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Figure 1. Our proposed framework–StyleSDF– learns to jointly generate high resolution, 3D-consistent images (top rows) along with their
detailed view-consistent geometry represented with SDFs (depth maps in bottom rows), while being trained on single view RGB images.

Abstract

We introduce a high resolution, 3D-consistent image and
shape generation technique which we call StyleSDF. Our
method is trained on single-view RGB data only, and
stands on the shoulders of StyleGAN2 for image gener-
ation, while solving two main challenges in 3D-aware
GANs: 1) high-resolution, view-consistent generation of
the RGB images, and 2) detailed 3D shape. We achieve
this by merging a SDF-based 3D representation with a
style-based 2D generator. Our 3D implicit network renders
low-resolution feature maps, from which the style-based
network generates view-consistent, 1024×1024 images.
Notably, our SDF-based 3D modeling defines detailed
3D surfaces, leading to consistent volume rendering. Our
method shows higher quality results compared to state of
the art in terms of visual and geometric quality.

Project Page: https://stylesdf.github.io/

1. Introduction

StyleGAN architectures [37–39] have shown an un-
precedented quality of RGB image generation. They are,
however, designed to generate single RGB views rather than
3D content. In this paper, we introduce StyleSDF, a method
for generating 3D-consistent 1024×1024 RGB images and
geometry, trained only on single-view RGB images.

Related 3D generative models [9, 52, 57, 61, 66] present
shape and appearance synthesis via coordinate-based multi-
layer-perceptrons (MLP). These works, however, often re-
quire 3D or multi-view data for supervision, which are dif-
ficult to collect, or are limited to low-resolution rendering
outputs as they rely on expensive volumetric field sampling.
Without multi-view supervision, 3D-aware GANs [9,52,61]
typically use opacity fields as geometric proxy, forgoing
well-defined surfaces, which results in low-quality depth
maps that are inconsistent across views.
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At the core of our architecture lies the SDF-based 3D
volume renderer and the 2D StyleGAN generator. We use
a coordinate-based MLP to model Signed Distance Fields
(SDF) and radiance fields which render low resolution fea-
ture maps. These feature maps are then efficiently trans-
formed into high-resolution images using the StyleGAN
generator. Our model is trained with an adversarial loss that
encourages the networks to generate realistic images from
all sampled viewpoints, and an Eikonal loss that ensures
proper SDF modeling. These losses automatically induce
view-consistent, detailed 3D scenes, without 3D or multi-
view supervision. The proposed framework effectively ad-
dresses the resolution and the view-inconsistency issues of
existing 3D-aware GAN approaches that base on volume
rendering. Our system design opens the door for interesting
future research in vision and graphics that involves a latent
space of high quality shape and appearance.

Our approach is evaluated on the FFHQ [38] and
AFHQ [13] datasets. We demonstrate through extensive ex-
periments that our system outperforms the state-of-the-art
3D-aware methods, measured by the quality of the gener-
ated images and surfaces, and their view-consistencies.

2. Related Work
In this section, we review related approaches in 2D im-

age synthesis, 3D generative modeling, and 3D-aware im-
age synthesis.
Generative Adversarial Networks: State-of-the-art Gen-
erative Adversarial Networks [21] (GANs) can synthesize
high-resolution RGB images that are practically indistin-
guishable from real images [36–39]. Substantial work has
been done in order to manipulate the generated images, by
exploring meaningful latent space directions [1–3, 14, 26,
30, 62, 63, 67, 68], introducing contrastive learning [64], in-
verse graphics [79], examplar images [33] or multiple input
views [42]. While 2D latent space manipulation produces
realistic results, these methods tend to lack explicit cam-
era control, have no 3D understanding, require shape priors
from 3DMM models [67, 68], or reconstruct the surface as
a preprocessing step [42].
Coordinate-based 3D Models: While multiple 3D rep-
resentations have been proposed for generative modeling
[24, 73, 75], recent coordinate-based neural implicit mod-
els [10,46,57] stand out as an efficient, expressive, and dif-
ferentiable representation.

Neural implicit representations (NIR) have been widely
adopted for learning shape and appearance of objects [4,11,
15, 22, 47, 53, 55, 59, 60], local parts [19, 20], and full 3D
scenes [7, 12, 31, 58] from explicit 3D supervisions. More-
over, NIR approaches have been shown to be a powerful
tool for reconstructing 3D structure from multi-view 2D su-
pervision via fitting their 3D models to the multi-view im-
ages using differentiable rendering [48, 54, 66, 77].

Two recent seminal breakthroughs are NeRF [48] and
SIREN [65]. NeRF introduced the use of volume render-
ing [34] for reconstructing a 3D scene as a combination of
neural radiance and density fields to synthesize novel views.
SIREN replaced the popular ReLU activation function with
sine functions with modulated frequencies, showing great
single scene fitting results. We refer readers to [70] for
more comprehensive review.

Single-View Supervised 3D-Aware GANs: Rather than
relying on 3D or multi-view supervisions, recent ap-
proaches aim at learning a 3D generative model from a
set of unconstrained single-view images. These methods
[9,18,27,32,44,49–52,61] typically optimize their 3D rep-
resentations to render realistic 2D images from all randomly
sampled viewpoints using adversarial loss.

Most inline with our work are methods that use implicit
neural radiance fields for 3D-aware image and geometry
generation (GRAF [61] and Pi-GAN [9]). However, these
methods are limited to low-resolution outputs due to the
high computational costs of the volume rendering. In ad-
dition, the use of density fields as proxy for geometry pro-
vides ample amount of leeway for the networks to produce
realistic images while violating 3D consistency, leading to
inconsistent volume rendering w.r.t. the camera viewpoints
(the rendered RGB or depth images are not 3D-consistent).

To improve the surface quality, ShadeGAN [56] intro-
duces a shading-guided pipeline, and GOF [74] gradually
shrink the sampling region of each camera ray. However,
the image output resolution (128×128) is still bounded by
the computational burden of the volume rendering. GI-
RAFFE [52] proposed a dual stage rendering process. A
backbone volume renderer generates low resolution feature
maps (16×16) that are passed to a 2D CNN to generate out-
puts at 256×256 resolution. Despite improved image qual-
ity, GIRAFFE outputs lack view consistency. The hairstyle,
facial expression, and sometimes the object’s identity, are
entangled with the camera viewpoint inputs, likely because
3D outputs at 16×16 are not descriptive enough.

Concurrent works [8, 17, 25, 80] adopt two-stage ren-
dering process or smart sampling procedures for high-
resolution image generation, yet these works still do not
model well-defined, view-consistent 3D geometry.

3. Algorithm
3.1. Overview

Our framework consists of two main components. A
backbone conditional SDF volume renderer, and a 2D style-
based generator [39]. Each component also has an accom-
panied mapping network [38] to map the input latent vector
into modulation signals for each layer. An overview of our
architecture can be seen in Figure 2.

To generate an image, we sample a latent vector z from
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Figure 2. StyleSDF Architecture: (Left) Overall architecture: SDF volume renderer takes in a latent code and camera parameters, queries
points and view directions in the volume, and projects the 3D surface features into the 2D view. The projected features are fed to the Styled
2D generator that creates the high resolution image. (Right) our SDF volume renderer jointly models volumetric SDF and radiance field,
providing a well defined and view consistent geometry.

the unit normal distribution, and camera azimuth and eleva-
tion angles (φ, θ) from the dataset’s estimated object pose
distribution. For simplicity, we assume that the camera is
positioned on the unit sphere and directed towards the ori-
gin. Next, our volume renderer outputs the signed distance
value, RGB color, and a 256 element feature vector for all
the sampled volume points along the camera rays. We cal-
culate the surface density for each sampled point from its
SDF value and apply volume rendering [48] to project the
3D surface features into 2D feature map. The 2D generator
then takes the feature map and generates the output image
from the desired viewpoint. The 3D surface can be visu-
alized with volume-rendered depths or with the mesh from
marching-cubes algorithm [43].

3.2. SDF-based Volume Rendering

Our backbone volume renderer takes a 3D query point, x
and a viewing direction v. Conditioned by the latent vector
z, it outputs an SDF value d(x, z), a view dependent color
value c(x,v, z), and feature vector f(x,v, z). For clarity,
we omit z from hereon forward.

The SDF value indicates the distance of the queried point
from the surface boundary, and the sign indicates whether
the point is inside or outside of a watertight surface. As
shown in VolSDF [76], the SDF can be serve as a proxy for
the density function used for the traditional volume render-

ing [48]. Assuming a non-hollow surface, we convert the
SDF value into the 3D density fields σ,

σ(x) = Kα (d(x)) =
1

α
· Sigmoid

(−d(x)
α

)
, (1)

where α is a learned parameter that controls the tightness of
the density around the surface boundary. α values that ap-
proach 0 represent a solid, sharp, object boundary, whereas
larger α values indicate a more “fluffy” object boundary. A
large positive SDF value would drive the sigmoid function
towards 0, meaning no density outside of the surface, and
a high-magnitude negative SDF value would push the sig-
moid towards 1, which means maximal density inside the
surface.

We render low resolution 64×64 feature maps and color
images with volume rendering. For each pixel, we query
points on a ray that originates at the camera position o, and
points at the camera direction r(t) = o+ tv. and calculate
the RGB color and feature map as follows:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),v)dt,

F(r) =

∫ tf

tn

T (t)σ(r(t))f(r(t),v)dt,

where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
,

(2)



which we approximate with discrete sampling along rays.
Unlike NeRF [48] and other 3D-aware GANs such as Pi-

GAN [9] and StyleNeRF [25] we do not use stratified sam-
pling. Instead, we split [tn, tf ] into N evenly-sized bins,
draw a single offset term uniformly δ ∼ U [0, tf−tnN ], and
sample N evenly-spaced points,

ti =
tf − tn
N

· i+ δ, where i ∈ {0, . . . , N − 1}. (3)

In addition, we forgo hierarchical sampling altogether,
thereby reducing the number of samples by 50%. We dis-
cuss the merits of our sampling strategy in the supplemen-
tary material.

The incorporation of SDFs provides clear definition of
the surface, allowing us to extract the mesh via Marching
Cubes [43]. Moreover, the use of SDFs along with the re-
lated losses (Sec. 3.4.1) leads to higher quality geometry in
terms of expressiveness and view-consistency (as shown in
Sec. 4.4), even with a simplified volume sampling strategy.

The architecture of our volume renderer mostly matches
that of Pi-GAN [9]. The mapping network consists of a
3 layer MLP with LeakyReLU activation and maps an in-
put latent code z into w space and then generates frequecny
modulation, γi, and phase shift, βi, for each layer of the vol-
ume renderer. The volume rendering network contains eight
shared modulated FC layers with SIREN [65] activation:

φi(x) = sin (γi(Wi · x+ bi) + βi) , i ∈ {0, . . . , 7} (4)

where Wi and bi are the weight matrix and bias vector of
the fully connected layers. The volume renderer then splits
into two paths, the SDF path and the color path. The SDF
path is implemented using a single FC layer denoted φd.
In the color path, the output of the last shared layer φ7 is
concatenated with the view direction input and passed into
one additional FiLM siren layer [9] φf followed by a single
FC layer φc that generates the color output. To summarize:

σ(x) = Kα ◦ φd ◦ φ7 ◦ . . . ◦ φ0(x),
f(x,v) = φf (φ7 ◦ . . . ◦ φ0(x),v)
c(x,v) = φc ◦ φf .

(5)

The output features of φf are passed to the 2D style-
based generator, and the generated low resolution color im-
age is fed to a discriminator for supervision. The discrimi-
nator is identical to the Pi-GAN [9] discriminator.

We observed that using view-dependent color c(x,v)
tends to make the networks overfit to biases in the dataset.
For instance, people in FFHQ [38] tend to smile more when
facing the camera. This makes the facial expression change
with the viewpoint although the geometry remains consis-
tent. However, when we removed view-dependent color, the
model did not converge. Therefore, to get view consistent
images, we train our model with view dependent color, but
fix the view direction v to the frontal view during inference.

3.3. High-Resolution Image Generation

Unlike NeRF [48], where the reconstruction loss is com-
puted individually for each ray, adversarial training needs a
full image to be present. Therefore, scaling a pure volume
renderer to high-resolution quickly becomes untractable,
as we need to sample over 107 queries to render a single
1024×1024 image. As such, we seek to fuse a volume ren-
derer with the StyleGAN2 network that has a proven capa-
bilities of synthesizing high-resolution 2D images.

To combine the two architectures, we truncate the early
layers of the StyleGAN2 generator up until the 64×64 layer
and feed the generator with the 64 × 64 feature maps gen-
erated by the backbone volume renderer. In addition, we
cut StyleGAN2’s mapping network from eight layers to five
layers, and feed it with the w latent code from the volume
renderer’s mapping network, instead of the original latent
vector z. The discriminator is left unchanged.

This design choice allows us to enjoy the best of both
worlds. The volume renderer learns the underline geom-
etry, explicitly disentangles the object’s pose from it’s ap-
pearance, and enables full control of the camera position
during inference. The StyleGAN2 generator upsamples the
low resolution feature maps, adds high frequency details,
and mimics complex light transport effects such as sub-
surface scattering and inter-reflections that are difficult to
model with the low-resolution volume renderer.

3.4. Training

We employ a two-stage training procedure. First we train
only the SDF-based volume renderer, then we freeze the
volume renderer weights, and train the StyleGAN generator.

3.4.1 Volume Renderer training

We use the non-saturating GAN loss with R1 regulariza-
tion [45], denoted Ladv , to train our volume renderer. On
top of that, we use 3 additional regularization terms.
Pose Alignment Loss: This loss is designed to make sure
that all the generated objects are globally aligned. On top of
predicting whether the image is real or fake, the discrimina-
tor also tries to predict the two input camera angles (φ, θ).
We penalize the prediction error using a smoothed L1 loss:

Lview =

{
(θ̂ − θ)2 if |θ̂ − θ| ≤ 1

|θ̂ − θ| otherwise
. (6)

This loss is applied on both view angles for the generator
and the discriminator, however, since we don’t have ground
truth pose data for the original dataset, this loss is only ap-
plied to the fake images in the discriminator pass.
Eikonal Loss: This term ensures that the learned SDF is
physically valid [23]:

Leik = Ex(‖∇d(x)‖2 − 1)2. (7)



Figure 3. Generated high-res RGB images (top), low-res volume rendered images (inset) and depth maps (bottom) for the same view . The
64×64 volume rendering output features are passed to the StyleGAN generator for high-resolution RGBs. Note that the object identities
and structures are preserved between the image pairs. Furthermore, as can be seen in the jaguar and cheetah examples, the StyleGAN
generator occasionally corrects badly modeled background signal from the volume renderer.

Minimal Surface Loss: We encourage the 3D network to
describe the scenes with minimal volume of zero-crossings
to prevent spurious and non-visible surfaces from being
formed within the scenes. That is, we penalize the SDF
values that are close to zero:

Lsurf = Ex (exp(−100|d(x)|)) . (8)

The overall loss function is then,

Lvol = Ladv+λviewLview+λeikLeik+λsurfLsurf , (9)

where λview = 15, λeik = 0.1, and λsurf = 0.05. The
weight of the R1 loss is set according to the dataset.

3.4.2 Styled Generator Training

We train our Styled generator with the same losses and opti-
mizer parameters as the original implementation, a non sat-
urating adversarial loss, R1 regularization, and path regu-
larization. As in the volume renderer training, we set the
weight of the R1 regularization according to the dataset.

While it is possible to have a reconstruction loss between
the low-resolution and high-resolution output images, we
find that the inductive bias of the 2D convolutional archi-
tecture and the sharing of style codes is strong enough to
preserve important structures and identities between the im-
ages (Fig. 3).

4. Experiments
4.1. Datasets & Baselines

We train and evaluate our model on the FFHQ [38] and
AFHQ [13] datasets. FFHQ contains 70,000 images of di-
verse human faces at 1024 × 1024 resolution, which are

centered and aligned according to the procedure introduced
in Karras et al. [36]. The AFHQ dataset consists of 15,630
images of cats, dogs and wild animals at 512× 512 resolu-
tion. Note that the AFHQ images are not aligned and con-
tain diverse animal species, posing a significant challenge
to StyleSDF.

We compare our method against the state-of-the-art
3D-aware GAN baselines, GIRAFFE [52], PiGAN [9],
GRAF [61] and HoloGAN [49], on the above datasets by
measuring the quality of the generated images, shapes, and
rendering consistency.

4.2. Qualitative Evaluations

Comparison to Baseline Methods: We compare the visual
quality of our images to the baseline methods by rendering
the same identity (latent code) from 4 different viewpoints,
results are shown in Figure 4. To compare the quality of the
underlying geometry, we also show the surfaces extracted
by marching cubes from StyleSDF, Pi-GAN, and GRAF
(Note that GIRRAFE and HoloGAN pipelines do not gener-
ate shapes). Our method generates superior images as well
as more detailed 3D shapes. Additional generation results
from our method can be seen in Figures 1 and 3.

Novel View Synthesis: Since our method learns strong 3D
shape priors, it can generate images from viewpoints that
are not well represented in the dataset distribution. Ex-
amples of out-of-distribution view synthesis are displayed
in Figure 5.

Video Results: We urge readers to view our project’s web-
site that includes a larger set of results and videos to better
appreciate the multi-view capabilities of StyleSDF.

https://stylesdf.github.io/
https://stylesdf.github.io/
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Figure 4. Qualitative image and geometry comparisons. We compare our sample renderings and corresponding 3D meshes against the
state-of-the-art 3D-aware GAN approaches ( [9, 49, 52, 61]). Note that HoloGAN and GIRAFFE are unable to create 3D mesh from
their representations. Both HoloGAN (a) and GRAF (b) produce renderings that are of lower quality. The 3D mesh reconstructed from
PiGAN’s learned opacity fields reveal noticeable artifacts (c). While GIRAFFE (d) produces realistic low-resolution images, the identity
of the person often changes with the viewpoints. StyleSDF (d) produces 1024×1024 realistic view consistent RGB, while also generating
high quality 3D. Best viewed digitally.

4.3. Quantitative Image Evaluations

We evaluate the visual quality and the diversity of the
generated images using the Frechet Inception Distance
(FID) [28] and Kernel Inception Distance (KID) [6]. We
compare our scores against the aforementioned baseline
models on the FFHQ and AFHQ datasets.

All the baseline models are trained following their given
pipelines to generate 256 × 256 images, with the excep-
tion of Pi-GAN, which is trained on 128× 128 images and
renders 256 × 256 images at inference time. The results,
summarized in Table 1, show that StyleSDF performs con-
sistently better than all the baselines in terms of visual qual-
ity. It is also on par with reported scores from concurrent

works such as StyleNerf [25] and CIPS-3D [80].

4.4. Volume Rendering Consistency

Volume rendering has emerged as an essential technique
to differentiably optimize a volumetric field from 2D im-
ages, as its wide-coverage point sampling leads to stable
gradient-flow during training. Notably, volume rendering
excels at modeling thin surfaces or transparent objects, e.g.,
human hairs, which are difficult to model with explicit sur-
faces, e.g., 3D meshes.

However, we notice that the volume rendering of existing
3D-aware GANs [9, 61] using unregularized opacity fields
severely lacks view-consistency due to the absence of multi-



Figure 5. Out-of-distribution view synthesis (field of view and
camera angles). Although StyleSDF was trained with a fixed field
of view, increasing and decreasing FOV by 25% (columns 1-2)
still looks realistic. Similarly with 1.5 standard deviations of the
camera angles distribution used for training (columns 3-6).

Dataset: FFHQ AFHQ

FID KID FID KID

HoloGAN 90.9 75.5 95.6 77.5
GRAF 79.2 55.0 129.5 85.1
PiGAN 83.0 85.8 52.4 30.7
GIRAFFE 31.2 20.1 33.5 15.1

Ours 11.5 2.65 12.8 4.47

Table 1. FID and KID evaluations. All datasets were evaluated
at a resolution of 256 × 256. Our method demonstrates the best
performance. Note that we report KID × 1000 for simplicity.

Dataset: FFHQ AFHQ

PiGAN 11.04 8.66
Ours 0.40 0.63

Table 2. Depth consistency results. We measure the average modi-
fied Chamfer distance (Eq. (10)) over 1,000 random pairs of depth
maps for each dataset. Each pair contains one frontal view depth
map and one side view depth map. Our method demonstrates sig-
nificantly stronger consistency (see Fig. 6).

view supervision. That is, depth values, computed as the
expected termination distance of each camera ray [16, 48],
from different viewpoints do not consistently overlap in the
global coordinate. This means that neural implicit features
are evaluated at inconsistent 3D locations, undermining the
inductive bias of the implicit 3D representation for view-
consistent renderings. As such, we measure and compare
the depth map consistency across viewpoints to gauge the
quality of volume rendering for each system.

We sample 1,000 identities, render their 128×128 depth
maps from the frontal view and a fixed side view, and com-
pute the alignment between the two views. The depth value
is defined as the expected termination distance of 128 uni-
formly sampled points along each ray. Note that we remove
non-terminating rays whose accumulated opacity is below
0.5. We set the side viewpoint to be 1.5× the standard de-

Ours PiGAN Ours PiGAN

Figure 6. Visual comparison of depth consistency. We visual-
ize the nearest neighbour distances (in sample bin units) from the
frontal depth maps to side-view depth maps. Our SDF-based tech-
nique significantly improves depth consistency compared to the
baseline.

viation of the azimuth distribution in training. See supple-
mentary for more experiment details.

To measure the alignment errors between the depth
points, we adopt a modified Chamfer distance metric. I.e.,
we replace the usual mean distance definition with the me-
dian of the distances to nearest points,

CD(S1, S2) = med
x∈S1

min
y∈S2

‖x− y‖22 + med
y∈S2

min
x∈S1

‖x− y‖22,
(10)

for some point sets S1 and S2. This metric is more robust
to outliers that come from occlusion and background mis-
match that we are not interested in measuring. To put the
metric at scale, we normalize the distances by the volume
sampling bin size.

As shown in Table 2, our use of SDF representation
dramatically improves depth consistency compared to the
strongest current baseline PiGAN [9]. Figure 6 shows the
sample depth map pairs used for the evaluation and the error
visualizations (in terms of distance to the closest point). The
color map shows that our depth maps align well except for
the occluded regions and backgrounds. In contrast, PiGAN



Figure 7. RGB rendering view-consistency. We render two side
views (a) and project them to the frontal view (b) using the depth
maps rendered from each views, ignoring occluded pixels. Note
the high simmilarity between the reprojected images and the ren-
dered frontal view (c), as can be seen from the error map (d). The
error map shows mean absolute pixel difference for RGB channels
(0-255) for the right side-view image. The errors are mostly from
regions with high frequency textures and geometry (e.g., ear, hair),
or occlusion boundaries (right forehead).

depth maps show significant noise and spurious concave re-
gions (e.g., nose of the dog).

Moreover, we show that our consistent volume render-
ing naturally leads to high view-consistency for our RGB
renderings. As shown in Fig. 7, we visualize the reprojec-
tion of side-view renderings to the frontal view, using the
depth values from volume rendering. The reprojected pix-
els closely match those of the original frontal view, indicat-
ing that our high-res multi-view RGB renderings and depth
maps are all consistent to each other. Refer to supplemen-
tary for more detailed experiments.

5. Limitations & Future Work

StyleSDF might exhibit minor aliasing and flickering,
e.g., in teeth area. We leave it for future work since we ex-
pect those two to be corrected similarly to Mip-NeRF [5]
and Alias-free StyleGAN [37]. See example at left two
columns of Figure 8. Specularities or other strong light-
ing effects currently introduce depth dents since StyleSDF
might find it hard to disambiguate with no multi-view data
(Figure 8 third column from the left). Adjusting the losses
to include those effects is left for future work. Similarly,
we do not currently separate foreground from background
and use a single SDF for the whole image. Figure 8 (right
column) shows how the cat’s face is rendered properly, but
the transition to the background is too abrupt, potentially
diminishing photorealism. A potential solution could be
adding an additional volume renderer to model the back-

Figure 8. Limitations: potential aliasing artifacts, e.g., in teeth
(left two columns). Specularities and shadows may create artifacts
(3rd column from the left, cheek and eyes area), high curvatures
are enhanced with radiance scaling filter [71]. Inconsistencies in
background might decrease photorealism (right column).

ground as suggested in NeRF++ [78].
Finally, one may consider two improvements to the al-

gorithm. First one is training the two parts as a single end-
to-end framework, instead of the current two networks. In
such case the StyleGAN2 discriminator would send proper
gradients back to the volume renderer to produce optimal
feature maps, which might lead to even more refined geom-
etry. However, end-to-end training poses a trade-off. The
increased GPU memory consumption of this setup would
require either a decreased batch size, which might hurt the
overall performance, or increased training time if we keep
the batch size and accumulate gradients. Second improve-
ment could be to create a volume sampling strategy tied
to SDF’s surface boundary (to reduce the number of query
points at each forward pass) and eliminate the need for a
2D CNN that upsamples feature maps. That would tie 3D
geometry directly to the high resolution image.

6. Conclusions
We introduced StyleSDF, a method that can render

1024x1024 view-consistent images along with the detailed
underlying geometry. The proposed architecture combines
SDF-based volume renderer and a 2D StyleGAN network
and is trained to generate realistic images for all sampled
viewpoints via adversarial loss, naturally inducing view-
consistent 3D scenes. StyleSDF represents and learns com-
plex 3D shape and appearance without multi-view or 3D
supervision, requiring only a dataset of single-view images,
suggesting a new route ahead for neural 3D content genera-
tion, editing, and reconstruction.
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Appendix
In this appendix we provide additional qualitative and

quantitative results on our approach, along with the tech-
nical details that supplement the main paper. In Sec. Ap-
pendix A, we discuss possible societal impacts of our tech-
nology. Then, we present additional experiments on the
view-consistency of our RGB renderings via image repro-
jection (Sec. Appendix B). We further demonstrate the qual-
ity of our 3D shapes in Sec. Appendix C. In Sec. Ap-
pendix D, we describe the content of the supplementary
videos and introduce a geometry-aware noise injection pro-
cedure to reduce flickering. Next, we discuss implementa-
tion details and the merits of our proposed sampling strat-
egy in (Sec. Appendix E and Appendix F respectively. We
conduct ablation studies on our approach in Appendix G).
Finally, we continue our discussion on our method’s limita-
tions in Sec. Appendix H.

A. Societal Impacts
Image and 3D model-generating technologies (e.g.,

deepfakes) could be used for spreading misinformation
about existing or non-existing people [29,40]. Our proposed
technology allows generating multi-view renderings of a
person, and might be used for creating more realistic fake
videos. These problems could potentially be addressed by
developing algorithms to detect neural network-generated
content [72]. We refer readers to [69] for strategies of mit-
igating negative social impacts of neural rendering. More-
over, image generative models are optimized to follow the
training distribution, and thus could inherit the ethnic, gen-
der, or other biases present in the training dataset. A pos-
sible solution is creating a more balanced dataset, e.g., as
in [35].

B. View Consistency of RGB Renderings
B.1. Volume Rendering Consistency

The consistent volume rendering from our SDF-based
technique naturally leads to high view consistency of our
RGB renderings. To show the superior 3D-consistency of
our SDF-based volume rendering, we measure the reprojec-
tion error when a side view pixels are warped to the frontal
view. We randomly sample 1,000 identities and render the
depth and RGB images at 256×256 and set the side view to
be 1.5× the standard deviation of the azimuth distribution in
training (which is 0.45 radians for FFHQ and 0.225 radians
for AFHQ). We reproject the side-view RGB renderings to
the frontal view using the side-view depth, and we do not ig-
nore occluded pixels. We measure color inconsistency with
the median of pixel-wise L1 error in RGB (0 - 255), aver-
aged over the 1,000 samples. The use of median effectively
removes the large errors coming from occlusions. Note that

Dataset: FFHQ AFHQ

PiGAN [9] 14.7 16.5
Ours (volume renderer) 2.9 2.6

Table 3. Quantitative view-consistency comparison of the RGB
renderings. We evaluate the color error of the RGB volume ren-
derings between the frontal view and the reprojection from a fixed
side view. The error is measured as the median of the per-pixel
mean absolute difference (0 - 255). We average the color incon-
sistency over 1,000 samples for each dataset. Our underlying SDF
geometry representation promotes superior 3D consistency. (also
see Fig. 9).

since PiGAN is trained with center-cropped FFHQ images
(resized to 320× 320 and center-cropped to 256× 256), we
apply the same transformation on our results before com-
puting the median.

As shown in Tab. 3, StyleSDF presents significantly im-
proved color consistency compared to the strongest current
baseline, PiGAN [9]. Fig. 9 shows the sample depth and
color rendering pairs used for the evaluation, along with the
pixelwise error maps. The error maps demonstrate that our
volume RGB renderings have high view consistency, as the
large reprojection errors are mostly in the occluded regions.
On the other hand, PiGAN’s reprojections do not align well
with the frontal view, showing big errors also near the eyes,
mouth, in presence of specular highlights, etc.

B.2. High-Resolution RGB Consistency

In Fig. 10, we present the reprojection experiment results
using our high-resolution RGB outputs. As in the volume
rendering consistency experiment, we reproject the RGB
pixels from non-frontal views (with varying azimuth and
elevation) to the frontal views. The results demonstrate the
strong 3D-consistency of our high-resolution images, as the
reprojected non-frontal images are similar to the frontal ren-
derings. However, as mentioned in the limitation section of
the main paper, the current implementation of StyleGAN2
comes with significant aliasing of the high-frequency com-
ponents, resulting in noticeable pixel errors on regions with
high-frequency details, e.g., hair, ears, eyes, etc. To iden-
tify the errors in the high-frequency details, we visualize
the mean reprojection images. I.e. we project non-frontal
views and average the pixel values across views. As can be
seen in Fig. 11, the mean reprojection images closely repli-
cate the identities and important structures of the frontal
view, demonstrating strong view-consistencies. The error
map confirms that most of the errors are concentrated on
the high-frequency noise of the StyleGAN generator.

C. Qualitative 3D results
We demonstrate the consistency of our 3D representa-

tion by overlaying the point clouds from the frontal and



O
u

rs
 (

v
o

lu
m

e 
re

n
d

er
er

)

FFHQ (azimuth=0.45 radians) AFHQ (azimuth=0.225 radians)

P
iG

A
N

Side depth Side rendering Reprojection Frontal rendering Error Side depth Side rendering Reprojection Frontal rendering Error

Figure 9. Qualitative view consistency comparison of RGB renderings. We project the rendering from a side view using its corresponding
depth map to the frontal view. We compare the reprojection to the frontal-view rendering and compute the error map showing mean
absolute difference in RGB channels (0 - 255). Our SDF-based technique generate superior depth quality and significantly improves the
view-consistency of the RGB renderings. Most of our errors concentrate on the occlusion boundaries whereas PiGAN’s errors spread
across the whole subject (e.g., eyes, mouth, specular highlights, fur patterns).

side view depth maps (Fig. 12b). The visualization, shown
in two different colors, clearly shows high consistency be-
tween the depth maps. To show the quality and plausi-
bility of our 3D models, we extract meshes on our SDFs
via marching cubes and visualize them in extreme angles
(Fig. 12c).

D. Video Results

Since our 3D-consistent high-resolution image genera-
tion can be better appreciated with videos, we have at-
tached 24 sequences in the supplementary material, featur-

ing view-generation results on the two datasets using two
different camera trajectories. For each identity, we provide
two videos, one for RGB and another for depth rendering.
The videos are presented in the project’s website.

D.1. Geometry-Aware StyleGAN Noise

Even though the images shown in the main paper on
multi-view RGB generation look highly realistic, we note
that for generating a video sequence, the random noise of
StyleGAN2 [38], when naı̈vely applied to 2D images, could
result in severe flickering of high-frequency details between
frames. The flickering artifacts are especially prominent for

https://stylesdf.github.io/
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Figure 10. View-consistency visualization of high-resolution renderings. We use the side-view depth maps (first rows) to warp the side-
view RGB renderings (second rows) to the frontal view (first column). The reprojected pixels that pass the occlusion testing are shown
in the third row. We compare the reprojections with the frontal-view renderings and show the per-pixel error maps (fourth rows). Our
reprojections well align with the frontal view with errors mostly in the occlusion boundaries and high-frequency details.

the AFHQ dataset due to high-frequency textures from the
fur patterns.

Therefore, we aim at reducing this flickering by adding
the Gaussian noise in a 3D-consistent manner, i.e., we want
to attach the noise on the 3D surface. We achieve this by
extracting a mesh (at 128 resolution grid) for each sequence
from our SDF representation and attach a unit Gaussian
noise to each vertex, and render the mesh using vertex col-
oring. Since higher resolution intermediate features require
up to 1024×1024 noise map, we subdivide triangle faces of
the extracted mesh once every layer, starting from 128×128
feature layers. The video results show that the geometry-
aware noise injection reduce the flickering problem on the
AFHQ dataset, but noticeable flickering still exist. Further-
more, we observe that the geometry-aware noise slightly
sacrifices individual frame’s image quality, presenting less
pronounced high-frequency details, likely due to the change
of the Gaussian noise distribution during the rendering pro-
cess. The videos rendered with geometry-aware noise can
be viewed at the project’s website.

E. Implementation Details

E.1. Dataset Details

FFHQ: We trained FFHQ with R1 regularization loss of 10.
The camera field of view was fixed to 12◦ and its azimuth
and elevation angles are sampled from Normal distributions
with zero mean and standard deviations of 0.3 and 0.15 re-
spectively. We set the near and far fields to [0.88, 1.12] and
sample 24 points per ray during training .We trained our
volume renderer for 200k iterations and the 2D-Styled gen-
erator for 300k iterations.

AFHQ: The AFHQ dataset contains training and validation
sets for 3 classes, cats, dogs and wild animals. We merged
all the training data into a single training set. We apply
R1 regularization loss of 50. Both azimuth and elevation
angles are sampled from a Gaussian distribution with zero
mean and standard deviation of 0.15 and a camera field of
view of 12◦. The near and far fields as well as the number
of samples per ray are identical to the FFHQ setup. Our

https://stylesdf.github.io/
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Figure 11. Color consistency visualization with mean faces. We reproject the RGB renderings from the side views to the frontal view (as
in Fig. 10). We show the mean reprojections that pass the occlusion testing and their differences to the frontal-view renderings. The mean
reprojections are well aligned with the frontal rendering. The majority of the errors are in the high-frequency details, generated from the
random noise maps in the StyleGAN component. This demonstrates the strong view consistency of our high-resolution renderings.

(a) Color (b) Overlaid Depth Maps (c) Extracted Marching Cubes

Figure 12. Consistent and plausible 3D shapes. (a) Color images. (b) Overlaid point clouds extracted from frontal and side view depth
maps. (c) Marching cubes meshes, rendered from extreme angles.

volume renderer as well as the 2D-Styled generator were
trained for 200k iterations.

E.2. Training Details

Sphere Initialization: During our experiments we have no-
ticed that our SDF volume renderer can get stuck at a local
minimum, which generates concave surfaces. To avoid this
optimization failure, we first initialize the MLP to generate
an SDF of a sphere centered at the origin with a fixed radius.

We analytically compute the signed distance of the sampled
points from the sphere and fit the MLP to match these dis-
tances. We run this procedure for 10k iterations before the
main training. The importance of sphere initialization is
discussed in Appendix G.

Training setup: Our system is trained in a two-stage strat-
egy. First, we train the backbone SDF volume renderer on
64×64 images with a batch size of 24 using the ADAM [41]
optimizer with learning rates of 2 ·10−5 and 2 ·10−4 for the
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Figure 13. We compare extracted meshes using our sampling strategy vs. stratified sampling. Note the noise induced by stratified sampling.
(zoom in for details)
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With Minimal
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Figure 14. Minimal surface loss ablation study. We visualize the volume rendered RGB and depth images from volume renderers trained
with and without the minimal surface loss. The Depth map meshes are visualized from the front and side views. Note how a model trained
with the minimal surface loss generates smoother surfaces and is less prone to shape-radiance ambiguities, e.g., specular highlights are
baked into the geometry.

generator and discriminator respectively and β1 = 0, β2 =
0.9. We accumulate gradients in order to fit to the GPU
memory constraints. For instance, a setup of 2 NVIDIA
A6000 GPUs (a batch of 12 images per GPU) requires the
accumulation of two forward passes (6 images per forward
pass) and takes roughly 3.5 days to train. We use an expo-
nential moving average model during inference.

In the second phase, we freeze the volume renderer
weights and train the 2D styled generator with identical
setup to StyleGAN2 [39]. This includes ADAM optimizer
with 0.002 learning rate and β1 = 0, β2 = 0.99, equalized
learning rate, lazy R1 and path regularization, batch size of
32, and exponential moving average. We trained the styled
generator on 8 NVIDIA TeslaV100 GPUs for 7 days.

F. Sampling Strategy
NeRF [48], along with existing 3D-aware GANs like Pi-

GAN [9], rely on hierarchical sampling strategy for obtain-
ing more samples near the surface. Our use of SDFs al-

lows sampling the volume with smaller number of samples
without sacrificing the surface quality, thereby reducing the
memory footprints and simplifying the implementation.

Stratified sampling randomizes the distance between ad-
jacent samples along each ray, adding undesired noise to the
volume rendering (Fig. 13). The randomness also amplifies
flickering in RGB videos. Our sampling strategy ensures
that the integration intervals are of the same length, which
eliminates the noise and results in smoother volume render-
ing outputs.

G. Ablation studies
We perform two ablation studies to show the neces-

sity of the minimal surface loss (see main paper) and the
sphere initialization. As can be seen in Figure 14, on top
of preventing spurious and non-visible surfaces from be-
ing formed, the minimal surface loss also helps to disam-
biguate between shape and radiance. Penalizing values that
are close to zero essentially minimizes the surface area and
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Figure 15. Sphere initialization ablation study. We visualize volume-rendered RGB and depth images from volume renderers trained with
and without sphere initialization. The Depth map meshes are visualized from the front and side views. Note how a model trained without
model sphere initialization generates concave surfaces.

makes the network prefer smooth SDFs.
In Figure 15, we show the importance of the sphere ini-

tialization in breaking the concave/convex ambiguity. With-
out properly initializing the weights, the network gets stuck
at a local minimum that generates concave surfaces. Al-
though concave surfaces are physically incorrect, they can
perfectly explain multi-view images, as they are essentially
the ”mirror” surface. Concave surfaces cause the images to
be rendered in the opposite azimuth angle, an augmentation
that the discriminator cannot detect as fake. Therefore, the
generator cannot recover from the this local minima.

H. Limitations (continued)
As mentioned in the main paper, our high-resolution

generation network is based on the implementation of Style-
GAN2 [38], and thus might experience the same aliasing
and flickering at regions with high-frequency details (e.g.,
hair), which are recently addressed in Alias-free GAN [37]
or Mip-NeRF [5]. Moreover, we observe that the recon-
structed geometry for human eyes contain artifacts, charac-
terized by concave, instead of convex, eye balls. We believe
that these artifacts often lead to slight gaze changes along
with the camera views. As stated in the main paper, our cur-
rent implementation of volume rendering during inference
uses fixed frontal view directions for RGB queries c(x,v),
and thus cannot express moving specular highlights along
with the camera.

I. Additional Results
We show uncurated set of images generated by our net-

works (Fig. 16).



Figure 16. Uncurated high-resolution RGB images that are randomly generated by StyleSDF.
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