Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges

Sina Shamshiri*, René Just’, José Miguel Rojas*, Gordon Fraser”, Phil McMinn* and Andrea Arcuri*
*Department of Computer Science, University of Sheffield, UK
TDepartment of Computer Science & Engineering, University of Washington, Seattle, WA, USA
iScienta, Norway, and University of Luxembourg
*{sina.shamshiri, j.rojas, gordon.fraser, p.mcminn}@sheffield.ac.uk, Trjust@cs.washington.edu, faa@scienta.no

Abstract—Rather than tediously writing unit tests manually,
tools can be used to generate them automatically — sometimes
even resulting in higher code coverage than manual testing.
But how good are these tests at actually finding faults? To
answer this question, we applied three state-of-the-art unit test
generation tools for Java (Randoop, EvoSuite, and Agitar) to
the 357 real faults in the Defects4] dataset and investigated how
well the generated test suites perform at detecting these faults.
Although the automatically generated test suites detected 55.7%
of the faults overall, only 19.9% of all the individual test suites
detected a fault. By studying the effectiveness and problems of the
individual tools and the tests they generate, we derive insights
to support the development of automated unit test generators
that achieve a higher fault detection rate. These insights include
1) improving the obtained code coverage so that faulty statements
are executed in the first instance, 2) improving the propagation
of faulty program states to an observable output, coupled with
the generation of more sensitive assertions, and 3) improving the
simulation of the execution environment to detect faults that are
dependent on external factors such as date and time.

I. INTRODUCTION

Unit testing is a common practice in object oriented
programming, where each class is typically accompanied by
a set of small, quickly executable test cases. There are many
benefits to unit testing; unit tests serve as documentation and
specification, and they help in finding faults. However, writing
unit tests can also be tedious, and writing good unit tests can
sometimes be more of an art than a science.

To support developers in unit testing, researchers have
explored different approaches to automatically generate unit
tests, thus relieving the developers of part of their hard work.
These automated unit test generation tools have become very
effective — automatically generated unit tests may even cover
more code than those written by developers [14]. However,
a high degree of code coverage does not imply that a test is
actually effective at detecting faults.

Because code coverage cannot measure fault-finding effec-
tiveness, a standard method is to compare test suites in terms
of their mutation scores — that is, by measuring how many
seeded faults a test suite finds. Even though there is evidence
suggesting that test suites that are good at finding seeded faults
are also good at finding real faults [3], [26], the quantification
in terms of the mutation score can be misleading: Just because
a test suite finds a high number of seeded faults does not
necessarily mean that it will find the faults that matter — the
ones that developers actually make.

In this paper, we empirically evaluate automatic unit test
generation using the Defects4J dataset, which contains 357 real

faults from open source projects [25]. We applied three state-
of-the-art unit test generation tools for Java, RANDOOP [30],
EVOSUITE [13], and AGITARONE [1], on the Defects4] dataset,
and investigated whether the resulting test suites can find the
faults. Specifically, we aimed to answer the following research
question:

“How do automated unit test generators
perform at finding faults?”

Our experiments indicate that, while it is possible for automated
test generation tools to find more than half of the faults, running
any individual tool on a given software project is far from
providing any confidence about finding faults. In fact, only
19.9% of all the test suites generated as part of our experiments
find a fault. This raises a second research question:

“How do automated unit test generators
need to be improved to find more faults?”

Our experiments indicate that in many cases, code coverage
remains a major problem, preventing automatically generated
unit tests from detecting faults. More concretely, 16.2% of
all faults and 36.7% of the non-found faults were never even
executed by the generated tests in the first place. However,
code coverage is not the only problem: 63.3% of the non-
found faults were covered by automatically generated tests at
least once, but the tests did not manage to reveal them. This
calls for improved techniques to achieve fault propagation and
for improved generation of assertions to detect the propagated
faults. Unexpectedly, we also found that 15.2% of all tests were
flaky — that is, their passing/failing behavior was temporary
due to environmental and other dependencies, rendering them
useless and providing reinforcement for recent research on test
isolation [5].

The contributions of this paper are as follows:

1) A large-scale experiment, applying three state-of-the-art
automated unit test generators for Java to the 357 faults
in the Defects4] dataset.

2) A detailed analysis of how well the generated suites
performed at detecting the faults in the dataset.

3) The presentation of a series of insights gained from the
study as to how the test generators could be improved to
support better fault discovery in the future.

Section II describes the methodology behind our exper-
iments, including a discussion of the automatic unit test
generators studied, how we designed the experiments, and
threats to validity inherent in our study. Sections III and IV
detail our results and answer our research questions. Section V
discusses related work and Section VI concludes.

Agitarone = [wosee ozt = o X
Defects4J EVﬁSUite S II P Deteatsas | = v o X

randoop = [T =" — % |+ v/« X

Fig. 1: Overview of the experimental setup. For each fault, the
Defects4] dataset provides a buggy (i.e., faulty) and a fixed
version. Test suites are generated with all tools on the fixed
version, and executed on the buggy version.

II. METHODOLOGY

In order to answer our research questions, we designed an
experiment according to the high-level methodology shown in
Figure 1. We considered Defects4], a database of known, real
faults, where each fault is represented by a buggy and a fixed
program version. We applied three automated test generation
tools (AGITARONE, EVOSUITE, and RANDOOP) on the fixed
version, and executed each generated test suite on the buggy
version to determine whether it detects the fault — that is,
whether is fails on the buggy version. This means that we are
considering a regression testing scenario, where a developer
would apply test generation to guard against future faults. We
then analyzed in detail which faults were detected and how, and
which faults were not detected, and why. This section describes
the experimental setup in detail.

A. Subject Programs

The Defects4] [25] dataset consists of 357 real faults from
five open source projects: JFreeChart (26 faults), Google
Closure compiler (133 faults), Apache Commons Lang (65
faults), Apache Commons Math (106 faults), and Joda Time
(27 faults). Defects4] makes analyzing real faults easy: For
each fault, it provides 1) commands to access the buggy and
the fixed program version, which differ by a minimized change
that represents the isolated bug fix, 2) a developer-written test
suite containing at least one test case that can expose the fault,
and 3) a list of classes relevant to the fault — that is, all classes
modified by the bug fix. As per the regression testing scenario
(i.e., guarding against future faults in modified code), we used
this list of relevant classes for test generation.

B. Automated Unit Test Generation Tools
All software projects in Defects4] are written in Java,

therefore we also considered test generation tools for Java.

NightHawk [4], JCrasher [10], Carfast [31], T3 [33], and
RANDOOP [30] are instances of random unit test generation
tools. We chose RANDOOP as it is the most stable and popular
representative of these random testing tools.

TestFul [6], eToc [40], and EVOSUITE [13] are instances of
search-based unit test generation tools, which use meta-heuristic
search techniques to optimize test suites with respect to code
coverage criteria. We chose EVOSUITE as it subsumes the
other tools in terms of functionalities, and is the only actively
maintained tool out of the three.

Dynamic Symbolic Execution (DSE) testing tools for Java
such as DSC [22], Symbolic PathFinder [32], and jCute [36]
require test drivers, whereas our scenario of unit test generation
assumes that the tests generated include these test drivers — as

typical unit tests do (i.e., in terms of method call sequences).

While EVOSUITE has an experimental DSE extension [17], it
is not yet enabled by default, and therefore was not used in
our experiments. Note that for C#, tools such as Seeker [38]
or Symstra [45] can generate method call sequences, but the
only publicly available tool — Pex [39] — has only a limited

ability to do so. However, our experimental setup based on
Defects4] requires tools that apply to Java.

Finally, there are commercial unit test generation tools for
Java, of which naturally less is known about implementation
details. We tried Analytix CodePro [9], Parasoft JTest [24],
and AGITARONE [1]. CodePro achieved low coverage and
is no longer officially supported. Although we were able to
generate test suites with JTest, we were unable to execute
the tests with our analysis framework (even with help from
Parasoft’s support team) because the tests depend on JTest’s
proprietary stub generation utility. As AGITARONE exhibited
fewer problems with test dependencies compared to JTest, we
chose AGITARONE for our experiments.

RANDOOP [30] implements feedback-directed random test
generation for object-oriented programs. This means that it
iteratively extends sequences of method calls with randomly
selected candidates until the generated sequence raises an
undeclared exception or violates a general code contract.
RANDOOP also executes its generated sequences and creates
assertions that capture the behavior of the class under test.
However, RANDOOP cannot target a specific class under test
since it uses a bottom-up approach that requires that all
dependencies of a method call (i.e., arguments) have been
instantiated in a prior iteration. RANDOOP therefore requires, as
input, a list of all classes it should explore during test generation.
For each class under test we provided a list containing the class
under test and all its dependencies as determined by Defects4]'.
We applied RANDOOP for three minutes on each run, using a
unique random seed since RANDOOP is deterministic by default
(i.e., the random seed is always 0). For all other settings, we
applied the defaults, with the exception of enabling null values
as method arguments with a probability of 0.1; this improves
RANDOOP’s effectiveness in our experience [26].

EVOSUITE [13] applies a genetic algorithm in order to
evolve a set of test cases that maximizes code coverage. It starts
with a population of test suites of random test cases, and then
iteratively applies search operators such as selection, mutation,
and crossover to evolve them. The evolution is guided by a
fitness function based on a coverage criterion, which is branch
coverage by default. Once the search ends, the test suite with
the highest code coverage is minimized with respect to the
coverage criterion and regression test assertions are added [16].
EVOSUITE then checks for each test whether it is syntactically
valid by compiling it, and executes it to check whether it is
stable (i.e., passing). Any failing assertions at this point are
commented out by EVOSUITE. Since EVOSUITE can target a
specific class under test, we generated, for each fault, a test
suite targeting only classes relevant to that fault, as reported
by Defects4]. We used EVOSUITE with its default options,
except for two settings: 1) We set the stopping criterion for
the search to three minutes per class and 2) we deactivated
the mutation-based filtering of assertions such that all possible
regression assertions are included, because the filtering can be
computationally costly and caused some timeouts.

AGITARONE [1] is a commercial test generation tool for
Java developed by Agitar Technologies, which is advertised
as being able to achieve 80% code coverage or better on any
class. The tool consists of a client and a server application.
According to AGITARONE’s support, the test generation is

Defects4] dynamically determines dependencies by monitoring the class
loader during the execution of the developer-written tests.

“fairly* deterministic, and a user should nof need to generate
multiple test suites for a given program version®. The client is
an Eclipse plugin that connects to the server’ to request the
generation of test cases, and the server takes a variable amount
of time to do so, depending on the class under test. As we
did not succeed in automating AGITARONE, we imported the
fixed project version of each Defects4] bug into Eclipse and
manually invoked AGITARONE’s Eclipse plugin to generate
test suites. AGITARONE can target a specific class under test,
and we therefore generated a test suite for each class relevant
to the fault. If AGITARONE failed to generate tests for a class,
we re-attempted the request five times. Nevertheless, the tool
was not able to generate a test suite for 34 (9.5%) faults
(RANDOOP and EVOSUITE were not able to generate any test
suites for 2 and 1 (<1%) faults). AGITARONE makes heavy use
of a proprietary mocking system that requires AGITARONE’s
own test runner. As we could not integrate this test runner
in Defects4]’s infrastructure, which uses Apache Ant’s JUnit
test runner, we collected the same experimental data as for the
other tools using AGITARONE’s dedicated test runner.

C. Experiment Procedure

We applied the following procedure.

1) Test Generation: RANDOOP and EVOSUITE are both
randomized tools, capable of producing different results on
each invocation. To account for this randomness, we generated
10 test suites for each tool and fault on the fixed version as
provided by Defects4J. As AGITARONE required manual effort
to generate and analyze a test suite (e.g., manually selecting
the classes under test and starting the tool in Eclipse), we only
generated 1 test suite for each fault with AGITARONE.

2) Flaky Tests: In order to determine whether a test detects
a fault, we require it to pass on the fixed version and fail on the
buggy version. However, tools may generate flaky (unstable)
tests, which may also fail on the fixed version. For example,
a test case that contains an assertion that refers to the system
time will only pass during generation, and will fail when re-
executed later. We applied the following automated process to
remove flaky tests: First, all non-compiling test classes were
removed. Then, each compilable test suite was executed on the
fixed version five times. If any of these executions revealed
flaky tests, then these tests were removed, and the test suite
re-compiled and re-executed. This process was repeated until
all remaining tests passed five times in a row.

Technically, a test may reveal its flakiness only at a later
stage (e.g., if a test depends on the current date, it might fail
only after the current day is over). By that time, the source
code of the class under test might have been changed, and one
would need to spend time to understand whether a failing test
has found a fault or it is just flaky. Although possible, we did
not encounter any such cases in our experiments.

3) False Positives: Even if a test is not flaky, it might
still fail on the buggy version for reasons that are unrelated
to the actual fault — that is, it is a false positive. Flaky
tests can technically also be false positives, but false positives
mainly happen when test generation tools break the object-
oriented principle of encapsulation, for example by calling
private methods directly through reflection, or by capturing
outdated behavior of dependency classes with mocks.

We identified false positives as follows: For each test that
failed on a buggy version, we compared the failure message and
stack trace produced by the failing tests of the developer-written
test suite included in Defects4J] with that of the generated test.
If a test failed with the same exception or a similar assertion,
we considered it a true positive. If the exception or assertion
differed, we manually validated whether the failure was caused
by the fault or whether it is a false positive.

We found false positives for RANDOOP and AGITARONE
but not for EVOSUITE. Note that RANDOOP suffered false
positives only for Closure, and only with tests that executed a
dependency class rather than any of the relevant classes. For
AGITARONE we identified two common types of false positives:
test failures due to mocking and accessing (missing) private
class members. Consequently, we automatically classified an
AGITARONE test as false positive if it only failed because of
mocking or missing private class members (see Section IV-D).
While we could have prevented this problem to a certain extent
by changing the faults provided by Defects4]J (i.e., inlining all
changes or maintaining unused code), we argue that this would
not reflect common practice.

4) Fault Detection: To determine fault detection we exe-
cuted the test suites against the buggy version of each bug
as provided by Defects4]. For RANDOOP and EVOSUITE, we
executed the test suites using Defects4J’s JUnit test runner; for
AGITARONE we used its proprietary JUnit test runner. For each
executed test, we collected information on whether it passed
or failed, and if it failed we logged the reason (i.e., the failure
message and stack trace).

5) Coverage Analysis: In order to study how code coverage
relates to fault detection, we measured statement coverage on
each class relevant to the fault. Furthermore, given the set of
program statements modified by the bug fix (i.e., the difference
between the buggy and the fixed version), we measured bug
coverage — that is, whether a fault was 1) fully covered
(all modified statements covered), 2) partially covered (some
modified statements covered), or 3) not covered.

For RANDOOP and EVOSUITE, we used Cobertura* to
measure code coverage. As AGITARONE'’s proprietary coverage
tracking mechanism conflicts with Cobertura, we relied on the
proprietary coverage files generated by AGITARONE. To that
end, we extended Crap4j® [35] and extracted the code coverage
ratio from the coverage files produced by AGITARONE’s test
runner for each relevant class. To determine whether a fault
was fully, partially, or not covered, we manually inspected
the visual code coverage indicators of the modified statements
using AGITARONE’s Eclipse plugin.

D. Threats to Validity

In this study, we used bugs taken from only five Java
open source projects, which may not generalize to all pro-
gramming languages and different program characteristics,
and thus constitutes a threat to external validity. Our study
considered three state-of-the-art test generation tools, of which
one is commercially available and actively used by developers.
However, our study does not include tools based on Dynamic
Symbolic Execution or other specialized techniques, and such
tools may be more effective at some challenges we identified
than the tools used in our study (e.g., complex conditions).

2Personal communication, August 2015
3The test generation server was deployed on a Linux computer with 64GB
of RAM and 32 CPU cores @2.1GHz

“http://cobertura.github.io/cobertura/, accessed May 2015
SJava project quality assessment tool, originally written by the developers
at Agitar Technologies

TABLE I: Overall outcome of the test generation and execution process. For each project and trool, the table shows the percentage
of compilable test classes in all test suites, the average number of generated fests in them, the percentage of how many of these tests
are flaky, the percentage of failing non-flaky tests that were false positives, and the average code coverage ratio for all non-flaky
test suites on classes relevant to the bug. It also shows the max and average number of bugs per project that each tool detected
(excluding false positives), and details how the bugs were detected (i.e., a failing assertion, an unhandled exception, or a timeout).
Note that for EVOSUITE and RANDOOP, a bug might have been detected by only a subset of the 10 generated test suites.

Project ‘ Tool ‘ Compilable Tests Flaky False Pos. Coverage ‘ Max Bugs Avg. Bugs Assertion Exception Timeout
Chart AGITARONE 100.0% 131.2 0.2% 30.6% 84.7% 17 17.0 10.0 11.0 0.0
EVOSUITE 100.0% 45.9 3.5% 0.0% 68.1% 18 9.7 5.4 52 0.3
RANDOOP 100.0% 48749 36.8% 0.0% 54.8% 18 14.1 7.5 9.1 0.0
Manual 100.0% 230.6 0.0% 0.0% 70.5% 26 26.0 17.0 12.0 0.0
Closure | AGITARONE 100.0% 199.4 0.4% 79.3% 79.1% 25 25.0 16.0 10.0 0.0
EVOSUITE 100.0% 34.9 1.7% 0.0% 34.5% 27 11.8 10.5 1.4 0.0
RANDOOP 98.4% 55184 19.8% 15.8% 9.8% 9 22 0.5 1.7 0.0
Manual 100.0% 3511.1 0.0% 0.0% 90.9% 133 133.0 103.0 42.0 0.0
Lang AGITARONE 100.0% 127.7 1.0% 23.5% 50.9% 22 22.0 10.0 14.0 0.0
EVOSUITE 79.5% 48.6 5.4% 0.0% 55.4% 18 9.2 5.5 33 0.9
RANDOOP 68.3% 11450.7 5.7% 0.0% 50.7% 10 7.0 1.7 6.3 0.0
Manual 100.0% 169.2 0.0% 0.0% 91.4% 65 65.0 31.0 36.0 0.0
Math AGITARONE 100.0% 105.8 0.1% 8.9% 83.5% 53 53.0 34.0 25.0 0.0
EVOSUITE 99.8% 29.7 0.2% 0.0% 77.9% 66 429 26.1 17.7 0.3
RANDOOP 97.8% 73714 15.6% 0.0% 43.4% 41 26.0 17.8 10.8 0.0
Manual 100.0% 167.8 0.0% 0.0% 91.1% 106 106.0 76.0 31.0 0.0
Time AGITARONE 100.0% 187.2 3.3% 30.9% 86.7% 13 13.0 10.0 8.0 0.0
EVOSUITE 100.0% 58.0 2.8% 0.0% 86.7% 16 8.5 4.9 4.0 0.0
RANDOOP 81.1% 2807.1 25.3% 0.0% 43.0% 15 45 3.8 1.1 0.0
Manual 100.0% 2532.7 0.0% 0.0% 91.8% 27 27.0 13.0 17.0 0.0

A potential threat to internal validity is that not all tests
that detected a fault were manually investigated to ensure the
validity of the bug detection result. However, we mitigated
this threat by using several sanity checks, such as comparing

failure reasons of generated and developer-written test suites.

Furthermore, we manually inspected a large number of test
suites, in particular the ones that exhibited an unexpected failure
reason. AGITARONE may produce different test suites when
invoked on the same class several times, depending on external
factors such as available resources. Thus, there is a potential
threat as we only generated a single test suite for each bug
with AGITARONE. However, we experimentally validated the
claim of Agitars support of the tool being fairly deterministic
by sampling 10 faults, and found that the tool is generally
consistent in whether it detects a bug. Moreover, AGITARONE
spent significantly more than three minutes on some classes,
and allowing RANDOOP and EVOSUITE more time for test
generation may produce better results. However, based on our
experience, a search budget of three minutes is sufficient for the
search in EVOSUITE to converge in most cases, such that more
time would not further change the tests. For RANDOOP we
observed that code coverage saturated already within <1 min,

and the test suites exhibit a very high degree of redundancy.

Therefore, we do not expect our choice of test generation time
to affect effectiveness.

A potential threat to construct validity is the use of all bugs
in the Defects4] dataset, as Defects4] does not distinguish the
type or severity of faults. Furthermore, each bug is represented
by a minimized diff between the buggy and a later fixed
version, rather than the actual code change that introduced
the bug. Thus, although the bugs are real bugs, not all may be
representative for regression faults. Therefore, our study might
underestimate the effectiveness of automated test generation
tools for regression testing if some types of the undetected
faults are unlikely to be inadvertently introduced by a developer
in the future. Likewise, our study might overestimate the

effectiveness if some types of the detected faults are unlikely
to be inadvertently introduced in the future. Furthermore, our
study relies on the versions of code committed to a public
repository and does not include regressions that a developer
identified before committing the changes to the repository. This
may underestimate the effectiveness of test generation tools if
these uncommitted changes are easier to detect. This threat is
mitigated somewhat as the bugs are taken from all stages of
the project history, including earlier stages of development.

III. DO AUTOMATED UNIT TEST GENERATION TOOLS
FIND REAL BUGS?
A. How many usable tests are generated?

The left-hand side of Table I reports the outcome of
the test generation. Unlike AGITARONE, both EVOSUITE
and RANDOOP generated test classes that did not compile.
Unsurprisingly, RANDOOP generated the largest number of
tests for all projects as it does not target a specific class under
test. In contrast, EVOSUITE and AGITARONE generate tests
specifically for the selected classes under test, resulting in
substantially fewer tests. For reference, we also include the
number of tests in the developer-written test suites (manual).
Note that these numbers refer to all relevant tests, as reported
by Defects4J: A test is considered relevant if it directly or
indirectly covers any of the classes relevant to the fault.

AGITARONE generated the lowest ratio of flaky tests overall,
with a maximum of 3.3% for Time. As Time makes heavy use
of the system time, this is not surprising. EVOSUITE suffered
between 0.2%-5.4% flaky tests, but interestingly fewer for
Time — presumably due to its built-in test isolation and check
for flaky tests. Unlike AGITARONE and EVOSUITE, RANDOOP
does not isolate tests from the environment, and as a result
suffered between 5.7%-36.8% flaky tests. We mainly observed
false positives for AGITARONE, in particular for Closure, due
to the use of mocking and reflection to increase code coverage.

Out of the three test generation tools, AGITARONE generally
achieved the highest code coverage ratio, except for Lang.

EVOSUITE and RANDOOP struggled to achieve code coverage
on Closure — most likely because of the large number of
private methods. In comparison to the developer-written test
suites, the test generation tools achieved lower code coverage
overall, except for Chart. Yet, all tools achieved higher code
coverage than developer-written test suites for some classes.

EVOSUITE and RANDOOP generated 3.4% and 8.3%
non-compilable test suites on average. Moreover, on average,
21% of RANDOOP'’s tests were flaky, and 46% of
AGITARONE's failing tests were false positives.

B. How many bugs are found?

Overall, the generated test suites found 199 out of the 357
bugs (55.7%). On the face of it, finding more than half of
the bugs sounds like an encouraging result. However, consider
Table III, which gives a visual overview of the bug-finding
results of the analyzed tools on the complete set of bugs: Found
bugs are denoted with filled boxes, there is one row for each
bug, and one column for each execution of a test generation
tool. Clearly, the filled boxes are sparse in this table as only
19.9% of all executions detected a bug.

Considering tools individually, EVOSUITE, AGITARONE,
and RANDOOP found 145, 130, and 93 bugs, respectively. That
is, the number of bugs found by each tool is comparable —
around one third of all bugs, which is already substantially less
than the overall number of bugs found (199). However, as the
sparsity of black boxes in Table III shows — even for bugs
that were found — tools like RANDOOP and EVOSUITE use
randomized algorithms, so the properties of the generated tests
differ for each run. Consequently, a bug may be found in one
run, but not in the next. If we say a bug is “likely to be found”
if it was found in more than half of the executions of the
tool, the number of bugs found for RANDOOP and EVOSUITE
changes to 54 and 83, respectively. If we consider a bug as
found only if all executions of a tool detected the bug, then
these numbers decrease to a sobering 28 and 38.

Regarding the effectiveness of the tools per project, there
are some distinct differences: The part of Table III for the Chart
project is quite densely populated, whereas the Closure project
seems to be generally more problematic for test generation
tools. Table I summarizes the visual presentation of Table III
in numbers, and confirms this intuition: For the Chart project,
RANDOOP and AGITARONE found more than half of the
bugs on average (only EVOSUITE struggled and only detected
9.7 out of 26 bugs on average). For the Closure project,
even AGITARONE discovered only 25 out of 133 bugs, and
RANDOOP found just 2.2 bugs on average. The bug detection
results for the Lang and Time project look similarly grim.
The Math project seems to be slightly better suited for test
generation, with AGITARONE finding half of the bugs, and
EVOSUITE coming close to this result.

The picture painted overall is that if one wants to find all
bugs, one should not rely solely on an automated unit test
generation tool. This suggests that plenty remains to be done to
improve automated test generation tools. Nevertheless, the fact
that 199 bugs were found fully automatically does showcase
the potential of such tools for widely used practices such as
regression testing. The results also show that none of the test
generation approaches is strictly superior to the other two.

Automated test generation tools found 55.7% of the bugs we
considered, but no tool alone found more than 40.6%.

TABLE II: The percentage of detected bugs, categorized by
whether the bug in question was found by the developer-written
test suite with either an assertion, an exception, or both.

Project Tool Assertions Exceptions Both
Chart AGITARONE 64.3% 55.6% 100.0%
EVOSUITE 57.1% 77.8% 100.0%
RANDOOP 57.1% 77.8% 100.0%
Closure ~ AGITARONE 18.7% 16.7% 25.0%
EVOSUITE 17.6% 30.0% 16.7%
RANDOOP 3.3% 16.7% 8.3%
Lang AGITARONE 31.0% 353% 50.0%
EVOSUITE 20.7% 29.4% 100.0%
RANDOOP 6.9% 23.5% 0.0%
Math AGITARONE 42.7% 70.0% 0.0%
EVOSUITE 56.0% 80.0% 0.0%
RANDOOP 34.7% 50.0% 0.0%
Time AGITARONE 30.0% 71.4% 0.0%
EVOSUITE 80.0% 42.9% 66.7%
RANDOOP 40.0% 64.3% 66.7%
« 80%
on
B
= 60%
L
9 Detected b
% 40% Assertiog
kel Exception
[T
g 20%
=
~ 0%+ ‘ | ‘ |
(0-25%] (25-50%] (50-75%] (75-100%]

Average bug detection rate of all tools

Fig. 2: Ratio of bugs that were detected by an assertion or an
exception, grouped by the intervals of the average bug detection
rate of all tools. The total number of bugs is 199 and 46, 77,
46, and 30, respectively for each interval. Note that a bug may
be detected by both an assertion and an exception.

C. How are the bugs found?

Overall, the generated test suites detected more bugs with
an assertion (146) than with an exception (109). Note that 56
bugs were detected with both an assertion and an exception,
by different tests. EVOSUITE is the only tool that detected 5
bugs via timeout; we treat this as a case of exception for the
following discussion. The right-hand side of Table I details the
results and shows how effective assertions and exceptions are
for each project.

Assuming that a developer-written test that reveals a bug is
indicative of whether an assertion or an exception is required
for that bug, we can determine if the tools are better at
detecting bugs requiring an assertion or an exception. Table II
shows how many of the bugs (detected by the developer-
written test suites with an assertion or an exception) were
detected by the generated test suites. In the majority of
cases, clearly more of the bugs that trigger an exception
were found than of those that require an assertion. The main
exception is EVOSUITE for the Time project, where 80%
of the bugs requiring an assertion were found, compared to
only 42.9% of the bugs requiring an exception.

Figure 2 shows the ratio of bugs detected by assertion or
exception for different intervals of the average bug detection
rate of all tools. Note that the average bug detection rate is
computed as the mean across tools rather than the mean across

ite

f a compilable test sui

. For each tool execution, i

10n

10n

luat

figuration errors in our eva

1mn con

ilable (*), resulted i

1te was not compi

Its for each bug, tool, and execut

the test su

)

1S¢€

ing resu

a bug may have been detected (m), fully covered but not detected (@), partially covered but not detected (@),

Summary of bug-find

or not covered at all (0). Otherw

TABLE III
was generated,

—_
0 o (0] O * ::] o) o n [=RcRcEsN No) omo® ooso@ o} o B oD@« ::} o] o o ::] *
w o [0} o L] B o n EEEOmO omo® BOEm0OB o} o B ooDmE x ::} o] (o] [0} =]]
oo (0] o L] ::] o L] [ogopopsl) omo@® BOom0OB# o] o =] oomd x =] o] (o) * @ ::}
Qo W oo (0] o L] L] o L] [ogopopel) BE0O BOomR0OB# o] o =] ooma « B o] (0] * =) ::}
m WDE [0} o L] n o L] [ogogopsl) BE0OQ mOomOd o] o =] OOmm « =] o] B B =)]
W o [0} o8 L] n o L] [ogopopsl Ne) BEOB mOom0Od o] o =] OOmm « B o] =] =] =) B
y ¢|o® (0] o - L] o - BOOOmO BEO0OE mOom0Od o] o =:] OO0OmmO =] o] B] =:) -
.m :: Mo} (0] o - [] o L] BOOOmO BEO0E mOom0Od o] o B O0OmmO ::] o] B ::] 2] L]
0 :: Mo} (0] o8 - [] o] BEOOO0OmO BEO0E mOom0Od o] o L] O0Omm@a ::] o] L] ::] 2] L]
8 & o [ojo] L L =} L BOEO8O BEE0Q Lol _Jeiy::) jo} o L) oomm@E L) o] L) B 2] L)
y |:: o] * Om |] n =] o EEEOmO BE®8O0 :: Mol Nuly::] *] ::] | JON i) ::] o] o] =} [0) [0}
b ::No} o} Em L] L] o o [ogcpoNol N} [::NoN:: o) BOom0Od o} B L} |_JNOR RN:i::) ::} o) B B ::] ::}
d ::] o} L N} L] - o o [omol Mol) [::NoN:: o) BOoEe0OA ::} ::} L} L Non | @ ::} o) B B ::] ::}
n . __vlu ::] o} am L] - o (e} ool Mol ::) [::NoN:: o) =Nol Nei::) ::} 2} L} L Non | ::] ::} o) B B ::] ::}
u) m ::] o} m-nm L] - o (e} EmECE@ [=NoN::N | BOEm0O@ ::} 2} L} L Non | ::] L ! o) B B ::] L]
[} ~ olemom [=N] [] o o EmmCE® [Joll=N N=N:Hcl N=R:N N N=N:R= N-N Nolf N-N-| L] @ ® ® @ L]
G O rm ::::) =] LN] L] L] o a =N B ROl i) moE. Bom0Oa@ L] L mom @ L o] =] =] @ -
= O =) =] am L] L] o a =N B ROl) moE. BOom0OB# L] L mom =] L o] B] =) -
0 D =) =] am L] n o a =N B ol -] |_jo) L] mEm0a L L] - mom @ L o] =) L]
IG’M =) =] LA L) L) =] a =R B _Bon =] LEcR) mEm0a L L L] mom 2] L o] L)) L
S g
= =]
0 > MO - - o} EEEN L] - L] L] =] o L - @280 -
il = BE
o
w <
>]
< = = = E — - sg S .
S | |2:Ee 5 7 39535 %59H 7 A - b e R 5 SRS 2 dasa8s
2 o 2z < AR, Bleztss < POy - IDRDROIRIEY - PO) -) 2 P 5% & [Py
—_ =| 2 3 EE £ ZH: el EEEL: E] K] g Z3 EECERE EEkEEERE Bl E EkE] ER £ £}J ElEEEEE
< m HEE= = = = S22 3= = = === = = ===2523 SEZ2Z2Z222 == == = EE BlEECEE
- 2]
d (o0} (0] (0] o oo o o o000 o a] o] o] o] o] ::) o] BEE0O0B8 o] ::] o@ « * * x & * [ofs] [sls oo NoNeNe]
nﬂw (o0} (0] (0] o oo o o oso000 o o] =] o] o] o] o] ::] o] BEEO0O0B8 o] ::] o@« * x x & o [ogo) [sls NeNeoNoNoNeNe]
u O oo [0} o o oo o o oso000 o o] =] o] o] o] o] =] o] BEEO0OB8 o] =] 0@« * * x & o [ogo) [sls NeNeNoNoNeNe]
F.m V W @0 o o o oo [u] o oso000 o o] 8 o] o] o] o] [=:] o] BEEO0OB8 o] n 0@« * * x5 o [ojo) [slsRsNeNoNoNeNe]
E MED o o o oo o o o000 o o]] o] o] o] o] B o] BEO0OB6 o] n 0@ « * x x & o |_jo) oosOoOO0ODO
H MED o o o oo [u] o o000 o o]] o] o] o] o] B o] =:):: R m o) o] n 0@ « * x x & o anm oosOoO0OOm
V-W..,. | B0 o a o oo o o o000 o o]] o] o] o] o] B o] =:):: MmO N::) DE. 0@ « * x x @ =] anm OoOmMOO0H®E «®m
e n @ o o a o oo o a ose0o0 =} o] ::} (o} o) (o} (o} B o] BEE0O@ DE. oo« * x x @ o am Oo0msEg0d0Emm
o O Eo0o00 o oooooooo®eOoO®O000 o ol :Nolc] o] o] DEE+«O0EEEEEEEER 0@ * % x @ @0 [N] comEC0EEm
o N moog o 000E0000®O®BOO0O0 o o] [:: ool o] a [off:§:Rojol=j:=N:) Jolj:Joof=) | 0@« Oxx@@0 = OmmEooEm
e E @ o o a o oo o a ose0o0 o o] (0] (o} o) [a} * B [0) OO0 * x *x X % O« @ L] | s} ::} am (o] BOHE®QD
h N @ o o a o o® o a oso0o0 =} o] ::} (o} o) (o} * B [0} OO0 * x * X X O« @ Ll ol ::} am a [y)
HO mooo0 o 000oEO0O0EOEO0®EO000 o o] ;o) o] o] * BEEOOO®E D * % % ox Ox® [BN Nol:N | [N] o OE@EmN
o ~ glmooo o 00D0E00EO0BO0BO0O00 o a [::)=:Rc o] o] *xxBEHOOOBO * * x x x % mxOx@ [BN Nol:N | am o =N:N=R N)
e A m joNo} o o o oB o o o000 =} o] ::} (o} o] (o] * B [0} O HO* * * X ox L] O+« @ - | n -nm o omEmam
o = o|lE® o o o oo o o oso000 o o]] o] o] o] * B [0) CHO* x * x % L] O+« @ n ma L -m o OmEmm
o m EVL [ojo]) o o o oo o o oso000 o o] o] o] o] * =] [0) CHO* x * x % L] O+« @ L] ma L -m o EmEmEn
WA [ojo} o a o oo [u] o oso000 o o] o] o] o] * =] [0} OHO* x * x % L] [NEE) L] L) L -nm o EmEaN
- o) o o o oo o o oso000 o o] o] o] o] * B (0] OHO* * * x ox L] [mEE) L] L) L L N o EmEaN
.nha > L_jo) =] =] =] o@ =] =] Oo8®800 o o] o] L) o] * B [} O HO* * * x ox L) H « B L) L) L L) =] L=)
=
= =)
z
o]
[%¢) I3
g - < | & o B =] (e} o |_e) L L] o =) o B ::] L] B - mE8 -
g
=] 3
o
[aa) =
3]
~ s BT SRS - SRR EEE R R R SRRk
—_ S e = == SleE=isisisEt=iat s isiaiaselai N~ d S i
O PN PIIORiR) . PR | Ee aSCmEme - 2 sgoyMEar c-M. Me-gox
~ 72222222B02222220l2222222222222222222B22%2 2 0 80 Sp €0 8D £ 8D 50 g0 80 50 £ £ 80 50 £0 &0 Sp &) e & < Blsisss
N weoocooococcococoocco0o0co000000000 00 k0002 S555888¢§ R §8§585§ g g] El= E}
3 = Z|CO0000TOMCTUU00@OO0000000000000000T@OTTT 30 0 [RS B L B S 3 = = = > =
;M
(OB _
b~ 0 ooEOoOmMEOEROEN om L B N NoR:Rol Boi EspspoRspsRsBoRcisisie) oo oooo oooooo o oo [sRoNORONORO) [0) (0] (o) [0 [0}
< S
p oos0Om | Bely N | om mEEEN OmMEIR00OBDOO0OO0OBEEO0O0O oo oooo Ooooooo o oo [sRoNoRsNoNE] (0] o] o (0] [0}
o [} goo®sE0m L jon N | om LE BN OCEeEeERO00OROO0OO0OBRBEOOO oo oooo oooooao o oo OooowmO0O (0] o] o (0] o
n = Sdloss0Om L jon N | om LE BN OCEeEeER00OROO0O0BEBEOO0O oo oooo oooooao o oo [spopsl Ruie) o o]] (0] o
e(=}
g WEIEDI L jon N | om LE BN OEEeER00RO0O0BEBEOO0O oo oooo Oo@oooao o oo [spopsl Ruie) o o] B o o
m W EmE0m L jon N | om LR BN OEeEeR00BO0O0BEEOO0O oo oooo Oo@oo0o0o o oo [spopsl Rsis) o o]] o o
n O ¥ | mms L] | jon N | Om EEEm OeEeR00@O000EEOO00O oo oooo Oo@o0oD0o0o0 o oo [spopsl Rsis) o o]] o o
O —= L B I:) L] mEEaN ol | EEER OmeEeRO00@O00O0OEOO00O oo oooo Oo@E®@000 o oo 0Oo0Om0O0 [n] o] ::] o o
o
w 5} L) n mEEn Om EEEnR OmemeRO00@O000OEO0O00 oo oooo Oo@E®@0O00 =] oo O0o0Om0O0 o o] ::] o o
L L) mEER Cm L LA OEEeERO00O000BEO0O0O oo oooo OoEE000 o oo Ommm0O0 a jo} B a o
mm ooo] oo®mo ol | oomO EEREB000000EEEO® oo oooo ooooOoO o} oo [sRON::l} Nojs] o =] ::] o o
n e ooo ::} BO®BO &m jogsly Ro) EEREO00EO00O0CEEBEOB oo oooo oooooo (o} oo OoeEm0O0 a o B a o
ﬁ ooo ::} ::NON:: N | om jog B B | EEMEREO0O0RO00O0CEEBEOB oo oooo oomzOo0Oo (o} oo Oog®Em0O0 a o} B a o
%f __vlu ooo ::} [:NoN::N | om jog N B | EEMREBO0O0ROO0OCEEBEOB oo oooo oBEOoO00 (o} joNs] Ooo®Em0O0 a (o} B a o
W.FH m o® o ::} [=NoN::N om jog N N | EmMREOO0OROO0OCEMBEEB oo oooo OoBEO0oO00 (o} joNs] Ooo®Em0O0 a o} B a o
d =] o e =2} BFEEAR om jon B B | EEMEREO0ORD0O0DEOEMBEEOB oo oooo OoBEO00 (o} joNs] oo®Em0O0 a o} B a o
Hh rm oo =] HEEEAN om lop B N ERRIO00N00@HDEEEB oo oooo o@®@Oo00 o] jojs] OmEm0O0 o o] ::] o o
— ooa =] EEEAR om o B N EERERRODO0OQO0OO0HDEREEDB oo oooo o@@®@OoO00 L jojs] OmEm0O0 o =]] o o
m.l o8 a8 =] am om o B N ERERRODO0Q0O00HDEREEDB @0 oooo o@@OoO00 L jojis] om mOoo o =] B o o
W LR L LA LA L) EERERODO0000BHOEEEDB © 0 oooo Oo@@O0O00 L j=}o] om L =g=) o =] B o o
~g 2
z
O 38 |8
=
/I\h WIIEOII L] [N N NolN NN NN Nel N N B N:NoRol NoNoi:| EREEOORB00 o EEMREEEEANE BEOERE o BOoEOREODEO0CDEN [cR:NoNsRsNoN NeNoNeN:N::NsRNol:Nol N:Nelsl:N Nol:l NoRcEsNoN:NoNoN::)]
~ o0 <]
[] <
p—
= |-
E3C) I S T EECTLEEL e et L e - e T e oo h < Cob: - A E P EE L e
Q= a poedopsdod boopbdd podepodobbipbddobde 0 podeleddebbipb bbb piddobsd s b EEE © B B
= 5 2222222222 22222232 2222222222222222222323%2 c2GH:GCECEEE: - CEH: CH B 222El2Z2E2 22222222 2
g o 2 EECCcccccce e e S CpE S8 C 22282 C8CCCCCcc e cclEcccccscczcccccicicccicccic e cceiccéccscccsss
a1 m nw o (SASACACACACASASART] [SASASASASAAT} SASACASASACAGASAGAAGAGAGAGAAUAGATATATRT) (SACAGAGASASASASAGAGRGACASACAGACAGACAGAUAGACGAGAGAGAGAGRSRT] (SASAS] O GRS} GAUAGAGAGAGATASATRT)
=
—

° 100%-
g
S 75%
an s .
s .] Bug detection
o 50%- . &3 Found
2 : l E£3 Not found
3]
5 25%: . !
8 .

0%+ :

AgitérOne EvoSuite Randoop

Fig. 3: Code coverage ratios for generated test suites that found
a bug and generated test suites that did not. The differences
are significant for all tools (Mann-Whitney U test, p < 0.001).

TABLE IV: Bug coverage of test suites that did not detect the
bug. For each project and tool, Total gives the number of bugs
that were not always detected by all generated test suites.

Project | Tool | Total | Not Partially Full
Chart AGITARONE 7 28.6% 28.6% 42.9%
EVOSUITE 22 36.0% 18.6% 45.4%
RANDOOP 15 29.8% 30.0% 40.2%
Closure AGITARONE 47 | 44.7% 319% 23.4%
EVOSUITE 130 | 50.0% 30.7% 19.3%
RANDOOP 133 73.2% 17.6% 9.2%
Lang AGITARONE 30 | 66.7% 0.0% 333%
EVOSUITE 61 42.0% 237% 34.4%
RANDOOP 61 37.2% 34.1% 28.7%
Math AGITARONE 46 28.3% 21.7% 50.0%
EVOSUITE 83 23.4% 272% 49.3%
RANDOOP 93 54.8% 25.4% 19.8%
Time AGITARONE 11 27.3% 36.4% 36.4%
EVOSUITE 23 5.8% 27.4% 66.8%
RANDOOP 27 52.1% 253% 22.6%

all test suites because the numbers of generated test suites differ
for the tools. The plot suggests that hard to find bugs (i.e., bugs
with a low average detection rate) are more often detected by
an assertion than by an exception. Furthermore, bugs that are
easier to find are more often detected by an exception than
bugs that are harder to find.

More bugs were detected with a test assertion than with an
exception (146 vs. 109), but the detection ratio is lower for
bugs requiring assertions (37.34% vs. 49.4% avg. per tool).

D. Are bugs that are covered usually found?

Figure 3 compares the code coverage ratios of generated
test suites that detected a bug and generated test suites that
did not, clearly showing that code coverage matters when it
comes to detecting faults. This is also confirmed by a strong
correlation between code coverage and bug detection (Pearson
correlation of 0.40 on average per tool).

However, a high code coverage ratio does not necessarily
indicate that the bug was covered. Table IV therefore reports
the bug coverage (as described in Section II-CS5) for all test
suites that did not detect a bug. In general, fewer than 50% of
the undetected bugs are fully covered by the test suites. A bug
that is fully covered but not detected is indicative of a problem
in generating an assertion since a test suite very likely detects a
fully covered bug, even without an assertion, if that bug raises
an exception. A notable exception in terms of fully covered
bugs is given by EVOSUITE for the Time project, where 66.8%
of the undetected bugs are fully covered. We surmise that in
these cases EVOSUITE removed assertions while checking for

unstable tests. Although full bug coverage is not sufficient to
trigger the bug, the tools struggled to achieve full bug coverage
for the majority of bugs.

Of all test suites that did not reveal a fault, 46.8% did not
fully cover it, and 26.6% did not even cover it partially.

IV. How CAN THE TOOLS BE IMPROVED?

Table III shows that the majority of the generated test suites
did not detect the corresponding fault. The faults that were
always detected by all generated test suites® are simple faults,
such as a NullPointerException caused by a missing
input validation, or easily executable and observable changes,
such as Math-22:

I public boolean isSupportLowerBoundInclusive () {

2= return true;

3+ return false;
L}

Note that in this and all following code snippets, ’+° indicates
an added line and '-° a removed line, in the fixed version.

However, most bugs are not this trivial. To gain insights on
how to increase the fault detection rate of test generation tools,
we investigated the challenges that prevent fault detection. To
this end, we first looked at the 12 faults that no tool managed to
cover (not even partially) and the 4 undetected faults that were
fully covered. We then looked at the 76 faults that only one tool
managed to detect — 28 by AGITARONE, 35 by EVOSUITE,
and 13 by RANDOOP; these reveal strengths of a particular
tool that others are missing. Finally, we studied the root causes
for flaky and false-positive tests. The remainder of this section
presents our findings.

A. Improving Coverage

A test has to cover a fault to detect it, and Figure 3 shows
that test suites that detect a fault achieve significantly higher
code coverage. We identified four challenges that inhibit test
generation tools from achieving such high code coverage.

1) Creation of Complex Objects: Out of the 12 faults’ that
were not covered by any of the generated test suites, the majority
(9) of them are from the project Closure. For these 9 faults,
reaching the buggy code requires the creation of a complex
data structure (e.g., a control flow graph). This is a highly
complex and challenging task for an automated test generation
tool since it requires a certain sequence of method calls prior
to exercising the target method. This task is also demanding
for human testers, as evident in Closure’s developer-written
tests that detect the fault: The tests create a complex string (i.e.,
program text) and re-use the compiler infrastructure to create
an appropriate data structure. For an automated test generation
tool, however, generating such a complex input string is as
challenging as initializing a complex data structure. Consider
the following fault (Closure-14):
1for (Node finallyNode : cfa.finallyMap.get (parent)) {

2— cfa.createEdge (fromNode, Branch.UNCOND, finallyNode) ;

3+ cfa.createEdge (fromNode, Branch.ON_EX, finallyNode) ;
4}

Covering this fault requires constructing a control flow graph in
advance, with an edge connecting two consecutive finally
blocks. The developer-written test achieves this by constructing
a control flow graph object from a complex input string:

SChart-{14, 18, 22}, and Math-{6, 22, 35, 61, 66, 103}
7Closure-{l4, 15, 17, 32, 53, 66, 71, 86, 111}, Lang-24, and Math-31

1String src = "X:while(l) {try{while(2) {try{var a;break X;}" +
"finally{}}}£finally{}}";

2ControlFlowGraph<Node> cfg = createCfg(src);

sassertCrossEdge (cfg, Token.BLOCK, Token.BLOCK, Branch.ON_EX) ;

In contrast, no coverage guidance exists for generating such

complex strings within an automated test generation tool.

Some bugs requiring the creation of complex objects were
found; for example, for Closure-80, an AGITARONE test created
a mocked instance of a particular Node, and for Closure-
109, a RANDOOP test managed to create a valid control flow
graph from a complex input string, reusing a string constant
from a dependent class. RANDOOP also succeeded in detecting
several faults® by indirectly testing the class under test through
dependencies. In these cases, RANDOOP overcame the object
creation problem by exploiting existing logic in classes that
are clients of the class under test.

Some viable solutions (which are not implemented in
the used tools) exist to address the generally acknowledged
problem of complex objects [43]. For example, seeding objects
observed at runtime [23], mining of common usage patterns
of objects [15] to guide object creation, or carving of complex
object states from system tests [11]. However, in the absence
of example information the problem is unsolved.

2) String Optimization: Complex strings not only occur in
the developer-written test suites for Closure, but are also a
recurring pattern in the generated test suites for faults that are
only detected by one tool. AGITARONE detected the string-
related fault in Closure-155, and EVOSUITE detected several
faults® that require a specific input string. For example, consider
Lang-16, a fault whose detection requires the satisfaction of
the following condition:

1if (str.startsWith("0x")
2+ || str.startsWith ("0X")
return createlInteger (str);

|| str.startsWith ("-0x"
|| str.startsWith ("-0X")) {

1}

EVOSUITE generates strings using its genetic algorithm and
seeded values [12], taken from string constants and runtime
observations. The following test detects the fault above:

Ipublic void test085() throws Throwable ({

String string0 = "-0XeD";

int int0 = NumberUtils.createNumber (string0) ;
4 assertEquals ((-237), int0);
s}
Search-based tools are capable in principle of generating string
inputs [2], but doing so with a search algorithm can take
very long. Symbolic approaches using string solvers [18] or
dedicated solvers for regular expressions [41] are generally
restricted to fixed length strings. If an input grammar is known,

then this can be used to generate test data more efficiently [8].
The results of web queries can also serve as useful test data [28].

Nevertheless, our experiments showed that state-of-the-art tools
still struggle with string optimization.

3) Complex Conditions: Lang-24, a fault that no tool
detected, is an example for a complex condition that needs to
be satisfied to detect the fault:

1if (chars[i] == ’'1" || chars[i] == 'L") {

2— return foundDigit && !hasExp;

3 + return foundDigit && 'hasExp && !hasDecPoint;
+}

Detecting this fault is challenging for two reasons: First, a
randomly initialized character array (chars) is unlikely to

8Math-{2, 9, 54}, Time-{10, 22}, and Lang-56
9Lang-{l6,36,44,44,58,60},Tﬁnu%24,and Closure-73

satisfy the outer condition. Second, search-based tools like
EVOSUITE suffer from boolean flags such as foundDigit,
hasExp, and hasDecPoint, which provide no guidance to
the search. This problem of boolean flags is well known, and
testability transformation [20] is generally accepted as solution.
Note that DSE would not suffer from this problem [17], [19].

Lang-48 a fault that only EVOSUITE detected, exemplifies
a problem related to complex conditions involving subtyping:

Ipublic EqualsBuilder append(Object lhs, Object rhs) {

Class lhsClass = lhs.getClass();
4 if (!lhsClass.isArray()) {

5— isEquals = lhs.equals (rhs)
6+ if (lhs instanceof java.math.BigDecimal) { ... }
7+ else { isEquals = lhs.equals(rhs) }

8 oL,

9)

In principle, when creating an input value for a parameter of
type Object, any class can be used. EVOSUITE addresses
this challenge by explicitly using classes that are used in casts
or type comparisons, and therefore generates a test case that
passes an object of type BigDecimal as argument to the
append method.

4) Private Methods/Fields: Many of the faults in the Closure
project, in particular those not detected by any tool, exist in
private methods. This presents an additional challenge for an
automated test generation tool, which usually tests using only
the public interface of a class under test. For instance, in
Closure-1, a simple change is introduced in a private method:
Iprivate void removeUnreferencedFunctionArgs (Scope fnScope) {
2+ if (!removeGlobals) {
3+ return;

4+ }
5Node function = fnScope.getRootNode () ;

It is, however, difficult to (indirectly) test this method due to
the complex class hierarchy and data structures of this project.
AGITARONE tries to sidestep this problem by access-
ing private fields and methods. While it may not gen-
erally be desirable to explicitly call private methods, it
enables AGITARONE to cover methods that are hard to
reach through the public API of the class. Covering
the removeUnreferencedFunctionArgs method, AG-
ITARONE triggers a NullPointerException by setting
the value of the private field removeGlobals to false,
and passing in null as fnScope:
IRemoveUnusedVars removeUnusedVars = (RemoveUnusedVars)
Mockingbird.getProxyObject (RemoveUnusedVars.class, true);
3setPrivateField (removeUnusedVars,
4 "removeGlobals", Boolean.FALSE);

sMockingbird.enterTestMode (RemoveUnusedVars.class) ;
6callPrivateMethod ("com.google. javascript. jscomp.

RemoveUnusedVars", "removeUnreferencedFunctionArgs",
new Class[] {Scope.class}, removeUnusedVars, new Object
[1 {null});

Although the test does find the bug, it is unclear whether
such a change could be triggered without modifying the
state through private fields and methods. Similarly, AGI-
TARONE detected Closure-{45, 83, 102} and Math-{18, 33,
78} by asserting the value of private fields using reflection.
Whether or not accessing private methods and fields is a
good approach is debatable but, as shown, it has the potential
to reveal faults. However, it can cause false positives, as
will be discussed in Section IV-D. This problem can only
be overcome by improving test generation tools to achieve
coverage of private methods fully through the public APL.

B. Improving Propagation and Detection

Even if covered, a fault might not propagate or, if it does,
the test oracle might not be able to detect the change in the
outcome. Recall that a third of the undetected faults were fully
covered and many more were partially covered (Table IV). This
section details challenges in revealing those covered faults.

1) Propagation: Across all projects and test suites, we found
five faults (Closure-{31, 70, 121} and Math-{12, 30}) that were
always fully covered but never detected.

Unlike Closure-{31, 70, 121} and Math-30, Math-12
represents a unique case not directly related to propagation,
where the fault is simply a forgotten implementation of the
Serializable interface. This fault is trivially covered, but
in order to detect it, a test would need to serialize an object of
that class using an ObjectOutputStream.

Math-30 is an integer overflow error, which means that
not only does the code need to be covered, but it also has to
be executed with values that lead to an overflow. Closure-31,
70, and 121 have a potential influence on private members of
the faulty class. However, these private members are complex
objects, and a change to them can only be observed by involving
the faulty object in further complex interactions, rather than
simply writing an assertion on a return value of a public method.
To some extent, this is the result of focusing on simple structural
criteria such as branch coverage, rather than aiming to exercise
more complex intra-class data flow dependencies [21].

2) Assertion Generation: Considering that more faults are
detected with an exception, but the majority of faults require
an assertion (Table II), a key challenge for test generation tools
is generating adequate assertions (i.e., test oracles).

Assertions are typically generated based on observations of
the public API [16], [30], [44] during execution. However, our
experiments revealed some particular cases where only AGI-
TARONE was able to generate the appropriate assertions: For
Chart-6, Closure-{12, 21, 22, 129}, and Math-48, AGITARONE
detected the fault by asserting on the object state in the catch
clause. In contrast, EVOSUITE and RANDOOP only verify that
an expected exception is thrown. For example, Closure-129 is
a fault for which both the buggy and the fixed version throw a
NullPointerException, but differ in where it is thrown.
AGITARONE detected this change as follows:
1try {

prepareAnnotations.visit (t, n, parent);

fail ("Expected NullPointerException to be thrown");
1} catch (NullPointerException ex) {

6 assertThrownBy (PrepareAst .PrepareAnnotations.class, ex);

7}

C. Flaky Tests

It is important for regression tests to be deterministic and to
produce the same outcome in consecutive runs. Recall that we
automatically removed 15.2% of flaky tests to achieve this goal.
However, removing such a large portion of tests also means
losing any additional coverage gained by such tests.

1) Environment Dependencies: Flaky tests are frequently
caused by environmental dependencies of the software under
test, such as the current time/date of the system. This problem
is particularly frequent for Time, but also occurs in the other
projects. For example, detecting the fault in Lang-8 requires a
call to the method format of the FastDatePrinter class,
which takes a Calendar as input — by default, a Calendar
will be initialized to the current time.

EVOSUITE addresses this problem by using a mocked
version of the concrete implementations [5]. This means that
if the program accesses the current time on the system, then
EVOSUITE provides a mocked time, so that any assertion
that depends on the time value will deterministically pass or
fail when executed at a later time. The following gives an
example for a test, generated with EVOSUITE, which uses a
mocked version of the concrete class GregorianCalendar,
MockGregorianCalendar:

1String string0 = "Z, “jsz/7’ {p!wd";

2int int0 = 0;

3SimpleTimeZone simpleTimeZoneO = new SimpleTimeZone (intO,
string0) ;

4Locale locale0 = Locale.GERMAN;

58tring stringl = "xz";

cFastDatePrinter fastDatePrinter0 = new FastDatePrinter (
stringl, simpleTimeZoneO, localeO);

7MockGregorianCalendar mockGregorianCalendarO = new

MockGregorianCalendar (locale0) ;

§String string2 = fastDatePrinter0.format ((Calendar)
mockGregorianCalendar0) ;

9assertEquals ("xGMT", string2);

In contrast, RANDOOP does not use mocking, and for the
10 runs on the same fault, it generated 84% flaky tests.
AGITARONE also applies mocking, but was not able to detect
this fault, which additionally requires a specific constraint to
hold: the time zone represented by the SimpleTimeZone
instance (line 3) must differ from the time zone used in the
Calendar instance (line 7).

The faults Time-12, Time-14, and Lang-65 pose similar
challenges to the test generation tools. Note that the problem of
environment dependencies is not restricted to objects generated
explicitly by the test generator, as other classes may refer to
the system time or other external resources directly. EVOSUITE
tries to overcome this problem using bytecode instrumentation,
such that the environment dependencies can be controlled when
directly accessed by the code under test.

2) Static State: A local dependency on the static state of
the system under test can also result in flaky tests, such that any
changes to the state with one test can affect the outcome of the
remaining tests. EVOSUITE explicitly tracks changes to static
variables, and resets the static state before test execution [5],
and as a result was the only tool to detect Time-11, where
class ZoneInfoCompiler uses a static variable cVerbose.
The issue of static state has been raised in the context of test
generation previously [10], and has recently also been verified
in the context of manually written test suites [7], [27], [46].

D. False Positives

During our evaluation, in particular during the validation
of the test results, we encountered a number of false positives.
The RANDOOP tests contained a few false positives due to
non-deterministic failures unrelated to the fault. In particu-
lar, these tests caused an IllegalStateException by
manipulating the threading behavior in Closure. While these
tests are technically flaky tests, their likelihood of failing is
very low, explaining why they never failed on the original
version when checking for flaky tests. The majority of false
positives observed are caused by AGITARONE’s access of
private fields/methods/classes through Java reflection, which
breaks object-oriented principles such as encapsulation, and
AGITARONE’s use of aggressive mocking,

1) Accessing Private Fields/Methods: To maximize cover-
age, AGITARONE uses Java reflection to access the private
API of the class under test. However, developers may add,

remove, or change private fields or methods to improve code
quality or optimize the existing implementation. These changes
do not affect any client of the class under test as its public
API remains unchanged. Detecting regressions that are purely
related to the private API therefore increases the likelihood of
false positive test results.

Closure-3 is an example of a change of a private method,
including its signature:

- private boolean canInline() {
2+ private boolean canInline(final Scope scope) {

4+ case Token.NAME:

5+ Var var = scope.getOwnSlot (input.getString());
6+ if (var !'= null && var.getParentNode () .isCatch()) {
74+ return true;

8+ Yo,

While AGITARONE generated a test that detects this change
with a NoSuchMethodException, the test does not fail
because of the root cause — that is, the test does not cover the
Token.NAME case and would therefore pass if the method
signature would remain unchanged. Overall, AGITARONE
suffered 26 (12%) false positives caused by the use of reflection.
2) Aggressive Mocking: Another example for breaking
encapsulation is AGITARONE’s aggressive mocking, which
monitors and asserts on the internal state (e.g., the order of
method calls) of the class under test, rather than testing the class
on what its public method returns, and on the side effects it
has on its input parameters once its methods have completed to
execute. How such input objects are manipulated is an internal
detail that is not part of the public interface specification. As
such, it can change without modifying the semantics of the
methods. Consider the following example:
Ipublic int sum(Foo foo) {
2— return foo.getX () + foo.getY();

)i
3+ return foo.get¥Y () + foo.getX();
+}

If getY and getX are pure (i.e., no side effects), then that
function can be refactored as shown, and the order in which the
function sum calls the methods in Foo is irrelevant. However,
an aggressive mocking strategy would check the order in which
the mocks are used, and fail if a different one is encountered.

For example, consider Closure-5, where the developers
added a check to handle the special case of a deleted property:
1+ if (gramps.isDelProp()) {

2+ return false;
3+ }

A valid way to detect this bug would be by using an assertion on
the return value. However, with AGITARONE’s aggressive mock-
ing, adding such a method call would lead to a failure without
even evaluating isDelProp, as the method is unexpected
and thus triggers a TestException, indicating an error
originating in AGITARONE’s mocking framework. Similarly,
deleting the method call would trigger a TestException
for any subsequent method call on the same object — in neither
case would the actual return value be considered.

For 67 faults, AGITARONE generated a test that failed with
a TestException and a failure message referring to an
“unexpected method”. Such a mocking error may be a true
positive if there is a specification on the order of method
calls when communicating with external classes/resources.
However, manual investigation of the bug descriptions of these
67 faults suggests that none of them are related to such a

specification. We therefore consider each test that fails due to
a TestException as a false positive caused by mocking.

Applying this interpretation, 31% of all test suites generated
by AGITARONE suffered from false positives due to the use
of aggressive mocking (10 of these test suites additionally
include false positives due to accessing private methods/fields
with reflection). However, note that this may be an over-
approximation because a mocking exception could be caused
by a state change induced by the bug.

V. RELATED WORK

The most closely related work to ours is that of Xiao
et al. [43], who identify two main problems when aiming
to achieve high code coverage with generated tests, external
method calls and complex object creation. The external method
call problem is related to the environment dependencies issue
(Section IV-C1) that we saw in terms of relation to date and time.
Just like EVOSUITE uses mocking to overcome dependencies
on time or files [5], this is also possible, for example, for
database applications [37]. We also saw several instances of
the complex object creation problem in the faults we analyzed.
Xiao et al. [43] propose a collaborative approach between the
tools and the developers, such that the underlying coverage
problems is reported back to the developer to provide further
guidance to the tool. The aim of our analysis is to identify
problems that prevent automated test generation tools from
finding faults rather than just covering code, with the hope to
improve these tools in the future to find more faults.

There have been studies of the effectiveness of various
software defect detection techniques, e.g., [29], [34], [42].
Generally, these studies showed that different techniques are
complementary and dependent on the underlying faults; we
saw similar results in our study: The individual performance
of each of the tools in our study lies beneath the potential of
combining all the tools.

VI. CONCLUSIONS

Automated unit test generation tools are typically evaluated
in terms of the code coverage that they can achieve on open
source software projects. This paper contributes a systematic
study of the fault detection potential of the generated test
suites, using three state-of-the-art test generation tools and the
Defects4] dataset. The results show that 1) the test generation
tools find 55.7% of faults, but no tool alone finds more than
40.6% of faults. 2) Achieving code coverage remains a problem:
16.2% of the faults were never even executed by the generated
tests, and 26.6% of the test suites that did not reveal a fault did
not even cover the fault partially; however, 3) 63.3% of the non-
found faults were covered by automatically generated tests at
least once, suggesting problems that go beyond code coverage.
One specific issue is that 15.2% of all tests were flaky. In order
to guide future research on automated unit test generation, we
investigated the challenges that need to be addressed in order to
improve fault detection, and our qualitative analysis of difficult
to find faults reveals specific challenges that prevent tools from
achieving the required code coverage and generation of test
oracles. We hope that our insights will lead to future research
to address these challenges, and our data will serve to evaluate
the progress of research on automated unit test generation.

ACKNOWLEDGMENTS
This work is supported the EPSRC project “EXOGEN”
(EP/K030353/1) and the National Research Fund, Luxembourg
(FNR/P10/03).

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

Agitar One (2014), www.agitar.com/developers/junit_factory.html,
Last visited on 01.08.2014

Alshraideh, M., Bottaci, L.: Search-based software test data generation
for string data using program-specific search operators. Software Testing,
Verification and Reliability (STVR) 16(3), 175-203 (2006)

Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool
for testing experiments? In: Proc. of the Int. Conference on Software
Engineering (ICSE). pp. 402—411. IEEE (2005)

Andrews, J.H., Li, E.C., Menzies, T.: Nighthawk: A two-level genetic-
random unit test data generator. In: Proc. of the Int. Conference on
Automated Software Engineering (ASE). pp. 144-153. ACM (2007)

Arcuri, A., Fraser, G., Galeotti, J.P.: Automated unit test generation for
classes with environment dependencies. In: Proc. of the Int. Conference
on Automated Software Engineering (ASE). pp. 79-90. ACM (2014)

Baresi, L., Lanzi, PL., Miraz, M.: Testful: an evolutionary test approach
for java. In: Proc. of the Int. Conference on Software Testing, Verification
and Validation (ICST). pp. 185-194. IEEE (2010)

Bell, J., Kaiser, G.: Unit test virtualization with VMVM. In: Proc. of the
Int. Conference on Software Engineering (ICSE). pp. 550-561. ACM
(2014)

Beyene, M., Andrews, J.H.: Generating string test data for code coverage.
In: Proc. of the Int. Conference on Software Testing, Verification and
Validation (ICST). pp. 270-279. IEEE (2012)

Analytix CodePro (2014), developers.google.com/java-dev-tools/
codepro/doc/, Last visited on 01.08.2014

Csallner, C., Smaragdakis, Y.: JCrasher: an automatic robustness tester
for java. Software: Practice and Experience (SP&E) 34(11), 1025-1050
(2004)

Elbaum, S., Chin, H.N., Dwyer, M.B., Dokulil, J.: Carving differential
unit test cases from system test cases. In: Proc. of the Symposium on
the Foundations of Software Engineering (FSE). pp. 253-264. ACM
(2006)

Fraser, G., Arcuri, A.: The seed is strong: Seeding strategies in search-
based software testing. In: Proc. of the Int. Conference on Software
Testing, Verification and Validation (ICST). pp. 121-130. IEEE (2012)

Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions
on Software Engineering (TSE) 39(2), 276-291 (2013)

Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does
automated white-box test generation really help software testers? In:
Proc. of the Int. Symposium on Software Testing and Analysis (ISSTA).
pp- 291-301. ACM (2013)

Fraser, G., Zeller, A.: Exploiting common object usage in test case
generation. In: Proc. of the Int. Conference on Software Testing,
Verification and Validation (ICST). pp. 80-89. IEEE (2011)

Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and
oracles. IEEE Transactions on Software Engineering (TSE) 38(2), 278-
292 (2012)

Galeotti, J.P., Fraser, G., Arcuri, A.: Improving search-based test suite
generation with dynamic symbolic execution. In: Int. Conference on
Software Reliability Engineering (ISSRE). pp. 360-369. IEEE (2013)
Ganesh, V., Kiezun, A., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.:
Hampi: A string solver for testing, analysis and vulnerability detection.
In: Proc. of the Int. Conference on Computer Aided Verification (CAV).
pp. 1-19. Springer (2011)

Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random
testing. ACM Sigplan Notices 40(6), 213-223 (2005)

Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A.,
Roper, M.: Testability transformation. IEEE Transactions on Software
Engineering (TSE) 30(1), 3—-16 (2004)

Harrold, M.J., Rothermel, G.: Performing data flow testing on classes.
ACM SIGSOFT Software Engineering Notes 19(5), 154-163 (1994)
Islam, M., Csallner, C.: Dsc+Mock: A test case + mock class generator
in support of coding against interfaces. In: Int. Workshop on Dynamic
Analysis (WODA). pp. 26-31. ACM (2010)

Jaygarl, H., Kim, S., Xie, T., Chang, C.K.: OCAT: object capture-based
automated testing. In: Proc. of the Int. Symposium on Software Testing
and Analysis (ISSTA). pp. 159-170. ACM (2010)
Parasoft JTest (2014), www.parasoft.com/jtest,
01.08.2014

Last visited on

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Just, R., Jalali, D., Ernst, M.D.: Defects4J: A database of existing faults
to enable controlled testing studies for java programs. In: Proc. of the Int.
Symposium on Software Testing and Analysis (ISSTA). pp. 437-440.
ACM (2014)

Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser,
G.: Are mutants a valid substitute for real faults in software testing? In:
Proc. of the Symposium on the Foundations of Software Engineering
(FSE). pp. 654-665. ACM (2014)

Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of
flaky tests. In: Proc. of the Symposium on the Foundations of Software
Engineering (FSE). pp. 643-653. ACM (2014)

McMinn, P., Shahbaz, M., Stevenson, M.: Search-based test input
generation for string data types using the results of web queries. In: Proc.
of the Int. Conference on Software Testing, Verification and Validation
(ICST). pp. 141-150. IEEE (2012)

Mouchawrab, S., Briand, L.C., Labiche, Y., Di Penta, M.: Assessing,
comparing, and combining state machine-based testing and structural
testing: a series of experiments. IEEE Transactions on Software
Engineering (TSE) 37(2), 161-187 (2011)

Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing
for Java. In: Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). pp. 815-816. ACM (2007)

Park, S., Hossain, B.M.M., Hussain, I., Csallner, C., Grechanik, M.,
Taneja, K., Fu, C., Xie, Q.: CarFast: achieving higher statement coverage
faster. In: Proc. of the Symposium on the Foundations of Software
Engineering (FSE). pp. 35:1-35:11. ACM (2012)

Piasdreanu, C.S., Rungta, N.: Symbolic PathFinder: symbolic execution
of Java bytecode. In: Proc. of the Int. Conference on Automated Software
Engineering (ASE). pp. 179-180. ACM (2010)

Prasetya, LW.B.: T3, a combinator-based random testing tool for java:
benchmarking. In: Future Internet Testing, pp. 101-110. Springer (2014)

Runeson, P., Andersson, C., Thelin, T., Andrews, A., Berling, T.: What
do we know about defect detection methods? Software, IEEE 23(3),
82-90 (2006)

Savonia, A., Evans, B.: Crap4J URL: http://www.crap4j.org/ (2014),
Last visited on 19.01.2015

Sen, K., Agha, G.: CUTE and jCUTE: Concolic unit testing and explicit
path model-checking tools. In: Proc. of the Int. Conference on Computer
Aided Verification (CAV). pp. 419-423. Springer (2006)

Taneja, K., Zhang, Y., Xie, T.: Moda: Automated test generation for
database applications via mock objects. In: Proc. of the Int. Conference
on Automated Software Engineering (ASE). pp. 289-292. ACM (2010)
Thummalapenta, S., Xie, T., Tillmann, N., De Halleux, J., Su, Z.: Syn-
thesizing method sequences for high-coverage testing. ACM SIGPLAN
Notices 46(10), 189-206 (2011)

Tillmann, N., De Halleux, J.: Pex—white box test generation for .NET.
In: Tests and Proofs, pp. 134-153. Springer (2008)

Tonella, P.: Evolutionary testing of classes. In: Proc. of the Int.
Symposium on Software Testing and Analysis (ISSTA). pp. 119-128.
ACM (2004)

Veanes, M., De Halleux, P., Tillmann, N.: Rex: Symbolic regular
expression explorer. In: Proc. of the Int. Conference on Software Testing,
Verification and Validation (ICST). pp. 498-507. IEEE (2010)

Wood, M., Roper, M., Brooks, A., Miller, J.: Comparing and combining
software defect detection techniques: a replicated empirical study. ACM
SIGSOFT Software Engineering Notes 22(6), 262-277 (1997)

Xiao, X., Xie, T., Tillmann, N., De Halleux, J.: Precise identification of
problems for structural test generation. In: Proc. of the Int. Conference
on Software Engineering (ICSE). pp. 611-620. ACM (2011)

Xie, T.: Augmenting automatically generated unit-test suites with
regression oracle checking. In: European Conference on Object-Oriented
Programming (ECOOP), pp. 380—403. Springer (2006)

Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A framework for
generating object-oriented unit tests using symbolic execution. In: Int.
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pp. 365-381. Springer (2005)

Zhang, S., Jalali, D., Wuttke, J., Muslu, K., Lam, W., Ernst, M.D.,
Notkin, D.: Empirically revisiting the test independence assumption. In:
Proc. of the Int. Symposium on Software Testing and Analysis (ISSTA).
pp. 385-396. ACM (2014)

www.agitar.com/developers/junit_factory.html
developers.google.com/java-dev-tools/codepro/doc/
developers.google.com/java-dev-tools/codepro/doc/
www.parasoft.com/jtest
http://www.crap4j.org/

