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Abstract

The introduction of consumer RGB-D scanners set off a
major boost in 3D computer vision research. Yet, the preci-
sion of existing depth scanners is not accurate enough to re-
cover fine details of a scanned object. While modern shad-
ing based depth refinement methods have been proven to
work well with Lambertian objects, they break down in the
presence of specularities. We present a novel shape from
shading framework that addresses this issue and enhances
both diffuse and specular objects’ depth profiles. We take
advantage of the built-in monochromatic IR projector and
IR images of the RGB-D scanners and present a lighting
model that accounts for the specular regions in the input
image. Using this model, we reconstruct the depth map
in real-time. Both quantitative tests and visual evaluations
prove that the proposed method produces state of the art
depth reconstruction results.

1. Introduction
The introduction of commodity RGB-D scanners

marked the beginning of a new age for computer vision and
computer graphics. Despite their popularity, such scanners
can obtain only the rough geometry of scanned surfaces due
to limited depth sensing accuracy. One way to mitigate this
limitation is to refine the depth output of these scanners us-
ing the available RGB and IR images.

A popular approach to surface reconstruction from im-
age shading cues is the Shape from Shading (SfS). Shape
reconstruction from a single image is an ill-posed problem
since beside the surface geometry, the observed image also
depends on properties like the surface reflectance, the light-
ing conditions and the viewing direction. Incorporating data
from depth sensors has proved to be successful in eliminat-
ing some of these ambiguities [7, 22, 12]. However, many
of these efforts are based on the assumption that the scanned
surfaces are fully Lambertian, which limits the variety of
objects they can be applied to. Directly applying such meth-

ods to specular objects introduces artifacts to the surface in
highly specular regions due to the model’s inability to ac-
count for sudden changes in image intensity.

Here, we propose a novel real-time framework for depth
enhancement of non-diffuse surfaces. To that end, we use
the IR image supplied by the depth scanners. The narrow-
band nature of the IR projector and IR camera provides
a controlled lighting environment. Unlike previous ap-
proaches, we exploit this friendly environment to introduce
a new lighting model for depth refinement that accounts for
specular reflections as well as multiple albedos. To enable
our real-time method we directly enhance the depth map
by using an efficient optimization scheme which avoids the
traditional normals refinemet step.

The paper outline is as follows: Section 2 reviews pre-
vious efforts in the field. An overview of the problem is
presented in Section 3. The new method is introduced in
Section 4, with results in Section 5. Section 6 concludes the
paper.

2. Related Efforts

The classical SfS framework assumes a Lambertian ob-
ject with constant albedo and a single, distant, lighting
source with known direction. There are several notable
methods which solve the classical SfS problem. These can
be divided into two groups: propagation methods and vari-
ational ones. Both frameworks were extensively researched
during the last four decades. Representative papers from
each school of thought are covered in [24, 6].

The main practical drawback about classical shape from
shading, is that although a diffusive single albedo setup can
be easily designed in a laboratory, it can be rarely found
in more realistic environments. As such, modern SfS ap-
proaches attempt to reconstruct the surface without any as-
sumptions about the scene lighting and/or the object albe-
dos. In order to account for the unknown scene conditions,
these algorithms either use learning techniques to construct
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priors for the shape and scene parameters, or acquire a
rough depth map from a 3D scanner to initialize the surface.

Learning based methods. Barron and Malik [1] con-
structed priors from statistical data of multiple images to
recover the shape, albedo and illumination of a given input
image. Kar et al. [10] learn 3D deformable models from
2D annotations in order to recover detailed shapes. Richter
and Roth [15] extract color, textons and silhouette features
from a test image to estimate a reflectance map from which
patches of objects from a database are rendered and used
in a learning framework for regression of surface normals.
Although these methods produce excellent results, they de-
pend on the quality and size of their training data, whereas
the proposed axiomatic approach does not require a training
stage and is therefore applicable in more general settings.

Depth map based methods. Bohme et al. [3] find a MAP
estimate of an enhanced range map by imposing a shading
constraint on a probalistic image formation model. Yu et
al. [23] use mean shift clustering and second order spher-
ical harmonics to estimate the fdepth map scene albedos
and lighting from a color image. These estimations are
then combined together to improve the given depth map ac-
curacy. Han et al. [7] propose a quadratic global lighting
model along with a spatially varying local lighting model
to enhance the quality of the depth profile. Kadambi et
al. [9] fuse normals obtained from polarization cues with
rough depth maps to obtain accurate reconstructions. Even
though this method can handle specular surfaces, it requires
at least three photos to reconstruct the normals and it does
not run in real-time. Several IR based methods were in-
troduced in [8, 5, 4, 19]. The authors of [8, 4] suggest a
multi-shot photometric stereo approach to reconstruct the
object normals. Choe et al. [5] refine 3D meshes from
Kinect Fusion [11] using IR images captured during the
fusion pipeline. Although this method can handle uncali-
brated lighting, it is niether one-shot nor real-time since a
mesh must first be acquired before the refinement process
begins. Ti et al. [19] propose a simultaneous time-of flight
and photometric stereo algorithm that utilizes several light
sources to produce accurate surface and surface normals.
Although this method can be implemented in real time, it
requires four shots per frame for reconstruction as opposed
to our single shot approach. More inline with our approach,
Wu et al. [22] use second order spherical harmonics to es-
timate the global scene lighting, which is then followed by
efficient scheme to reconstruct the object. In [12] Or - El
et al. introduced a real-time framework for direct depth re-
finement that handles natural lighting and multiple albedo
objects. Both algorithms rely on shading cues from an RGB
image taken under uncalibrated illumination with possibly
multiple light sources. Correctly modeling image specular-
ities under such conditions is difficult. We propose to over-
come the light source ambiguity issue by using the avail-

ability of a single IR source with known configuration.

3. Overview
Shape from Shading (SfS) tries to relate an object’s ge-

ometry to its image irradiance. Like many other inverse
problems, SfS is also an ill-posed one because the per-pixel
image intensity is determined by several elements: the sur-
face geometry, its albedo, scene lighting, the camera param-
eters and the viewing direction.

When using depth maps from RGB-D scanners one
could recover the camera parameters and viewing direction,
yet, in order to obtain the correct surface, we first need to
account for the scene lighting and the surface albedos. Fail-
ing to do so would cause the algorithm to change the sur-
face geometry and introduce undesired deformations. Us-
ing cues from an RGB image under uncalibrated illumina-
tion like [7, 22, 12] requires an estimation of global lighting
parameters. Although such estimations work well for dif-
fuse objects, they usually fail when dealing with specular
ones and result in a distorted geometry. The reason is that
specularities are sparse outliers that are not accounted for
by classical lighting models. Furthermore, trying to use es-
timated lighting directions to model specularities is prone
to fail when there are multiple light sources in the scene.

In our scenario, the main lighting in the IR image comes
from the scanner’s projector, which can be treated as a point
light source. Observe that in this setting, we do not need to
estimate a global lighting direction, instead, we use a near
light field model to describe the per-pixel lighting direc-
tion. Subsequently, we can also account for specularities
and non-uniform albedo map.

In our setting, an initial depth estimation is given by
the scanner. We avoid the process of computing a refined
normal field and then fusing depth with normal estimates,
which is common to SfS methods, and solve directly for the
depth. This eliminates the need to enforce integrability and
reduces the problem size by half. We deal with the non-
linear part by calculating a first order approximation of the
cost functional and thereby achieve real-time performance.

4. Proposed Framework
A novel IR based real-time framework for depth en-

hancement is proposed. The suggested algorithm requires
a depth map and an IR image as inputs. We assume that
the IR camera and the depth camera have the same intrin-
sic parameters, as is usually the case with common depth
scanners. In addition, we also assume that the whole sys-
tem is calibrated and that the translation vector between the
scanner’s IR projector and IR camera is known.

Unfortunately, the raw depth map is usually quantized
and the surface geometry is highly distorted. Therefore, we
first smooth the raw depth map and estimate the surface nor-



Figure 1: Algorithm’s flowchart

mals. We then move on to recover the scene lighting using a
near-field lighting model which explicitly accounts for ob-
ject albedos and specularities.

After we find the scene lighting along with albedo and
specular maps, we can directly update the surface geometry
by designing a cost functional that relates the depth and IR
intensity values at each pixel. We also show how the re-
construction process can be accelerated in order to obtain
real-time performance. Figure 1 shows a flowchart of the
proposed algorithm.

4.1. Near Field Lighting Model

Using an IR image as an input provides several advan-
tages to the reconstruction process. Unlike other methods
which require alignment between RGB and depth images,
in our case, the depth map and IR image are already aligned
as they were captured by the same camera. Moreover, the
narrowband nature of the IR camera means that the main
light source in the image is the scanner’s own IR projector
whose location relative to the camera is known. Therefore,
we can model the IR projector as a point light source and
use a near field lighting model to describe the given IR im-
age intensity at each pixel,

I =
aρd
d2p

Sdiff + ρdSamb +
aρs
d2p

Sspec. (1)

Here, a is the projector intensity which is assumed to be
constant throughout the image. dp is the distance of the
surface point from the projector. ρd and ρs are the diffuse
and specular albedos. Samb is the ambient lighting in the
scene, which is also assumed to be constant over the image.
Sdiff is the diffuse shading function of the image which is
given by the Lambertian reflectance model

Sdiff = ~N ·~lp. (2)

Depth
Scanner Surface

~N

{~lc, dc}

{~lp, dp}

Projector

IR Camera

Figure 2: Scene lighting model

The specular shading function Sspec is set according to the
Phong reflectance model

Sspec =
((

2(~lp · ~N) ~N −~lp
)
·~lc
)α

, (3)

where ~N is the surface normal,~lp,~lc are the directions from
the surface point to the projector and camera respectively
and α is the shininess constant which we set to α = 2.
Figure 2 describes the scene lighting model. For ease of
notation, we define

S̃diff =
a

d2p
Sdiff, S̃spec =

a

d2p
Sspec. (4)

The intrinsic camera matrix and the relative location of
the projector with respect to camera are known. In addition,
the initial surface normals can be easily calculated from
the given rough surface. Therefore, ~lc,~lp, dp, Sdiff and Sspec



(a) (b) (c) (d)

Figure 3: (a) Simulated IR image of the Armadillo mesh. (b) Recovered image of the diffuse and ambient shading S̃diff+Samb. (c) Residual
image for specular albedo estimation Isres. (d) Ground Truth specularity map of (a). Note that specularities in (d) are basically the sparse
representation of the residual image (c).

can be found directly whereas a, Samb, ρd and ρs need to
be recovered. Although we are using a rough depth nor-
mal field to compute ~lc,~lp, dp, Sdiff and Sspec we still get
accurate shading maps since the lighting is not sensitive
to minor changes in the depth or normal field as shown
in [2, 14]. Decomposing the IR image into its Lambertian
and Specular lighting components along with their respec-
tive albedo maps has no unique solution. To achieve ac-
curate results while maintaining real-time performance we
choose a greedy approach which first assumes Lambertian
lighting and gradually accounts for the lighting model from
Eq. 1. Every pixel in the IR image which has an assigned
normal can be used to recover a and Samb. Generally, most
of the light reflected back to the camera is related to the
diffuse component of the object whereas highly specular
areas usually have a more sparse nature. Thus, the spec-
ular areas can be treated as outliers in a parameter fitting
scheme as they have minimal effect on the outcome. This
allows us to assume that the object is fully Lambertian (i.e
ρd = 1, ρs = 0), which in turn, gives us the following
overdetermined linear system for n valid pixels (n� 2),

S1
diff

(d1p)
2 1

...
...

Sn
diff

(dnp )
2 1


(

a
Samb

)
=

I1...
In

 . (5)

4.1.1 Specular Albedo Map

The specular shading map is important since it reveals the
object areas which are likely to produce specular reflections
in the IR image. Without it, bright diffuse objects can be
mistaken for specularities. Yet, since S̃spec was calculated
as if the object is purely specular, using it by itself will fail
to correctly represent the specular irradiance, as it would
falsely brighten non-specular areas. In order to obtain an
accurate representation of the specularities it is essential to
find the specular albedo map to attenuate the non-specular
areas of S̃spec.

We now show how we can take advantage of the sparse
nature of the specularities to recover ρs and get the correct
specular scene lighting. We will define a residual image
Isres as being a difference between the original image I and
our current diffuse approximation together with the ambient
lighting. Formally, we write this as

Isres = I − (S̃diff + Samb). (6)

As can be seen in Figure 3 (c), the sparse bright areas of
Isres are attributable to the true specularities in I . Specu-
lar areas have finite local support, therefore we choose to
model the residual image Isres as ρsS̃spec such that ρs will
be a sparse specular albedo map. This will yield an image
that contains just the bright areas of Isres. In addition, in or-
der to preserve the smooth nature of specularities we add a
smoothness term that minimizes the L1 Total-Variation of
ρs. To summarize, the energy minimization problem to es-
timate ρs can be written as

min
ρs

λs1‖ρsS̃spec − Isres‖22 + λs2‖ρs‖1 + λs3‖∇ρs‖1, (7)

where λs1, λ
s
2, λ

s
3 are weighting terms for the fidelity, spar-

sity and smoothness terms, respectively. To minimize the
cost functional, we use a variation of the Augmented La-
grangian method suggested in [21] where we substitute the
frequency domain solution with a Gauss-Seidel scheme on
the GPU. We refer the reader to the above paper for addi-
tional details on the optimization procedure.

4.1.2 Recovering the Diffuse Albedo

As was the case with specular shading, the diffuse shading
map alone does not sufficiently explain the diffuse lighting.
This is due to the fact that the diffuse shading is calculated
as if there was only a single object with uniform albedo.
In reality however, most objects are composed of multiple
different materials with different reflectance properties that
need to be accounted for.

Using the estimated specular lighting from section 4.1.1
we can now compute a residual image between the original



image I and the specular scene lighting which we write as

Idres = I − ρsS̃spec. (8)

Idres should now contain only the diffuse and ambient irra-
diance of the original image I . This can be used in a data
fidelity term for a cost functional designed to find the dif-
fuse albedo map ρd.

We also wish to preserve the piecewise-smoothness of
the diffuse albedo map. Otherwise, geometry distortions
will be mistaken for albedos and we will not be able to re-
cover the correct surface. The IR image and the rough depth
map provide us several cues that will help us to enforce
piecewise smoothness. Sharp changes in the intensity of the
IR image imply a change in the material reflectance. More-
over, depth discontinuities can also signal possible changes
in the albedo.

We now wish to fuse the cues from the initial depth pro-
file and the IR image together with the piecewise-smooth
albedo requirement. Past papers [7, 12] have used bilat-
eral smoothing. Here, instead, we base our scheme on the
geomtric Beltrami framework such as in [18, 17, 20] which
has the advantage of promoting alignment of the embedding
space channels. Let,

M(x, y) = {x, y, βIIdres(x, y), βzz(x, y), βρρd(x, y)}
(9)

be a two dimensional manifold embedded in a 5D space
with the metric

G =

(
〈Mx,Mx〉 〈Mx,My〉
〈Mx,My〉 〈My,My〉

)
. (10)

The gradient of ρd with respect to the 5D manifold is

∇Gρd = G−1 · ∇ρd, (11)

By choosing large enough values of βI , βz and βρ and mini-
mizing the L1 Total-Variation of ρd with respect to the man-
ifold metric, we basically perform selective smoothing ac-
cording to the “feature” space (Idres, z, ρd). For instance, if
βI � βz, βρ, 1, the manifold gradient would get small val-
ues when sharp edges are present in Idres since G−1 would
decrease the weight of the gradient at such locations.

To conclude, the minimization problem we should solve
in order to find the diffuse albedo map is

min
ρd

λd1

∥∥∥ρd (S̃diff + Samb

)
− Idres

∥∥∥2
2
+ λd2‖∇Gρd‖1. (12)

Here, λd1, λ
d
2 are weighting terms for the fidelity and

piecewise-smooth penalties. We can minimize this func-
tional using the Augmented Lagrangian method proposed
in [16]. The metric is calculated separately for each pixel,
therefore, it can be implemented very efficiently on a GPU
with limited effect on the algorithm’s runtime.

4.2. Surface Reconstruction

Once we account for the scene lighting, any differences
between the IR image and the image rendered with our

lighting model are attributed to geometry errors of the depth
profile. Usually, shading based reconstruction algorithms
opt to use the dual stage process of finding the correct sur-
face normals and then integrating them in order to obtain the
refined depth. Although this approach is widely used, it has
some significant shortcomings. Calculating the normal field
is an ill-posed problem with 2n unknowns if n is the number
of pixels. The abundance of variables can result in distorted
surfaces that are tilted away from the camera. In addition,
since the normal field is an implicit surface representation,
further regularization such as the integrability constraint is
needed to ensure that the resulting normals would represent
a valid surface. This additional energy minimization func-
tional can impact the performance of the algorithm.

Instead, we use the strategy suggested in [12, 22] and
take advantage of the rough depth profile acquired by the
scanner. Using the explicit depth values forces the surface
to move only in the direction of the camera rays, avoids
unwanted distortions, eliminates the need to use an integra-
bility constraint and saves computation time and memory
by reducing the number of variables.

In order to directly refine the surface, we relate the depth
values to the image intensity through the surface normals.
Assuming that the perspective camera intrinsic parameters
are known, the 3D position P (i, j) of each pixel is given by

P (z(i, j)) =

(
j − cx
fx

z(i, j),
i− cy
fy

z(i, j), z(i, j)

)T
,

(13)
where fx, fy are the focal lengths of the camera and (cx, cy)

is the camera’s principal point. The surface normal ~N at
each 3D point is then calculated by

~N (z(i, j)) =
Px × Py
‖Px × Py‖

. (14)

We can use Eqs. (1), (2) and (14) to write down a depth
based shading term written directly in terms of z,

Esh(z) =

∥∥∥∥aρdd2p ( ~N(z) ·~lp) + ρdSamb + ρsS̃spec − I
∥∥∥∥2
2

.

(15)
This allows us to refine z by penalizing shading mismatch
with the original image I . We also use a fidelity term that
penalizes the distance from the initial 3D points

Ef (z) = ‖w(z − z0)‖22,

w =

√
1 +

(
j − cx
fx

)2

+

(
i− cy
fy

)2

,
(16)

and a smoothness term that minimizes the second order TV-
L1 of the surface

Esm(z) = ‖Hz‖1, H =

(
Dxx

Dyy

)
. (17)

Here, Dxx, Dyy are the second derivatives of the surface.
Combining Eqs. (15), (16) and (17) into a cost functional



Model IR NL - SH1 NL - SH2
Armadillo 2.018 12.813 11.631

Dragon 3.569 10.422 10.660
Greek Statue 2.960 7.241 9.067
Stone Lion 4.428 7.8294 8.640

Cheeseburger 9.517 17.881 19.346
Pumpkin 10.006 13.716 16.088

Table 1: Quantitative comparison of RMSE of the specular light-
ing estimation in IR and natural lighting scenarios. IR refers to
the lighting scenario described in Section 4.1, NL - SH1/2 repre-
sents a natural lighting scenario with first/second order spherical
harmonics used to recover the diffuse and ambient shading as well
as ~lp. All values are in gray intensity units [0, 255].

results in a non-linear optimization problem

min
z
λz1Esh(z) + λz2Ef (z) + λz3Esm(z), (18)

where λz1, λ
z
2, λ

z
3 are the weights for the shading, fidelity

and smoothness terms, respectively. Although there are sev-
eral possible methods to solve this problem, a fast scheme
is required for real-time performance. To accurately and
efficiently refine the surface we base our approach on the
iterative scheme suggested in [13]. Rewriting Eq. (15) as
a function of the discrete depth map z, and using forward
derivatives we have

Ii,j − ρdSamb − ρsS̃spec =
aρd
d2p

( ~N(z) ·~lp)

= f(zi,j , zi+1,j , zi,j+1).

(19)

At each iteration k we can approximate f using the first or-
der Taylor expansion about (zk−1

i,j , zk−1
i+1,j , z

k−1
i,j+1), such that

Ii,j − ρdSamb − ρsS̃spec = f(zki,j , z
k
i+1,j , z

k
i,j+1)

≈ f(zk−1
i,j , zk−1

i+1,j , z
k−1
i,j+1) +

∂f

∂zk−1
i,j

(zki,j − zk−1
i,j )

+
∂f

∂zk−1
i+1,j

(zki+1,j − zk−1
i+1,j) +

∂f

∂zk−1
i,j+1

(zki,j+1 − zk−1
i,j+1).

(20)
Rearranging terms to isolate terms including z from the cur-
rent iteration, we can define

Iz
k

res = Ii,j − ρdSamb − ρsS̃spec

− f(zk−1
i,j , zk−1

i+1,j , z
k−1
i,j+1) +

∂f

∂zk−1
i,j

zk−1
i,j

+
∂f

∂zk−1
i+1,j

zk−1
i+1,j +

∂f

∂zk−1
i,j+1

zk−1
i,j+1

, (21)

and therefore minimize

min
zk

λz1‖Azk−Iz
k

res‖22+λz2‖w(zk−z0)‖22+λz3‖Hzk‖1 (22)

at each iteration with the Augmented Lagrangian method
of [21]. Here, A is a matrix that represents the linear opera-
tions performed on the vector zk. Finally, we note that this
pipeline was implemented on an Intel i7 3.4GHz proces-

(a) (b) (c)

(d) (e) (f) (g)

Figure 4: Greek Statue: (a) Single light source IR image. (b)
Ground truth specular irradiance map for (a). (c) Specular irra-
diance estimation error map. This is the absolute difference map
between our predicted specular irradiance and the ground truth.
(d) Multiple light source natural lighting (NL) image. (e) Specular
lighting ground truth of (d). (f,g) Specular irradiance error maps
of (d) as estimated using first (SH1) and second (SH2) order spher-
ical harmonics respectively. Note the reduced errors when using
a single known light source (c) as opposed to estimating multiple
unknown light sources using spherical harmonics lighting models
(f,g).

sor with 16GB of RAM and an NVIDIA GeForce GTX650
GPU. The runtime for a 640× 480 image is approximately
80 milliseconds.

5. Results
We preformed several tests in order to evaluate the qual-

ity and accuracy of the proposed algorithm. We show the
algorithm’s accuracy in recovering the specular lighting of
the scene and why it is vital to use an IR image instead of an
RGB image. In addition, we demonstrate that the proposed
framework is state of the art, both visually and qualitatively.

In order to test the specular lighting framework, we took
3D objects from the Stanford 3D1, 123D Gallery2 and
Blendswap3 repositories. For each model we assigned a
mix of diffuse and specular shaders and rendered them un-
der an IR lighting scenario described in Section 4.1 (single
light source) and natural lighting scenarios (multiple light
sources) using the Cycles renderer in Blender. To get a
ground truth specularity map for each lighting scenario, we
also captured each model without its specular shaders and
subtracted the resulting images.

We tested the accuracy of our model in recovering spec-
ularities for each lighting setup. We used Eqs. (2) and (5) to

1http://graphics.stanford.edu/data/3Dscanrep/
2http://www.123dapp.com/Gallery/content/all
3http://www.blendswap.com/



Model Median Error (mm) 90th % (mm)
Wu et al. Or-El et al. Proposed Wu et al. Or-El et al. Proposed

Armadillo 0.335 0.318 0.294 1.005 0.821 0.655
Dragon 0.337 0.344 0.324 0.971 0.917 0.870

Greek Statue 0.306 0.281 0.265 0.988 0.806 0.737
Stone Lion 0.375 0.376 0.355 0.874 0.966 0.949

Cheeseburger 0.191 0.186 0.168 0.894 0.756 0.783
Pumpkin 0.299 0.272 0.242 0.942 0.700 0.671

Table 2: Quantitative comparison of depth accuracy in specular areas. All values are in millimeters.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Results for the simulated Armadillo scene, (a) Input IR
image. (b) Ground truth model. (c) Initial Depth. (d)-(f) Recon-
structions of Wu et al., Or - El et al. and our proposed method
respectively. (g)-(i) Magnifications of a specular area. Note how
our surface is free from distortions in specular areas unlike the
other methods.

get the diffuse and ambient shading maps under IR lighting.
For natural lighting, the diffuse and ambient shading were
recovered using first and second order spherical harmon-
ics in order to have two models for comparison. In both
lighting scenarios the surface normals were calculated from
the ground truth depth map. The specular lighting is recov-
ered using Eqs. (3) and (7), where the IR lighting direction
~lp is calculated using the camera-projector calibration pa-
rameters. In the natural lighting scene we use the relevant
normalized coefficients of the first and second order spher-
ical harmonics in order to compute the general lighting di-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Results for the simulated Pumpkin scene, (a) Input IR
image. (b) Ground truth model. (c) Initial Depth. (d)-(f) Recon-
structions of Wu et al., Or - El et al. and our proposed method
respectively. (g)-(i) Magnifications of a specular area. Note the
lack of hallucinated features in our method.

rection. From the results in Table 1 we can infer that the
specular irradiance can be accurately estimated in our pro-
posed lighting model as opposed to the natural lighting (NL
SH1/2) where estimation errors are much larger. The rea-
son for large differences is that, as opposed to our lighting
model, under natural illumination there are usually multiple
light sources that cause specularities whose directions can-
not be recovered accurately. An example of this can be seen
in Figure 4.

To measure the depth reconstruction accuracy of the pro-
posed method we performed experiments using both syn-
thetic and real data. In the first experiment, we used the



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Results for the lab conditions experiment, (a) Input IR
image. (b) Initial Depth. (c) Result after bilateral smoothing. (d)-
(f) Reconstructions of Wu et al., Or - El et al. and the proposed
method, respectively. (g)-(i) Magnifications of a specular region.

3D models with mixed diffuse and specular shaders and
rendered their IR image and ground truth depth maps in
Blender. We then quantized the ground truth depth map
to 1.5mm units in order to simulate the noise of a depth
sensor. We applied our method to the data and defined
the reconstruction error as the absolute difference between
the result and the ground truth depth maps. We com-
pared our method’s performance with the methods proposed
in [12, 22]. The comparisons were performed in the specu-
lar regions of the objects according to the ground truth spec-
ularity maps. The results are shown in Table. 2. A qualita-
tive evaluation of the accuracy when the method is applied
to the synthetic data can be seen in Figures. 5 and 6.

In the second experiment we tested our method under
laboratory conditions using a structured-light 3D scanner to
capture the depth of several objects. The camera-projector
system was calibrated according to the method suggested
in [25]. We reduced the number of projected patterns in
order to obtain a noisy depth profile. To approximate an IR
lighting scenario, we used a monochromatic projector and
camera with dim ambient illumination.

We also tested the algorithm with an Intel Real-Sense
depth scanner, using the IR image and depth map as inputs.
The camera-projector calibration parameters were acquired

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Results from Intel’s Real-Sense depth scanner, (a) Input
IR image. (b) Initial Depth. (c) Result after bilateral smoothing.
(d)-(f) Reconstructions of Wu et al., Or - El et al. and the proposed
method, respectively. (g)-(i) Magnifications of a specular region.

from the Real-Sense SDK platform. Although no accurate
ground-truth data was available for these experiments, we
note that while all methods exhibit sufficient accuracy in
diffuse areas, the proposed method is the only one that per-
forms qualitatively well in highly specular areas as can be
seen in Figures 7 and 8.

6. Conclusions

We presented a new framework for depth refinement of
specular objects based on shading cues from an IR image.
To the best of our knowledge, the proposed method is the
first depth refinement framework to explicitly account for
specular lighting. An efficient optimization scheme enables
our system to produce state of the art results at real-time
rates.
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