to encode our test type classification
in an efficient automated analysis. Reaching a 50% or
higher classification rate for each test type category
across the entire repository required 15k lines of Go
code and approximately 9 engineer-months of effort. The
classification pipeline processes millions of tests in about
1 hour of real time on consumer-grade hardware.

RA3: Tests with unorthodox properties, counter to what
is commonly described in the software testing literature,
are very common in practice. For example, we observed
many tests that cover configuration, do not execute the
AUT, and favor real dependencies over mocks.

II. RESEARCH SETTING

Our research was done in an industrial setting at Google,
which uses software development and testing practices that
are well established and similar to those of other companies
of similar size [4], [5], [6], [7], [8], [9].

Google’s development environment is based on a monorepo
of more than one billion lines of code. It operates a distributed
build and test system that is based on an internal, modified
version of the Bazel [10] build system.

A. Tests in Bazel
Figure 1 shows a conceptual model of how testing is

supported by the Bazel build system. There are two types of
test cases: (1) test cases implemented as build rules using the
Bazel’s Starlark language and (2) test cases implemented in
test files as part of the system under test (SUT), usually written
in the SUT’s programming languages.

Test cases implemented in the build system map to a single
build rule but parametrization allows for different instantia-
tions of the same build rule. Instantiating a build rule involves
the following steps:

• Test target: A Bazel target, defined in a BUILD file.
• Build rule: Typically one of the common Bazel *_test

rules. However, users are not limited to the common rules
and they can and implement custom rules and macros.
One notable property is that a single rule or macro can
itself expand into multiple rules. In the context of testing,
this allows for easy creation of testing frameworks in the
build system itself, where the developer explicitly listing
a single rule can result in multiple final test rules being
produced. Common examples include testing of multiple
web browsers or testing on multiple architectures.

• Test case: A set of steps and assertions defined in a
build rule. It is possible to write complete tests in Bazel’s
domain specific language Starlark (a Python dialect). An
example of this is a test that simply checks that an artifact
under test successfully builds.

Test cases implemented in test files as part of the SUT tend
to be hierarchical (and are instantiated after the build rule):



• Test file: A single file checked into the repository, typi-
cally named <name>_test.*.

• Test function: A function in a test file that is executed
by a testing framework. In gUnit in C++ this would be a
function defined using the TEST macro, in JUnit in Java
it would be a method annotated with @Test, etc.

• Test case: A single executable test function after pa-
rameter expansion, e.g,. parameterized unit tests in Java
or table-based tests in Go expand into n individual test
cases, where n is the number of test data or table entries.

B. Test results

By default, all tests executed at Google store detailed build
and execution logs in a central test result storage system.
While it is theoretically possible for a developer to specifically
modify multiple parts of their development environment to
prevent this, it is exceptionally rarely done. It is safe to assume
that more than 99.9% of test executions are available in the
central storage system. This includes, but is not limited to,
tests executed locally during development, tests executed by
the review system during code review, tests executed by con-
tinuous integration, tests executed during release verification
and tests executed in production (typically against a canary
instance during a gradual roll-out process).

C. Scale

At Google, the repository contains millions of test targets
and test files. Some test files are re-used across multiple test
targets, for example the same test being reused across several
Web browsers. Billions of test executions are recorded per
day. Any classification that requires a human in the loop for
such a large number of tests would be impractical. The change
rate of tests would exceed any reasonable efforts, so even if
the existing tests could be manually classified, by the time
the classification finished the results would be obsolete. This
motivates our research into the characteristics of the existing
tests and whether it is possible to develop an automated
classification for them.

III. TEST TYPE CLASSIFICATION

RQ1: What types of automated tests do developers write?

A. Existing classification frameworks are inadequate

Our ultimate goal is to develop an automated classification
system for test types based on a test’s implementation and
characteristics. This required us to define distinct types of tests
and associated rules for classification.

Our initial methodology attempted to reuse existing classi-
fications and labels, and consisted of three high-level steps:

1) Stratification: Bucket all test targets based on metadata
(developer chosen name and tag, and Bazel rule type).

2) Sampling: Sample 10 test targets from each labeled
bucket and 30 test targets from the bucket of unlabeled
test targets. The samples were combined and randomly
shuffled at the end of the sampling process.

3) Classification: Three developers, each with more than
a decade of experience, attempted to independently

classify the sampled test targets, without access to the
labels of the stratification buckets to avoid bias.

1) Stratification: From the test results storage, we selected
all test targets with at least one execution in the month of
October 2023 to ensure that the tests we were examining are
actually used, and not just dead code in the repository. This
resulted in millions of unique test targets. Given the set of all
test targets, each with a name and a set of tags, we iteratively
defined classification rules that capture large fractions of test
targets. We independently classified test targets based on their
name, rule type and tags. We based this on the intuition that
a developer may indicate the type of the test, e.g., integration
test, by using the words “integration test” in the target name;
likewise a test rule might indicate it is used to define web tests
by adding a “web test” tag. Each metadata type was used to
classify targets on its own. This allowed us to cross-check the
classification rules and detect errors easily, by making sure
that the classifications based on different metadata match.

This iterative process yielded the following seven major
categories: (1) Unit test, (2) Integration Test, (3) UI Test, (4)
Conformance Test, (5) Config Test, (6) Data Test, and (7)
Build Test. We assigned a default category (“Not classified”)
to all test targets that did not match any of the seven categories.

2) Sampling: In total we sampled 100 targets. From each
of the seven categories, we randomly selected 10 targets. From
the not-classified category, we randomly sampled 30 targets.

3) Classification: Three developers began to independently
classify the sampled targets—following the same order of
randomly shuffled targets. The developers had full access to
the entire development environment, including the source code
of both product and tests, documentation, and other artifacts.

During a first discussion of a little under 25% of all targets,
however, it became clear that the categories typically used in
the literature, and also captured by test names and tags, are
subjective and insufficient. We made two specific observations.

First, there is little to no agreement across the three indepen-
dent classifications and between those and the bucket labels.
For example, one developer considered integration tests to as-
sert on the protocol between units, whereas another developer
considered integration tests to simply execute multiple units
in the same test. An unresolved question asked whether a unit
or integration test has to be a dynamic analysis. Yet another
question revolved around UI tests—whether these correspond
to using the UI as a test driver vs. testing the UI itself.

Second, the lack of agreement and precise definitions of the
classification categories meant that the classification was far
too subjective to ever be encoded efficiently and precisely.

Given our observations, we concluded that classifying all
100 targets would not be a useful exercise. Instead, we used
these observations and sampled targets to iteratively develop
a novel classification framework based on test characteristics.

B. Methodology

Our methodology was informed by our first (failed) attempt:
Existing test classifications are ambiguous and subjective.
While they capture properties of the tested system and the



used testing frameworks, they capture very little of the test
case implementations and characteristics.

1) We decided not to use any existing classification labels.
2) We randomly selected a much larger, 1000 target,

sample—to iteratively develop our new classification.
3) We iteratively implemented automated classification

rules and refined the classification framework. The auto-
mated classification was implemented in the monorepo
itself and followed strict production code guidelines that
are in place at Google.

The 1000 test targets were sampled uniformly at random
from the test result repository, independently of any test target
data or metadata. No targets were excluded. Even test targets
that are technically outside of the monorepo were included,
such as test targets for Google’s open source projects.

C. Classification
Our classification is guided by the following 8 questions:

(1) What Artifact Under Test (AUT) is being tested?
• Code: Test analyzes an AUT and asserts on functional

or non-functional properties. Example: Testing a function
with input-output pairs, testing for robustness, verifying
the absence of vulnerable dependencies, etc.

• Config: Test analyzes configuration external to an AUT
and asserts on properties of the configuration itself. Ex-
ample: Testing that all deployment configurations specify
datacenters that actually exist.

• Data: Test analyzes data external to an AUT and asserts
on properties of the data. Example: Testing that the
timezone database shipped with the application does not
contain timezones with physically impossible offsets.

• Documentation: Test analyzes developer or end-user doc-
umentation of an AUT and asserts on properties of the
documentation. Example: Testing whether documentation
exists and/or parses.

• Hardware: Test analyzes physical hardware devices or
description of hardware in a hardware description lan-
guage (e.g., VHDL). Note that only tests whose failure
can result in an actual physical device being changed
are considered to be testing hardware. Tests for firmware
would be considered to be testing code instead, unless
the firmware test failing could lead to, e.g., a prototype
device being sent back for re-soldering. Example: Test
that asserts on the voltages of the ports of a VHDL
architecture.

(2) Is the test executing the AUT?
• Dynamic: Test analyzes an AUT by executing it.
• Static: Test analyzes an AUT without executing it.

(3) How does the test interact with the AUT?
• API: Test controls an AUT’s state through API calls.

Example: Calling a function directly from the test code
or calling an RPC endpoint.

• GUI: Test controls an AUT’s state through GUI interac-
tions. Example: WebDriver tests simulating clicks on a
webpage in a real web browser.

(4) Is the test performing a numerical measurement?
• At build-time: Test measures some property of the AUT

that does not require the AUT to be executed. Example:
Measuring the size of the compiled binary.

• At run-time: Test measures some property of the AUT
that requires execution. Example: Measuring memory or
CPU usage.

(5) How are outputs analyzed?
• As-is: Test analyzes an AUT’s output as-is. Example:

Directly asserting on the output of a function under test.
• Post-processed: Test analyzes an AUT’s output after post-

processing. Example: A screenshot test partially masking
the screenshot before comparing it to an expected image.

(6) What type of assertions are done on the output of the
AUT?

• Existence: Test asserts on the existence of an artifact or
an output. Example: Asserting that the output value of a
single function call is not null.

• Constrained: Test asserts on necessary correctness condi-
tions. Example: Asserting that the output value of a single
function call is a positive number.

• Exact: Test asserts on sufficient correctness conditions.
Example: Asserting that the output value of a single
function call is exactly the number 16112013.

(7) What type of assertions are done on the implementation
or the protocol of the AUT?

• Existence: Test asserts that a protocol interaction occurs
or that a structural pattern exists. Example: Asserting that
the binary does not use a specific dependency. Asserting
that calling a chain of methods does not throw an error.

• Constrained: Test asserts on necessary correctness con-
ditions. Example: Asserting that a mocked method was
called three or more times.

• Exact: Test asserts on sufficient correctness conditions.
Example: Asserting that a mock was called exactly n
times with arguments that exactly match expectations.

(8) How does the test handle dependencies?
• Mocked dependency: Test uses mocks. It explicitly scripts

the interaction with a dependency.
• Fake/Test dependency: Test uses fake implementations.

Example: A fake in-memory implementation of a
database that offers the same API as the real dependency,
but offers no consistency and reliability guarantees.

Almost all combinations of question responses are possible,
although some are far more likely than others. For example,
while it is theoretically possible to construct a test that asserts
on outputs without executing the AUT, it would be quite
unusual. Instead, one would expect that execution would
always be positive if any assertion is positive. Similarly, some
attributes are likely to be exclusive, e.g., documentation tests
are extremely unlikely to perform run-time measurements. But
we do not a priori exclude any combination.



D. Data coding and aggregation

For each question, each option can be answered as:
• Yes: We have conclusive positive evidence that the test

has a property.
• No: We have conclusive negative evidence that the test

does not have a property.
• Inconclusive: We do not have conclusive positive or

negative evidence.
Note that for each question, each option is evaluated inde-

pendently of other options. This means that it is possible for a
question to have more than one answer. For example, “What
AUT is being tested?” could be “Code” and “Data” for the
same test. Similarly, it is possible for a single test to use both
the API and the GUI to test both code and configuration. It is
also possible for a test to not use any options in a question.
For example, a test that does not perform any measurement
would simply have both measurement options set to “No”.

We summarize the options for each question as follows:
• If any of the options in the question cannot be conclu-

sively determined, then we summarize the entire question
as either “Inconclusive” or “Not classified”.

• If all options are conclusively negative, then we summa-
rize the entire question with a grammatically appropriate
version of the term “None”. For example, if a test
is not performing any measurements (neither built-time
nor run-time measurement), then question (4) would be
summarized as “None”.

• If only one option is conclusively positive and all other
options are conclusively negative, we summarize the
entire question with a grammatically appropriate version
of the option. For example, if a test is only testing code,
then question (1) would be summarized as “Code”.

• If multiple options are conclusively positive, we summa-
rize the entire question as “Mixed”, “Multiple”, “Both”
or similar grammatically appropriate name.

RA1: Developers encode a wide range of dynamic and
static analyses on top of common test automation frame-
works (e.g., the xUnit family), implying a broad definition
of what constitues a test. These automated tests cover
artifacts such as configuration, data, and documentation,
going well beyond source-code tests.

IV. AUTOMATED CLASSIFICATION OF TEST TYPES

RQ2: Are test types amenable to automated classification?

Using the sample of 1000 test targets as a reference, we
designed and implemented an automated classification pipeline
that processes all test targets in the repository.

A. Operationalization of test type classification

Each test target is classified at two levels: the target level
itself and optionally the file level, for targets with source test
files that are accessible to the pipeline. Many targets do not

TABLE I
CLASSIFICATION MERGE OPERATION

File File or Target File + File File + Target

Inconclusive Inconclusive Inconclusive Inconclusive
Positive Positive Positive Positive
Negative Negative Negative Negative
Inconclusive Positive Positive Positive

Inconclusive Negative Inconclusive Negative

Positive Negative Positive Error
Negative Positive Positive Error

have any source test files, and very few have source test files
in siloed code. The file level classifications are first merged
into a unified file-level classification, which is then merged
with the target-level classification into a final classification.
When merging classifications, there are two types of merge
operations: merging two file-level classifications and merging
file- and target-level classifications. Because of the hierarchical
nature of files and targets, there are subtle differences in how
these operations are performed.

Table I shows the function for the merge operations. When
two files are merged and one of them is inconclusive and
the other is negative, we cannot determine the merged value.
If future analysis would conclude that the missing value is
positive, the merged value would be positive, but if it was
negative it would be negative. In contrast, if an inconclusive
file is merged with a conclusively negative target, the merged
classification must be negative.

If two file classifications are merged, and one is conclusively
positive and the other negative, the merged classification is
positive. An example that helps demonstrate this is a target
that has two files, one for code and one for configuration. The
file level classifications will set code and classification to true
and false as applicable, but the merged classification should
set both to true.

If the unified file classification is being merged with the
target, then the conclusively set values must match. For exam-
ple, if the test files are asserting on the output, the target must
transitively also be asserting on the output since it consists
of the files. If the classification derived from the target and
the merged classification derived from the files conflict, this
is an error in the analysis pipeline code and must be fixed.
We used this property extensively during development, with
continuous tests detecting any such conflicts at code review
time and flagging it immediately.

1) Target-level Classifications: Each target has metadata
that can be used for classification. In principle, any data
that can be obtained through the Bazel Query Language was
available to the classification pipeline. In practice, the data
we found most useful was the Bazel rule class, list of source
files, name of the test target, the test binary or in Java the test
class and the “instantiation stack” (i.e., for rules implemented
in Skylark, the call stack of Bazel functions that the target
implementation makes).



TABLE II
CONCLUSIVE CLASSIFICATIONS

Category Repository Sample

What is being tested 78.4 % 95.1 %
Is the test executing the AUT 76.0 % 93.7 %
Interaction with the AUT 67.3 % 90.3 %
Is the test performing a measurement 66.2 % 89.7 %
How are outputs analyzed 64.5 % 87.1 %
Assertions on the output 61.1 % 87.1 %
Assertions on the implementation 57.3 % 86.5 %
How are dependencies handled 53.3 % 88.8 %

All categories simultaneously 38.4 % 85.0 %

2) Test-file Classifications: In the sample of 1000 targets
we managed to extract and access a total of 126 test files
that spanned 288 test targets. Note that a single test file
can be shared across many different targets (e.g., a web test
that is tested across various browsers, or a shell script that
tests whether a project builds). These test files were used to
guide our development of Abstract Syntax Tree (AST)-based
classifiers that automatically classify files.

B. Evaluation

We did not attempt to reach 100% classification in all cate-
gories on our sample for two reasons. First, while test results
are available, we are unable to access siloed code for a handful
of test targets. Second, we expect a certain percentage of tests
to be simply too complex to classify in a reasonable amount of
time, for developers unfamiliar with the corresponding project.
While we did encounter some such tests, where multiple hours
of code reading was required to classify them, the overall
number was surprisingly small (about 5%). Also note that
some categories are harder to classify than others—artifact
under test was the easiest, whereas type of assertions on the
implementation or the protocol was the hardest.

With these limitations in mind, we chose 85% as our
goal for full conclusive classification of test targets in our
sample, across all eight categories. While this did leave 150
targets with partially incomplete classifications, we found that
it provided us with a sufficient sample that can be effectively
used to develop automated classification rules. This dataset
is also used to continuously test the automated pipeline. In
the future, will both improve the classification and expand the
dataset as needed to keep the test coverage at appropriately
high levels. After reaching the goal of 85%, we ran the
classification pipeline on all test targets in the repository.

Table II shows the percentage of test targets our classifica-
tion pipeline conclusively classified for each category, as of
time of writing. Repository corresponds to all test targets in
the repository; Sample corresponds to the 1000 test targets in
our random sample.

Considering all targets in the repository, the pipeline auto-
matically classifies more than 53% of them for each individual
question and more than 38% of them for all questions.

For about 20% of all targets in the repository, the classifi-
cation pipeline identified them as a test target but was unable

to extract any information for classification. Given that the
sample we used to develop our classification represents much
less than 1% of all targets, this is an expected result.

Based on these results, we conclude that it is possible
to specify a test classification that is precise enough to be
encoded in an automated analysis. While a 53% classification
rate is already useful for our use cases (e.g., real-time analysis
of tests generated by large language models), we are contin-
uously improving our classification pipeline. An automated
classification of 100% of all tests, however, seems unrealistic.

C. Development cost and complexity

We developed the analysis pipeline over a period of 6
months. At any given point, between 1 and 3 developers were
actively working on the pipeline code. The total development
cost of the pipeline is roughly 9 engineer-months.

The pipeline consists of roughly 15k lines of Go code across
about 100 files. This includes tests for the pipeline itself, but
excludes test data. The pipeline was developed over a series
of about 500 reviewed merge requests.

The quality of this automated pipeline meets deployment
and production standards. All merge requests were reviewed
by at least one, but usually two, other developers, to ensure
that there is agreement on the classification. The code review
process requires unanimous agreement of all reviewers and
the code author. In case of disagreement, we refined the
classification framework and rules, and added corresponding
tests, until unanimous consensus was reached.

Additionally, we used strict testing standards, with the
classification code being continuously tested during all stages
of the development process. The line-based test coverage of
the classification code was always kept at or above 90%.

RA2: It is possible to encode our test type classification
in an efficient automated analysis. Reaching a 50% or
higher classification rate for each test type category across
the entire repository required 15k lines of Go code and
approximately 9 engineer-months of effort. The pipeline
is efficient: it processes millions of tests in about 1 hour
of real time on consumer-grade hardware.

V. DISTRIBUTIONS OF TEST TYPES

RQ3: How common are different test types in practice?

The sample analysis and the automated classification of all
tests in the repository allow us to investigate how common
different test types are in practice. (Section VI speaks to the
generalization to open source projects.)
(1) What Artifact Under Test (AUT) is being tested?
Table III shows the distribution of the artifacts under test. The
first surprising result is the percentage of configuration tests.
To the best of our knowledge, nobody has previously reported
such results and the literature commonly equates software
testing with testing code. That configuration tests outnumber
code tests is a finding that encourages further research.



Note that the “hardware” category is missing from the
table. This is due to the fact that all hardware test that the
pipeline classified were also testing at least some code at the
same time—hence, all hardware tests are counted under the
“Multiple AUT types” category.

It is also interesting to note that some tests do not test
anything (the “Nothing” category). An example of a such a
test is a test file specifically created so that it always passes
and in effect skips a test if the test execution was requested
for unsupported hardware.
(2) Is the test executing the AUT? Table IV shows the
percentage of tests that execute the AUT. We found the fact
that at least 56% of tests do not execute the AUT to be quite
surprising and at odds with the common definition of a test.

Table V shows the percentage of tests that execute the AUT,
limiting only to tests that test configuration or code. Unsur-
prisingly, most tests that test configuration do not execute it.
Partially, this can be because some configuration languages are
not even strictly speaking executable, however even tests for
configuration written in Turing complete languages seem not
to need execution in order to assert on configuration properties.

Somewhat more surprisingly, only a little over half of all
code tests need to execute the code under test. Since we used
the sampled targets to develop the classification directly, we
can report the types of tests we directly observed that do not
execute the AUT. The majority of such tests come in the form
of static analysis that is using the testing infrastructure for the
benefits of integration with the developer workflow and ease
of use. The canonical example would be a linter that reads the
source code under test and reports a passing test if the code
does not have any reported errors, and a failing test otherwise.
Most textbook definitions of testing would exclude such anal-
ysis, however we have found in our analysis that developers
in practice do refer to such analyses as tests. We found
this an important distinction between theory and practice.
(3) How does the test interact with the AUT? Table VI
shows how tests interact with the AUT. Taking into account the
observations around what AUTs are being tested and whether
the AUTs are executed, it is not surprising that most tests do
not interact with the AUT at all. Even if only code tests are
observed, tests that do not interact with the AUT are still the
most numerous. We can also see that about 3 to 4 times as
many tests written by developers use the API compared to the
GUI, and a small number of tests use both.
(4) Is the test performing a numerical measurement?
Table VII shows the percentage of tests that perform a
measurement. Most tests do not perform a measurement; only
about 2% of all tests do. About 1% of tests measure a build-
time property and about 1% measure a run-time property; only
0.3% measure both types properties.
(5) How are outputs analyzed? Table VIII shows how
the outputs of the AUT are analyzed. As expected, given the
findings about other categories such as AUT execution, most
tests do not analyze the output of the AUT. Note that many
of these tests do assert on the implementation or the protocol.

TABLE III
WHAT IS BEING TESTED?

Tested Repository Sample

Configuration 42.5 % 45.2 %
Code 29.5 % 39.9 %
Multiple AUT types 4.0 % 5.2 %
Data 0.7 % 1.2 %
Documentation 0.2 % 0.2 %

Nothing 1.4 % 1.9 %

Not classified 21.6 % 4.7 %

TABLE IV
IS THE TEST EXECUTING THE AUT?

Execution Repository Sample

No 56.1 % 66.1 %
Yes 19.6 % 26.4 %

Not applicable 0.2 % 1.2 %

Not classified 24.1 % 6.3 %

TABLE V
IS THE TEST EXECUTING THE AUT (CONFIGURATION OR CODE)?

Execution Repository Sample

What is being tested: Configuration
No 79.4 % 88.7 %
Yes 8.2 % 6.9 %

What is being tested: Code
No 40.0 % 41.6 %
Yes 52.5 % 57.1 %

TABLE VI
HOW DOES THE TEST INTERACT WITH THE AUT?

Interaction Repository Sample

No interaction 60.4 % 70.2 %
API 3.7 % 14.4 %
GUI 2.9 % 4.1 %
Both API and GUI 0.0 % 0.4 %

Not applicable 0.2 % 1.2 %

Not classified 32.8 % 9.7 %

TABLE VII
IS THE TEST PERFORMING A NUMERICAL MEASUREMENT?

Measurement Repository Sample

No measurement 64.8 % 86.0 %
Build-Time 0.6 % 1.2 %
Run-Time 0.2 % 1.0 %
Both Build-Time and Run-Time 0.3 % 0.3 %

Not applicable 0.2 % 1.2 %

Not classified 33.9 % 10.3 %



TABLE VIII
HOW ARE OUTPUTS ANALYZED?

Outputs Repository Sample

Not analyzed 62.5 % 75.2 %
As is 1.8 % 11.1 %
Post-processed 0.0 % 0.1 %
Both 0.0 % 0.1 %

Not applicable 0.2 % 1.4 %

Not classified 35.5 % 12.1 %

TABLE IX
WHAT ASSERTIONS ARE DONE ON THE OUTPUT OF THE AUT?

Assertions Repository Sample

No assertions 60.5 % 74.1 %
Exact match 0.3 % 7.8 %
Mixed 0.0 % 2.4 %
Constrained 0.0 % 1.2 %
Existence 0.0 % 0.2 %

Not applicable 0.2 % 1.4 %

Not classified 39.0 % 12.9 %

Of the tests that do analyze the output, almost all assert
on the output directly, without manipulating it in any way.
Only a tiny fraction (0.1%) of all test, post-processes the
output. In our sample, all tests that post-process the output
were using screenshots to verify visual outputs and all of them
used masking to modify the screenshots.

(6) What type of assertions are done on the output of
the AUT? Table IX shows what assertions are done on
the output. Notably, there is a clear preference towards exact-
match assertions.

(7) What type of assertions are done on the implementation
or the protocol of the AUT? Table X shows what assertions
are done on the protocol or the implementation. In comparison
to assertions on output, there is a clear preference for existence
and constraint assertions.

(8) How does the test handle dependencies? Table XI
shows how tests handle dependencies, indicating that the use
of real dependencies is by far most common. Note that at
Google avoiding the use of fakes and mocks in favor of more
realistic and effective tests is common [4].

RA3: Tests with unorthodox properties, counter to what
is commonly described in the software testing literature,
are very common in practice. For example, we observed
many tests that cover configuration, do not execute the
AUT, and favor real dependencies over mocks.

VI. GENERALIZATION TO OPEN SOURCE PROJECTS

Given that we developed heuristics for automated clas-
sification based on the 1000 target sample which consists

TABLE X
WHAT ASSERTIONS ARE DONE ON THE PROTOCOL OR IMPLEMENTATION

OF THE AUT?

Assertions Repository Sample

Existence 37.4 % 42.8 %
Mixed 8.5 % 13.5 %
No assertions 2.4 % 13.3 %
Constrained 7.1 % 11.2 %
Exact match 1.6 % 4.5 %

Not applicable 0.2 % 1.2 %

Not classified 42.8 % 13.5 %

TABLE XI
HOW DOES THE TEST HANDLE DEPENDENCIES?

Dependencies Repository Sample

Real dependencies 48.3 % 79.9 %
Fakes 2.0 % 3.6 %
Mocks 2.3 % 3.3 %
Both fakes and mocks 0.5 % 0.8 %

Not applicable 0.2 % 1.2 %

Not classified 46.7 % 11.2 %

almost entirely of proprietary Google code, we expect that
generalizing the automation to open source projects requires
additional effort, which we leave for future work.

However, Google’s code repository does contain a large
number of so-called “third-party packages” which are either
imported from open source, exported to open source, or some
combination of the two. Development on these packages
happens either externally or internally, with various levels
of involvement from Google’s developers. Testing in these
packages depends significantly on the package’s development
model. When the package is primarily developed in open
source and uses a build system incompatible with Google’s
internal build system, test targets must be explicitly defined
when the package is imported, which is often done using
a language-specific build rule that simply globs all of the
package’s test files, but this is inherently limited to simpler
tests. Conversely, when the package is primarily developed
internally in Google’s repository and exported to open source,
tests can utilize more of the facilities of Google’s build system,
and look more similar to what is found in the proprietary part
of the repository.

While these third-party packages are not a representative
sample of open source projects, they still make up a large
repository of open source code that our pipeline is already
able to analyze. While the test targets in these third-party
packages make up only a small fraction of all test targets in
the repository, this is still hundreds of thousands of targets,
and analyzing classification results provides useful directions
for future generalization.

When classifying what is being tested on the test targets
in the third-party package, we see two significant differences
compared to the full repository. First, our automation is unable



to classify 48.1% of third-party test targets, while on the
full repository, only 12.6% of targets remain unclassified.
Second, the automation classifies only 1.3% third-party tests as
configuration tests, while 42.5% of tests in the full repository
are configuration tests. Instead, third-party tests are dominated
by 45.6% code tests, whereas the full repository only has
29.5% code tests.

We conjecture that these findings are a result of a combi-
nation of effects, which is supported by manual inspection of
a few dozen third-party packages:

• Our pipeline’s ability to classify tests currently relies
on target-level properties to a large degree. On the full
repository, our automation is only able to extract at least
one test source file for 23% of targets, meaning that
all the classification signal on the remaining 77% of
targets comes from target-level properties. Even for the
targets that do have extracted source files, 84% of code
or configuration classification is influenced by target-
level properties. Conversely, for third-party test targets,
30% have extracted source files, and even there, 52%
of code or configuration classification is influenced by
target-level properties. The fact that third-party packages
predominantly use simpler build rules that do not carry
sufficient signal for conclusive classification contributes
significantly to a much larger fraction of unclassified
targets.

• Third-party packages tend to contain more libraries,
and production projects are much less common than in
Google’s full repository. As such, configuration tests are
expected to be less common, and even when they exist,
our automation is much less likely to be able to classify
them if they do not use standard frameworks and build
rules that dominate internal configuration testing.

Further improving automated classification on open source
projects requires dedicated effort on supporting different build
systems and more complete source code analysis. We leave a
deeper investigation for future work.

VII. DISCUSSION

A. Implications
Our analyses and findings have two major implications.
First, a large number of tests the developers actually write

are using test-automation frameworks and infrastructure in
ways the framework authors may not have intended. We
conjecture, based on our findings and experience, that this is
due to developers finding such frameworks and infrastructure
convenient and familiar. Given our findings, it seems worth-
while for framework authors to keep a broad notion of software
testing in mind when developing them.

Second, a large number of tests are outside of the commonly
researched areas. As an example, while test adequacy tech-
niques such as code coverage [7] and mutation testing [11],
[12] are very well researched for code tests, they are almost
nonexistent for configuration tests, even though we have found
configuration tests to be predominant. Future research into
actual and desirable properties of such tests is needed.

B. Limitations

This qualitative research requires significant expertise across
multiple programming languages, software system domains,
test-automation frameworks, build systems, etc. Five out of
six authors have a decade or more experience in software
development, and four have a decade or more experience
specifically in software testing and analysis. While we do
acknowledge that nobody can be an expert in all of software
engineering, we believe that our research team represents a
diverse set of viewpoints and covers a wide range of software
engineering expertise.

This paper is limited to automated, repeatedly executed
tests. Manual testing, exploratory testing, user acceptance
testing and other non-automated or non-repeated tests may
not fit into the classification we propose, although some
generalization is possible.

The research presented in this paper was conducted in a
single industrial setting, at Google. While developers, pro-
gramming languages, and tools all form a large and diverse
sample, it may still be too company-specific. We encourage
other researchers and practitioners to replicate our study in
their context.

C. Future Work

Improving the classification rules to reach 90% precision
and recall on the full dataset with millions of test targets is
our next step. Once we reach that milestone, we will be able
to cross-reference the individual test runs stored in the test
result storage and explore material differences in execution
rates, pass rates, coverage, mutation testing score and other
test metrics using the classification presented in this paper to
refine the analysis.

VIII. RELATED WORK

The classical literature offers many categorizations related
to testing, although these typically focus on the process of how
the tests are derived rather than properties of the resulting
tests (e.g., white-box vs. black-box testing, verification vs.
validation). The most common classification of tests them-
selves is in terms of test levels, usually matching the different
levels of the classical V-model, with the lowest level defined
as unit or module tests. What exactly constitutes a unit,
however, is usually only fuzzily defined: Myers [1] defines a
unit test as targeting individual subprograms, subroutines, or
procedures, whereas integration tests result from integrating
multiple modules. Similarly, Beizer [13] loosely defines unit
tests as targeting the smallest testable piece of software that
can be controlled by a test driver, component tests as target-
ing integrated components, whereas integration tests consider
combinations of components. Pezze and Young [14] refer to
unit tests as targeting the “smallest possible work assignment”,
while Ammann and Offutt [15] interpret a unit as the one or
more contiguous program statements with a name that other
parts of the software use to call it. Along the same lines,
Tarlinder [16] attempts to extrapolate a definition of unit tests,
while still keeping the definition of a unit of work subjective



(“a method, class, or cluster of classes that implement a
single logical operation, which is accessible through a public
interface”). The definition itself refers to other properties such
as their automation, the fact that they do not just execute code
but also check some property of the execution, they are fast,
repeatable, and run in isolation. Besides these classifications
in the literature, researchers tend to also provide implicit
classifications in terms of the type of system targeted (e.g.,
web vs. desktop vs. mobile), or interface accessed by the tests
(e.g., API vs. GUI. vs. command line). However, to the best
of our knowledge there is no comprehensive classification of
tests and their attributes.

Since the classical distinction between unit and integration
tests has been an integral part of established IEEE [17] or
ISTQB [18] standards for decades, more recently researchers
have started questioning whether this classification is still
valid. A prerequisite for investigating the classification is a
means to label tests automatically, which is usually done using
basic heuristics; for example, Trautsch and Grabowski [19]
classify Python tests based on the number of module imports,
assuming that integration tests need to import multiple mod-
ules and unit tests only a single one. Trautsch et al. distinguish
between unit and integration tests based on whether a test
covers classes from one or more Java packages. Orellana et
al. [20] rely on the Maven build system in which unit tests
and integration tests are executed by different test plugins.
Kanstren et al. [21] calculate the number of methods that are
covered by a test, assuming that unit tests will cover fewer
methods than integration or system tests.

Given such a coarse classification, a large discrepancy
between what developers classify as unit tests and the
IEEE/ISTQB definitions of unit vs. integration tests has been
reported by Trautsch and Grabowski [19] on Python tests.
Trautsch et al. [22] also investigated whether unit tests and
integration tests based on the IEEE/ISTQB definitions differ
in terms of the faults they find on Java systems, measured
using mutation analysis. Interestingly, they found that they do
not, which counters the expectation that different types of tests
should capture different types of bugs. Consequently, there
is a mismatch between developer practice and the classical
definitions, which our extensive taxonomy confirms.

IX. CONCLUSION

Software testing is generally accepted as an important
quality assurance technique and is widely deployed across the
industry. However, precise definitions of what software testing
is and how different tests should be classified is lacking.

This paper proposes a novel classification framework for
automated tests. The framework was developed using a sample
of 1000 developer-written tests. The resulting classification
is precise enough that it can be encoded in an automated
analysis. This allows for automated, continuous classification
of entire repositories. To demonstrate this, we implemented a
proof of concept pipeline and ran it across all tests in Google’s
repository, fully classifying 38% of them.

This allowed us to make several novel observations on what
types of tests developers write:

• Production-grade projects in a continuous integration and
continuous deployment environment tend to have more
configuration tests than code tests.

• Many tests are the result of developers finding test-
execution frameworks and infrastructure convenient and
using them for analyses that would not typically be
considered “testing”, with more than half of all tests never
even executing the project under test.

These initial observations show a critical gap between the
areas of testing that is currently being researched and what
developers write in practice. Closing this gap and developing,
for example, test adequacy techniques, for previously less
researched tests would be a valuable direction to take.

REFERENCES

[1] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[2] The Apache Software Foundation, “Apache Commons Project,”
https://commons.apache.org/, Last accessed Feb. 2025.

[3] Google Open Source, “Closure Compiler,”
https://github.com/google/closure-compiler, Last accessed Feb. 2025.

[4] H. Wright, T. D. Winters, and T. Manshreck, Software Engineering at
Google. O’Reilly Media, 2020.

[5] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2013, pp. 712–721.

[6] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: a case study at google,” in International Confer-
ence on Software Engineering: Software Engineering in Practice (ICSE-
SEIP), 2018, pp. 181–190.

[7] M. Ivanković, G. Petrović, R. Just, and G. Fraser, “Code coverage at
google,” in Proceedings of the Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2019, pp. 955–963.

[8] G. Petrović, M. Ivanković, G. Fraser, and R. Just, “Practical mutation
testing at scale: A view from google,” IEEE Transactions on Software
Engineering (TSE), vol. 48, no. 10, pp. 3900–3912, 2021.

[9] M. Ivankovic, G. Petrovic, Y. Kulizhskaya, M. Lewko, L. Kalinovcic,
R. Just, and G. Fraser, “Productive coverage: Improving the actionability
of code coverage,” in International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), 2024, pp. 58–68.

[10] Google Open Source, “Bazel,” https://bazel.build/, Last accessed: Feb.
2025.

[11] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?”
in Proceedings of the Symposium on the Foundations of Software
Engineering (FSE), 2014, pp. 654–665.

[12] G. Petrović, M. Ivanković, G. Fraser, and R. Just, “Does mutation
testing improve testing practices?” in Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 910–921.

[13] B. Beizer, Software testing techniques. dreamtech Press, 2003.
[14] M. Pezzè and M. Young, Software testing and analysis: process,

principles, and techniques. John Wiley & Sons, 2008.
[15] P. Ammann and J. Offutt, Introduction to software testing. Cambridge

University Press, 2016.
[16] A. Tarlinder, Developer testing: Building quality into software.

Addison-Wesley Professional, 2016.
[17] I. ISO, “Ieee, systems and software engineering–vocabulary,” IEEE

computer society, Piscataway, NJ, vol. 8, no. 9, 2010.
[18] I. Glossary, “International software testing qualification board,” 2016.
[19] F. Trautsch and J. Grabowski, “Are there any unit tests? an empirical

study on unit testing in open source python projects,” in 2017 IEEE In-
ternational Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2017, pp. 207–218.



[20] G. Orellana, G. Laghari, A. Murgia, and S. Demeyer, “On the differences
between unit and integration testing in the travistorrent dataset,” in
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 451–454.

[21] T. Kanstrén, “Towards a deeper understanding of test coverage,” Journal
of Software Maintenance and Evolution: Research and Practice, vol. 20,

no. 1, pp. 59–76, 2008.
[22] F. Trautsch, S. Herbold, and J. Grabowski, “Are unit and integration test

definitions still valid for modern java projects? an empirical study on
open-source projects,” Journal of Systems and Software (JSS), vol. 159,
p. 110421, 2020.


