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ABSTRACT 
Algorithmic decision-making systems are increasingly used 
throughout the public and private sectors to make important 
decisions or assist humans in making these decisions with 
real social consequences. While there has been substantial re-
search in recent years to build fair decision-making algorithms, 
there has been less research seeking to understand the factors 
that affect people’s perceptions of fairness in these systems, 
which we argue is also important for their broader acceptance. 
In this research, we conduct an online experiment to better 
understand perceptions of fairness, focusing on three sets of 
factors: algorithm outcomes, algorithm development and de-
ployment procedures, and individual differences. We find that 
people rate the algorithm as more fair when the algorithm 
predicts in their favor, even surpassing the negative effects of 
describing algorithms that are very biased against particular 
demographic groups. We find that this effect is moderated 
by several variables, including participants’ education level, 
gender, and several aspects of the development procedure. Our 
findings suggest that systems that evaluate algorithmic fair-
ness through users’ feedback must consider the possibility of 
“outcome favorability” bias. 
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INTRODUCTION 
Algorithmic systems are widely used in both the public and 
private sectors for making decisions with real consequences 
on people’s lives. For example, ranking algorithms are used to 
automatically determine the risk of undocumented immigrants 
*The work was done while the author was at the University of Min-
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to public safety [43]. Filtering algorithms are used in job hiring 
and college admission processes [5, 48]. Scoring algorithms 
are used in loan approval [64]. 

While algorithms have the potential to make decision-making 
more efficient and reliable [17, 27, 41, 45, 59], concerns 
about their fairness may prevent them from being broadly ac-
cepted [2]. In one case, Amazon abandoned an algorithmic 
recruitment system for reviewing and ranking applicants’ re-
sumes because the system was biased against women [18]. In 
another case, an algorithm for predicting juvenile delinquency 
in St. Paul, Minnesota was derailed due to public outcry from 
the community over concerns about bias against children of 
color [66]. 

There has been an increasing focus in the research community 
on understanding and improving the fairness of algorithmic 
decision-making systems. For example, fairness-aware (or 
discrimination-aware) machine learning research attempts to 
translate fairness notions into formal algorithmic constraints 
and develop algorithms subject to such constraints (e.g., [9, 
15, 16, 36, 46, 54]) However, there is a disconnect between the 
theoretical discrimination-aware machine learning approaches 
and the behavioral studies investigating how people perceive 
fairness of algorithms that affect their lives in real-world con-
texts (e.g., [52, 82]). People’s perception of fairness can be 
complicated and nuanced. For example, one interview study 
found that different stakeholders could have different notions 
of fairness regarding the same algorithmic decision-making 
system [52]. Other studies suggested disagreements in peo-
ple’s fairness judgements [35, 78]. Our research attempts to 
connect the two lines of literature by asking how the the theo-
retical fairness notion translates into perceptions of fairness 
in practical scenarios, and how other factors also influence 
people’s perception of fairness. 

In this research, we systematically study what factors influence 
people’s perception of the fairness of algorithmic decision-
making processes. The first set of factors we investigate 
is algorithm outcomes. Specifically, we explore both the 
individual-level and group-level outcomes: whether the al-
gorithm is favorable or unfavorable to specific individuals, and 
whether the algorithm is biased or unbiased against specific 
groups. Specifically, the biased outcome is operationalized 
by showing high error rates in protected groups, while the 
unbiased outcome is showing very similar error rates across 
different groups. Note that this operationalization is directly 
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aligned with the prevalent theoretical fairness notion in the 
fairness-aware machine learning literature, which asks for ap-
proximate equality of certain statistics of the predictor, such 
as false positive rates and false-negative rates, across different 
groups. 

In addition to algorithm outcomes (i.e., whether an algo-
rithm’s prediction or decision is favorable to specific individ-
uals or groups), we also investigate development procedures 
(i.e., how an algorithm is created and deployed), and individ-
ual differences (i.e., the education or demographics of the 
individual who is evaluating the algorithm). Specifically, we 
investigate the following research questions: 

• How do (un)favorable outcomes to individuals and 
(un)biased treatments across groups affect the perceived 
fairness of algorithmic decision-making? 

• How do different approaches to algorithm creation and de-
ployment (e.g., different levels of human involvement) af-
fect the perceived fairness of algorithmic decision-making? 

• How do individual differences (e.g., gender, age, race, edu-
cation, and computer literacy) affect the perceived fairness 
of algorithmic decision-making? 

To answer these questions, we conducted a randomized on-
line experiment on Amazon Mechanical Turk (MTurk). We 
showed participants a scenario, stating “Mechanical Turk is 
experimenting with a new algorithm for determining which 
workers earn for a Masters Qualification.” 1 We asked MTurk 
workers to judge the fairness of an algorithm that the workers 
can personally relate to. MTurk workers are stakeholders in 
the problem, and their reactions are representative of laypeople 
who are affected by the algorithm’s decisions. 

In the description we presented to the participants, we included 
a summary of error rates across demographic groups and a 
description of the algorithm’s development process, manipu-
lating these variables to test different plausible scenarios. We 
included manipulation check questions to ensure that the par-
ticipants understood how the algorithm works. We showed 
each participant a randomly chosen algorithm output (either 
“pass” or “fail”), to manipulate whether the outcome would be 
personally favorable or not. Participants then answered sev-
eral questions to report their perception of the fairness of this 
algorithmic decision-making process. We concluded the study 
with a debriefing statement, to ensure that participants under-
stood this was a hypothetical scenario, and the algorithmic 
decision was randomly generated. 

We found that perceptions of fairness are strongly increased 
both by a favorable outcome to the individual (operationalized 
by a “pass” decision for the master qualification), and by the 
absence of biases (operationalized by showing very similar 
error rates across different demographic groups). The effect of 
a favorable outcome at individual level is larger than the effect 
of the absence of bias at group level, suggesting that solely 
satisfying the statistical fairness criterion does not guarantee 
perceived fairness. Moreover, the effect of a favorable or 
1“Masters” workers can access exclusive tasks that are often associ-
ated with higher payments [57]). 

unfavorable outcome on fairness perceptions is mitigated by 
additional years of education, while the negative effect of 
including biases across groups is exacerbated by describing a 
development procedure with “outsourcing” or a higher level of 
transparency. Overall, our findings point to the complexity of 
understanding perceptions of fairness of algorithmic systems. 

RELATED WORK AND HYPOTHESIS 
There is a growing body of work that aims to improve fair-
ness, accountability, and interpretability of algorithms, es-
pecially in the context of machine learning. For example, 
much fairness-aware machine learning research aims to build 
predictive models that satisfy fairness notions formalized as 
algorithmic constraints, including statistical parity [25], equal-
ized opportunity [36], and calibration [45]. For many of these 
fairness measures there are algorithms that explore trade-offs 
between fairness and accuracy [4, 10, 26, 58]. For interpreting 
a trained machine learning model, there are three main tech-
niques: sensitivity or gradient-based analysis [70, 47], build-
ing mimic models [37], and investigating hidden layers [8, 
82]. However, Veale et al. found that these approaches and 
tools are often built in isolation of specific users and user con-
text [82]. HCI researchers have conducted surveys, interviews, 
and analyses on public tweets to understand how real-world 
users perceive and adapt to algorithmic systems [20, 21, 29, 
33, 51, 53]. However, to our knowledge, the perceived fairness 
of algorithmic decision-making has not been systematically 
studied. 

Human Versus Algorithmic Decision-making 
Social scientists have long studied the sense of fairness in 
the context of human decision-making. One key question is 
whether we can apply the rich literature on the fairness of 
human decision-making to the fairness of algorithmic decision 
making. 

On one hand, it is a fundamental truth that an algorithm is 
not a person and does not warrant human treatment or attribu-
tion [63]. Prior work shows that people treat these two types 
of decision-making differently (e.g., [23, 50, 75]). For exam-
ple, researchers describe “algorithm aversion,” where people 
tend to trust humans more than algorithms even when the al-
gorithm makes more accurate predictions. This is because 
people tend to quickly lose confidence in a algorithm after see-
ing that it makes mistakes [23]. Another study pointed out that 
people attribute fairness differently: while human managers’ 
fairness and trustworthiness were evaluated based on the per-
son’s authority, algorithms’ fairness and trustworthiness were 
evaluated based on efficiency and objectivity [50]. On the 
other hand, a series of experimental studies demonstrated that 
humans mindlessly apply social rules and expectations to com-
puters [63]. One possible explanation is that the human brain 
has not evolved quickly enough to assimilate the fast develop-
ment of computer technologies [69]. Therefore, it is possible 
that research on human decision-making can provide insights 
on how people will evaluate algorithmic decision-making. 

In this paper, we examine the degree to which several factors 
affect people’s perception of fairness of algorithmic decision-
making. We study factors identified by the literature on fair-
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ness of human decision-making — algorithm outcomes, de-
velopment procedures, and interpersonal differences — as we 
believe that they may also apply in the context of algorithmic 
decision-making. 

Effects of Algorithm Outcomes 
When people receive decisions from an algorithm, they will 
see the decisions as more or less favorable to themselves, and 
more or less fair to others. Meta-review by Skitka et al. re-
vealed that outcome favorability is empirically distinguishable 
from outcome fairness [77]. 

Our first hypothesis seeks to explore the effects of outcome fa-
vorability on perceived fairness. Psychologists and economists 
have studied perceived fairness extensively, particularly in the 
context of resource allocation (e.g., [7, 22, 56, 80]). They 
found that the perception of fairness will increase when indi-
vidual receive outcomes that are favorable to them (e.g., [80]). 
A recent survey study on 209 litigants showed that litigates 
who receive favorable outcomes (e.g., a judge approves their 
request) will perceive their court officials to be more fair and 
will have more positive emotions towards court officials [40]. 
Outcome favorability is also associated with fairness-related 
consequences. Meta-analysis shows that outcome favorability 
explains 7% of the variance in organizational commitment and 
24% of the variance in task satisfaction [77]. 

Hypothesis 1a: People who receive a favorable outcome think 
the algorithm is more fair than people who receive an unfa-
vorable outcome. 

Social scientists suggest that people judge outcome fairness by 
“whether the proportion of their inputs to their outcomes are 
comparable to the input/outcome ratios of others involved in 
the social exchange” [77], often referred to as “equity theory” 
or “distributive justice” [3, 39, 83]. Contemporary theorists 
suggest that distributive justice is influenced by which distribu-
tive norm people use in the relational context (e.g., [19, 55]), 
the goal orientation of the allocator (e.g., [19]), the resources 
being allocated (e.g., [76]), and sometimes political orientation 
(e.g., [56]). Empirical studies show that a college admission 
process is perceived as more fair if it does not consider gender 
and if it is not biased against any gender groups [62]. Another 
study show that an organization will be perceived as less fair 
when managers treat different employees differently [49]. 

In the context of algorithmic decision-making, one common 
way of operationalizing equity and outcome fairness is “overall 
accuracy equality”, which considers the disparity of accuracy 
between different subgroups (e.g., different gender or racial 
groups) [9]. The lower the accuracy disparity between differ-
ent groups, the less biased the algorithm is. We hypothesize 
that people will judge an algorithm to be more fair when they 
know it is not biased against any particular subgroups. 

Hypothesis 1b: People perceive algorithms that are not bi-
ased against particular subgroups as more fair. 

Prior literature provides mixed predictions regarding the rela-
tive effects of outcome favorability (i.e., whether individuals 
receive favorable outcome or not) and outcome fairness (i.e., 
whether different groups receive fair and unbiased treatments) 

on the perceived fairness of the algorithm. A majority of the 
researchers believe that individuals prioritize self-interest over 
fairness for everyone. Economists believe that people are in 
general motivated by self-interest and are relatively less sensi-
tive towards group fairness [72, 73]. Specifically, individuals 
are not willing to sacrifice their own benefits to pursue a group 
common good in resource redistribution tasks [28]. A similar 
pattern has been found in the workplace. A survey of hotel 
workers showed that people displayed the highest level of 
engagement and the lowest rate of burnout when they were 
over-benefited in their work, receiving more than they think 
they deserved. In addition, people tend to justify an unequal 
distribution when they are favored in that distribution [60]. 

On the other hand, research also shows that people prioritize 
fairness over personal benefits in certain situations. For exam-
ple, bargainers might be reluctant to benefit themselves when 
it harms the outcomes of others, contingent on their social 
value orientations, the valence of outcomes, and the setting 
where they negotiate [81]. In an analysis of presidential vote 
choices, researchers found that voters are more likely to vote 
for the president who will treat different demographic sub-
groups equally, independent of voters’ own group membership 
[61]. Whether the decision takes place in public or in private 
has a strong impact. In a study conducted by Badson et al., par-
ticipants had to choose between allocation of resources to the 
group as a whole or to themselves alone. When the decision 
was public, the proportion allocated to the group was 75%. 
However, once the decisions became private, the allocation to 
the group dropped to 30% [7]. 

Algorithmic decisions are often private, not under the public 
scrutiny. Therefore, we hypothesize that people will prioritize 
self-interest when they react to the algorithm’s decisions. As a 
result, the effect of a favorable outcome will be stronger than 
the effect of an unbiased treatment. 

Hypothesis 1c: In the context of algorithmic decision-making, 
the effect of a favorable outcome on perceived fairness is 
larger than the effect of being not biased against particular 
groups. 

Effects of Algorithm Development Procedures 
Procedural fairness theories concentrate on the perceived fair-
ness of the procedure used to make decisions (e.g., [31]). For 
example, Gilliland examined the procedural fairness of the 
employment-selection system in terms of ten procedural rules, 
including job relatedness, opportunity to perform, reconsid-
eration opportunity, consistency of administration, feedback, 
selection information, honesty, interpersonal effectiveness of 
administrator, two-way communication, propriety of questions 
and equality needs [34]. 

Specifically, transparency of the decision-making process has 
an important impact on the perceived procedural fairness. For 
example, a longitudinal analysis highlighted the importance 
of receiving an explanation from the organization about how 
and why layoffs were conducted, in measuring the perceived 
fairness of layoff decisions [84]. 

In the context of algorithmic decision-making, transparency 
also influences people’s perceived fairness of the algorithms. 
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Researchers have shown that some level of transparency of 
an algorithm would increase users’ trust of the system even 
when the user’s expectation is not aligned with the algorithm’s 
outcome [44]. However, providing too much information 
about the algorithm might have the risk of confusing people, 
and therefore reduce the perceived fairness [44]. 

Hypothesis 2a: An algorithmic decision-making process that 
is more transparent is perceived as more fair than a process 
that is less transparent. 

The level of human involvement in the creation and deploy-
ment of an algorithm might also play an important role in 
determining perceptions of fairness. Humans have their own 
bias. For example, sociology research shows that hiring man-
agers tend to favor candidates that are culturally similar to 
themselves, making hiring more than an objective process of 
skill sorting [71]. 

However, in the context of algorithmic decision-making, hu-
man involvement is often viewed as a mechanism for correct-
ing machine bias. This is especially the case when people 
become increasingly aware of the limitation of algorithms in 
marking subjective decisions. In tasks that require human 
skills such as hiring and work evaluation, human decisions 
are perceived as more fair, because algorithms are perceived 
as lacking intuition and the ability to make subjective judg-
ments [50]. The aversion to algorithmic decision-making 
could be mitigated when users contribute to the modification 
of the algorithms [24]. Recent research on the development 
of decision-making algorithms has advocated for a human-
in-the-loop approach, in order to make the algorithm more 
accountable [42, 68, 74, 86]. In sum, human involvement is 
often considered as a positive influence in decision-making 
systems, due to the human’s ability to recognize factors that 
are hard to quantify. Thus, it is reasonable to hypothesize that 
people will evaluate algorithms as more fair when there are 
human insights involved in the different steps of the algorithm 
creation and deployment. 

Hypothesis 2b: An algorithmic decision-making process that 
has more human involvement is perceived as more fair than a 
process that has less human involvement. 

Effects of Individual Differences 
In this research, we also investigate the extent to which the 
perceptions of algorithmic fairness are influenced by people’s 
personal characteristics. Specifically, we look at two potential 
influential factors: education and demographics. 

We first consider education. We believe both general education 
and computer science education may influence perceptions of 
fairness. People with greater knowledge in general and about 
computers specifically may simply have a better sense for what 
types of information an algorithm might process, and how that 
information might be processed to come to a decision. We are 
not aware of research that has investigated the link between 
computer literacy and perceptions of fairness in algorithmic 
decision-making, but research has investigated related issues. 
For example, prior work has looked at how people form “folk 
theories” of algorithms’ operation, often leading to incorrect 
notions of their operation and highly negative feelings about 

the impact on their self interest [20]. We speculate that users 
with greater computer literacy will have more realistic expec-
tations, leading them to more often agree with the perspective 
that an algorithm designed to make decisions is likely to be a 
fair process. 

Pierson, et al. conducted a survey of undergraduate students 
before and after an hour-long lecture and discussion on al-
gorithmic fairness, finding that students’ views changed; in 
particular, more students came to support the idea of using 
algorithms rather than judges (who might themselves be inac-
curate or biased) in criminal justice [65]. This finding suggests 
that education, particularly education to improve algorithmic 
literacy, may lead to a greater perception of algorithmic fair-
ness. 

Hypothesis 3a: People with a higher level of education will 
perceive algorithmic decision-making to be more fair than 
people with a lower level of education. 

Hypothesis 3b: People with high computer literacy will per-
ceive algorithmic decision-making to be more fair than people 
with low computer literacy. 

It is possible that different demographic groups have different 
beliefs concerning algorithmic fairness. Research has found 
that privileged groups are less likely to perceive problems 
with the status quo; for example, the state of racial equality 
is perceived differently by whites and blacks in the United 
States [14]. 

There is a growing body of examples documenting algorithmic 
bias against particular groups of people. For example, an 
analysis by Pro Publica found that an algorithm for predicting 
each defendant’s risk of committing future crime was twice as 
likely to wrongly label black defendants as future criminals, 
as compared with white defendants [6]. In another case, an 
algorithmic tool for rating job applicants at Amazon penalized 
resumes containing the word “women’s” [18]. 

There has been little work directly investigating the link be-
tween demographic factors and perceptions of algorithmic 
fairness. One recent study did not find differences between 
men and women in their perceptions of fairness in an algorith-
mic decision-making process, but did find that men were more 
likely than women to prefer maximizing accuracy over mini-
mizing racial disparities in a survey describing a hypothetical 
criminal risk prediction algorithm [65]. 

Based on the growing body of examples of algorithmic bias 
against certain populations, we predict that different demo-
graphic groups will perceive fairness differently: 

Hypothesis 3c: People in demographic groups that typically 
benefit from algorithmic biases (young, white, men) will per-
ceive algorithmic decision-making to be more fair than people 
in other demographic groups (old, non-white, women). 

METHOD 
To test the hypotheses about factors influencing people’s per-
ceived fairness of algorithmic decision-making, we conducted 
a randomized between-subjects experiment on MTurk. The 
context for this experiment is a description of an “experimental” 
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algorithmic decision-making process that determines which 
MTurk workers are awarded a Master qualification. 

Study platform 
MTurk is an online crowdsourcing workplace where over 
500,000 workers complete microtasks and get paid by re-
questers [13]. Masters workers are the “elite groups of workers 
who have demonstrated accuracy on specific types of HITs on 
the Mechanical Turk marketplace” [1]. Since Masters workers 
can access exclusive tasks that are usually associated with 
higher payments, the Master qualification is desirable among 
MTurk workers [57]. 

The Master qualification is a black-box process to workers. 
According to Amazon’s FAQs page, Mechanical Turk uses 
“statistical models that analyze Worker performance based on 
several Requester-provided and marketplace data points” to 
decide which workers are qualified [1]. 

Experiment Design 

Manipulations Conditions Descriptions shown to participants 
Algorithm Outcome (H1) 

(Un)favorable 
Outcome 

Favorable 
The algorithm has processed your HIT history, 
and the result is positive (you passed the Master qualification test). 

Unfavorable 
The algorithm has processed your HIT history, 
and the result is negative (you did not pass the Master qualification test). 

(Un)biased 
Treatment 

Biased 

Percent errors by gender: Male 2.6%, Female 10.7% 
Percent errors by age: Above 45 9.8%, Between 25 and 45 3.6%, Below 25 1.2% 
Percent errors by race: White 0.7%, Asian 6.4%, Hispanic 5.8%, 
Native American 6.7%, Other 14.1% 

Unbiased 

Percent errors by gender: Male 6.4%, Female 6.3% 
Percent errors by age: Above 45 6.4%, Between 25 and 45 6.2%, Below 25 6.5% 
Percent errors by race: White 6.5%, Asian 6.4%, Hispanic 6.4%, 
Native American 6.5%, Other 6.2% 

Algorithm Creation and Deployment (H2) 

Transparency 
High 

The organization publishes many aspects of this computer algorithm on the web, 
including the features used, the optimization process, and benchmarks 
describing the process’s accuracy. 

Low 
The organization does not publicly provide any information 
about this computer algorithm. 

Design 
CS Team 

The algorithm was built and optimized by a team of computer scientists 
within the organization. 

Outsourced 
The algorithm was outsourced to a company that specializes 
in applicant assessment software 

CS and HR 
The algorithm was built and optimized by a team of computer scientists 
and other MTurk staff across the organization. 

Model 
Machine 
Learning 

The algorithm is based on machine learning techniques trained to recognize 
patterns in a very large dataset of data collected by the organization over time 

Rules 
The algorithm has been hand-coded with rules provided by 
domain experts within the organization. 

Decision 
Mixed 

The algorithm’s decision is then considered on a case-by-case basis by 
MTurk staff within the organization. 

Algorithm 
-only The algorithm is used to make the final decision. 

Table 1: Summary of the experimental manipulations 
shown to participants. 

We designed an online between-subjects experiment in which 
participants were randomly assigned into a 2 (biased vs. un-
biased treatment to groups) × 2 (favorable vs. unfavorable 
outcome to individuals) × 2 (high vs. low transparency) × 3 
(outsourced vs. computer scientists vs. mixed design team) 
× 2 (machine learning vs. expert rule-based model) × 2 
(algorithm-only vs. mixed decision) design. These manipu-
lations allow us to test the effects of algorithm outcome on 
perceived fairness (Hypothesis 1) and the effects of algorithm 
development procedures on perceived fairness (Hypothesis 2). 
We asked participants to provide their demographic informa-
tion, which allows us to test Hypothesis 3. The experiment 
design and manipulations are summarized in Table 1. 
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Algorithm Outcome: We explore two aspects of algorithm 
outcome, (un)favorable outcome to individual and (un)biased 
treatment to group. 

• (Un)favorable outcome: Participants randomly received a 
decision and were told the decision was was generated by 
the algorithm. The decision (“pass” or “fail”) corresponds 
to either a favorable or an unfavorable outcome. 

• (Un)biased treatment: In both conditions, participants 
were shown tables of error rates across demographic groups 
(see Figure 1). In the unbiased condition, participants saw 
very similar error rates across different demographic groups, 
which (approximately) satisfies the fairness criterion of 
“overall accuracy equality” proposed by Berk et al. [9]; 
in the biased condition, participants saw different error rates 
across different groups (we used error rates from a real com-
puter vision algorithm from a previous study [12]), which 
violates the same statistical fairness criterion. 

Algorithm Development Procedure: We also manipulated 
the transparency and level of human involvement in the algo-
rithm creation and deployment procedure. Participants were 
shown a description of the algorithm corresponding to their 
randomly-assigned conditions. The specific text of each con-
dition is shown in Table 1. 

Figure 1: Overview of the procedure of the experiment for 
each participant. 

Procedure 
The experiment consisted of five steps, as shown in Figure 1. 

Step 1. Participants were shown information about the algo-
rithm in two parts. The first part provided details about the 
algorithm development and design process. We created 24 
(3×2×2×2) different variations for this part, manipulating the 
four aspects of algorithm development (transparency, design, 
model, and decision). The second part of the description is a 
table of error rates across different demographic subgroups. 
The error rates are either consistent or differentiated across 
groups. Participants were required to answer quiz questions to 
ensure that they paid attention to the description. If they par-
ticipants gave the incorrect answer, they could go back to read 
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the description again. However, they could not proceed to the 
next step until they answered all the quiz questions correctly. 

Step 2. We asked participants to self-evaluate whether they 
think the algorithm will give them a pass or fail result for a 
Master qualification. 

Step 3. We asked participants to submit their worker ID. 
We explained that our algorithm has a way to retrieve their 
HIT history and that the algorithm will evaluate their Master 
qualification based on their prior performance. Then, we 
showed participants their outcome: pass or fail. While we told 
participants that this result was generated by the algorithm, it 
was, in fact, randomly generated (we did not feed their worker 
ID and HIT history to an algorithm). 

Step 4. We asked participants to answer a set of survey ques-
tions related to the fairness of the algorithm and collected their 
demographic information. We also included the following 
attention check question: “This is an attention check. Choose 
Disagree”. At the end of the survey, participants were given 
the opportunity to freely express their opinions regarding the 
algorithmic decision-making process in an open-ended ques-
tion. 

Step 5. We concluded the survey with a debriefing statement, 
where we clarified the deceptions in our study design. We 
clearly stated that (a) the description about the MTurk Master 
qualification algorithm is made-up, both in terms of the algo-
rithm error rate and the development and deployment process 
and (b) the result of the Master qualification algorithm was 
randomly generated. 

Operationalization: 
Dependent variables: 
• Perceived fairness: Participants rated their fairness per-

ceptions towards the decision-making algorithm after they 
learned the design process and experienced the outcome. 
Their perceived fairness is measured by six questions 
adapted from previous studies [32, 51]. All questions are on 
a 7-point likert scale, from “strongly disagree” to “strongly 
agree”. The questions included “the process described is 
fair”, “the process described is fair to job-seekers”, “the 
process described is fair to the employer organization”, “the 
decisions that the organization makes as a result of this 
process will be fair”, “the process described will lead the or-
ganization to make great hiring decisions”, and “the process 
described will make mistakes”. The mean for perceived fair-
ness in our data is 4.0, and the median is 4.3. The internal 
consistency (Cronbach’s alpha) of the six questions is 0.91, 
which is above the “excellent” standard of 0.9. 

Independent variables: 
• Algorithm Outcomes: 

– (Un)favorable Outcome: This variable takes the value 
of 1 for participants who receive the “unfavorable” 
outcome, and 0 for “favorable”. 

– (Un)biased Treatment: This variable takes the value 
of 1 for participants who viewed “biased” error rates 
across groups, and 0 for “unbiased”. 

• Algorithm Design and development: 
– Transparency: This variable takes the value of 1 for 

participants who viewed the “high” transparency de-
scription, and 0 for “low”. 

– Design: We operationalize the three types of design 
(outsourced, cs, cs and hr) as two dummy variables. 
CS team and CS and HR, which take the value of 1 for 
participants in that respective condition. 

– Model: This variable takes the value of 1 for partici-
pants who viewed the “machine learning” description, 
and 0 for “rules”. 

– Decision: This variable takes the value of 1 for par-
ticipants who viewed “mixed”, and 0 for “algorithm-
only”. 

• Individual differences: 
– Degree: We asked participants to report their highest 

completed degrees. We grouped the participants into 
three categories, “above Bachelor’s degree”, “Bache-
lor’s degree”, and “below Bachelor’s degree”. We use 
“above Bachelor’s degree” as a baseline in the analysis. 

– Computer Literacy: We developed 8 questions to eval-
uate participants’ computer literacy, which assessed 
participants’ computer skills, familiarity, and knowl-
edge. Six questions are on a 7-point Likert scale, and 
two are on a 4-point scale. We normalized the 4-point 
scale answers into 7-point scale and composited them 
to calculate the final literacy score. The three ques-
tions on computer skills are adapted from [79] and 
[51]. The two questions on computer familiarity are 
adapted from [85]. Since our study is specifically about 
decision-making algorithms, which is different from 
previous studies measuring computer literacy, we de-
veloped three new questions focusing on participants’ 
knowledge of algorithms. The original questionnaires 
are included in the supplementary material. The in-
ternal consistency (Cronbach’s alpha) for all the eight 
questions is 0.74, which is above the “acceptable” stan-
dard. The mean for computer literacy in our data is 
4.94 and the median is 5. In our analysis, we grouped 
the numeric computer literacy factor into a binary cat-
egorical variable where scores lower than or equal to 
5 are labelled “Low Literacy” and otherwise “High 
Literacy” (the baseline). 

– Age: We grouped the age data provided by participants 
into three categories, “below 25”, “between 25–45”, 
and “above 45”. We use “Between 25–45” as a base-
line to create two dummy variables on age. 

– Gender: We provided an optional text input box at the 
end of survey to allow participants to indicate their pre-
ferred gender. In our analysis, we only included data 
from participants who identify themselves as either 
male or female. 

– Race: We allowed participants to indicate all race cate-
gories that apply to them. We then created a dummy 
variable for each racial group, which resulted in five 
variables. For each variable, belonging to the racial 
group is labelled as 1 and 0 otherwise. 
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Control Variables: 
• Self-expectation: This variable takes the value of 1 for 

participants who expected to pass the Master qualification 
before receiving the algorithm outcome, and 0 for partici-
pants who expected to fail. 

Participants 
We recruited 590 participants from MTurk in January and 
February 2019. All participants are based in the United States 
and have overall HIT approval rates of at least 80%. Each 
participant received $1.50 as a compensation after finishing 
the experiment. We excluded 11 participants who failed the 
attention check question in our data analysis, leaving 579 
responses. 153 participants reported a self-expectation of 
“fail”, while the remaining 426 answered “pass”. The random 
algorithm gave 292 passes and 287 fails; 287 participants 
received an outcome that aligned with their self-expectation 
while 292 received decisions that did not align. 

RESULTS 

Descriptive Statistics and Statistical Analysis 

Categorical Variables 

Above 45 
Btw 25-45 
Below 25 

Age 

423 
107 
49 

Female 
Male 
Other 

Gender 

205 
335 
39 

Above 
Bachelor 

Below 

Degree 

70 
247 
262 

High 
Low 

Computer 
Literacy 

264 
315 

Continuous Variable 
Min 1st Qu. Median Mean 3rd Qu. Max S.D. 

Perceived Fairness 1.0 2.8 4.3 4.0 5.2 7.0 1.5 

Table 2: Descriptive statistics of the 579 responses 

The descriptive statistics of major variables are shown in Table 
2. We used linear regression models to analyze the data and 
test our hypotheses, with perceived fairness as the dependent 
variable, and algorithm outcomes, development procedures, 
and interpersonal differences as the independent variables. We 
also controlled for the self-assessment of whether they will 
pass or not. We report coefficients, p-values, standard errors, 
R2 and adjusted R2 values. 

(Un)favorable outcome vs. (Un)biased treatment 
The models in Table 3 illustrate the impacts of (un)favorable 
outcome to individual and (un)biased treatment to group on the 
perception of fairness. Model 1 tests the effect of (un)favorable 
outcome to an individual, model 2 tests the effect of (un)biased 
treatment to a group, and model 3 includes both variables. All 
models include a control variable of self-expectation to control 
for the participants’ own expectations of whether they would 
pass or fail. 

Model 1 predicts that participants who were told that they 
failed the Master qualification test will rate the fairness of the 
algorithm 1.040 (95% CI: [0.819, 1.260]) point lower on a 
7-point scale, compared to participants who were told that they 
passed (p<0.001). Additional two-sample t-tests show that the 
difference of perceived fairness between receiving a favorable 
outcome and an unfavorable one is significant, both when par-
ticipants expect themselves to fail the qualification algorithm 

Perceived Fairness 
Model 1 Model 2 Model 3 

Coef.(S.E.) Coef.(S.E.) Coef.(S.E.) 
Unfavorable Outcome 

vs. Favorable Outcome −1.040∗∗∗ (0.112) −1.034∗∗∗ (0.111) 
Biased Treatment 

vs. Unbiased Treatment −0.410∗∗∗ (0.119) −0.396∗∗∗ (0.111) 
Self-expected Pass 

vs. Self-expected Fail 
Constant 

0.682∗∗∗ (0.127) 
4.063∗∗∗ (0.122) 

0.637∗∗∗ (0.135) 
3.785∗∗∗ (0.133) 

0.655∗∗∗ (0.126) 
4.278∗∗∗ (0.135) 

R2 0.164 0.059 0.182 
Adjusted R2 0.161 0.055 0.177 

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

∗Note: p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001 

Table 3: Regression models predicting perceived fairness 
from (un)favorable outcome to an individual (Model 1), 
(un)biased treatment across groups (Model 2), and both 
factors together (Model 3). 

Figure 2: The effects of algorithm outcome and self-
expectation on perceived fairness. The negative effect of 
unfavorable outcome is significant no matter how the par-
ticipants evaluated themselves. Error bars indicate 95% 
confidence intervals. ∗ p<0.05; ∗∗∗ p<0.001 

(p=0.02) and when they expect to pass the qualification algo-
rithm (p<0.001). Figure 2 illustrates that this negative effect 
of unfavorable outcome is significant no matter how the users 
self-evaluated. Model 2 predicts that participants will rate 
the biased algorithm 0.410 (95% CI: [0.175, 0.644]) points 
lower on a 7-point scale (p<0.01), compared with the unbiased 
algorithm. Therefore, both H1a and H1b are supported. 

The effect of an unfavorable algorithm outcome is stronger 
than the effect of a biased algorithm. We compared the ad-
justed R2 for models 1 and 2, finding that algorithm outcome 
explains more variance of the perceived fairness than whether 
the algorithm is biased or not (model 1 adjusted R2=0.161, 
model 2 adjusted R2=0.055). Model 3 compares the effect 
more explicitly. The effect size of (un)favorable outcome on 
perceived fairness (Coef.=-1.034, p<0.001, 95% CI: [-1.253 
-0.816]) is twice as much as the effect size of (un)biased al-
gorithm (Coef.=-0.396, p<0.001, 95% CI: [-0.615 -0.177]), 
which supports H1c. 

Algorithm Creation and Deployment 
Hypothesis 2 relates to how different algorithm creation and 
deployment procedures affect perceived fairness. Model 1 
in Table 4 examines the main effects of different algorithm 
development procedures on perceived fairness, which allows 
us to test hypothesis 2a and 2b. Model 2 in Table 4 examines 

Paper 684 Page 7



 CHI 2020 Paper

Perceived Fairness 
Model 1 Model 2 

Coef. (S.E.) Coef. (S.E.) 
Unfavorable Outcome vs. Favorable Outcome −1.041∗∗∗ (0.113) −0.887∗∗∗ (0.258) 
Biased Treatment vs. Unbiased Treatment −0.395∗∗∗ (0.113) −1.068∗∗∗ (0.257) 
CS Team vs. Outsourced 0.131 (0.138) −0.614∗ (0.240) 
CS and HR vs. Outsourced 0.201 (0.137) −0.352 (0.224) 
Machine Learning vs. Rules 0.138 (0.112) 0.086 (0.189) 
High Transparency vs. Low Transparency −0.154 (0.114) 0.056 (0.191) 
Mixed Decision vs. Algorithm-only 0.090 (0.113) 0.220 (0.189) 
Unfavorable Outcome × CS team 0.426 (0.272) 
Unfavorable Outcome × CS and HR 0.015 (0.273) 
Unfavorable Outcome × Machine Learning −0.238 (0.220) 
Unfavorable Outcome × High Transparency 0.106 (0.224) 
Unfavorable Outcome × Mixed Decision −0.420 (0.221) 
Biased Treatment × CS team 0.971∗∗∗ (0.272) 
Biased Treatment × CS and HR 1.070∗∗∗ (0.271) 
Biased Treatment × Machine Learning 0.343 (0.220) 
Biased Treatment × High Transparency −0.486∗ (0.224) 
Biased Treatment × Mixed Decision 0.174 (0.221) 
Self-expected Pass vs. Self-expected Fail 0.659∗∗∗ (0.127) 0.616∗∗∗ (0.125) 
Constant 4.131∗∗∗ (0.178) 4.438∗∗∗ (0.235) 

R2 0.190 0.235 
Adjusted R2 0.178 0.210 

∗Note: p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001 

Table 4: Regression models predicting perceived fairness 
from algorithm outcomes and development procedures. 
Model 1 shows the main effects, and Model 2 includes in-
teraction terms. 

the interaction effects between development procedures and 
algorithm outcomes. 

Model 1 in Table 4 shows that the algorithm development 
manipulations had no significant main effects on perceived 
fairness. Therefore, Hypothesis 2a and 2b are not supported. 
The five variables reflecting the algorithm’s development pro-
cedures collectively explained less than 1% of the variance in 
perceived fairness. 

Although there is no significant main effect, Model 2 in Ta-
ble 4 finds several interaction effects between development 
procedures and algorithm outcomes. The effects of algorithm 
bias are moderated by the procedural factors of design and 
transparency. The negative effect of a biased algorithm is 
strongest when the algorithm is built by an outsourced team, 
as compared with when it is built by computer science ex-
perts within the organization (Coef.=0.971, p<0.001, 95% 
CI: [0.437, 1.504]), or by a mix of computer science experts 
and other MTurk staff within the organization (Coef.=1.070, 
p<0.001, 95% CI: [0.537, 1.602]). Figure 3 (a) visualizes this 
interaction effect. Transparency also exacerbates the effect of a 
biased algorithm on perceived fairness (Coef.=-0.486, p<0.05, 
95% CI: [-0.925, -0.046]), which is visualized in Figure 3 (b). 

Individual difference 
Table 5 describes a regression model predicting perceived fair-
ness from individual differences (e.g., education level, com-
puter literacy, and demographics). Model 1 describes main 
effects, while Model 2 explores the interaction effects between 
these variables and algorithm outcomes. 

Model 1 in Table 5 shows that computer literacy is positively 
correlated with perceived fairness. On average, participants 
with low computer literacy report significantly lower perceived 
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Figure 3: The interaction between development proce-
dures and algorithm outcomes on perceived fairness. Er-
ror bars indicate 95% confidence intervals. The Y-axis 
represents the average rating of perceived fairness in the 
specific group. Figure (a) shows that describing a develop-
ment procedure with “outsourcing” exacerbates the nega-
tive effect of biased treatments across groups. Figure (b) 
shows that higher level of transparency exacerbates the 
negative effect of biased treatments across groups. 

fairness than participants with high computer literacy (Coef.=-
0.285, p<0.05, 95% CI: [-0.515, -0.055]), which supports 
hypothesis 3b. Figure 4 (c) visualizes the main effect of com-
puter literacy. However, we do not observe a main effect of 
gender, education level, age, and race on the perceived fair-
ness. Therefore, Hypothesis 3a and 3c are not supported and 
Hypothesis 3b is partially supported. 

Figure 4: Individual differences in the effects of 
(un)favorable outcome on perceived fairness. Error bars 
indicate 95% confidence intervals. The Y-axis represents 
the average rating of perceived fairness in the specific 
group. (a) Gender: the effect of an unfavorable outcome 
is stronger for female participants. (b) Education Level: 
the effect of an unfavorable outcome is the smallest for 
participants with an education level greater than a Bach-
elor’s degree. (c) Computer Literacy: participants with 
lower computer literacy tend to perceive the algorithm as 
less fair. 

Model 2 in Table 5 shows that certain groups react more 
strongly to an unfavorable outcome. For example, on aver-
age, female participants react more strongly to an unfavorable 
outcome than male participants (Coef.=0.558, p<0.05, 95% 
CI: [ 0.082, 1.034]) and participants with a lower education 
level react more strongly to an unfavorable outcome than par-
ticipants with a higher education level (Coef.=-1.144, p<0.01, 
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Perceived Fairness 
Model 1 Model 2 

Coef. (S.E.) Coef. (S.E.) 
Unfavorable Outcome vs. Favorable Outcome −1.057∗∗∗ (0.115) −1.237 (0.651) 
Biased Treatment vs. Unbiased Treatment −0.426∗∗∗ (0.114) −1.070 (0.671) 
Low Literacy vs. High Literacy −0.285∗ (0.117) −0.384 (0.204) 
Above 45 vs. Between 25-45 −0.142 (0.150) 0.060 (0.271) 
Below 25 vs. Between 25-45 0.237 (0.208) 0.069 (0.347) 
Male vs. Female 0.209 (0.122) −0.019 (0.203) 
Bachelor’s Degree vs. Above Bachelor’s Degree −0.198 (0.188) 0.070 (0.376) 
Below Bachelor’s Degree vs. Above Bachelor’s Degree −0.272 (0.189) 0.276 (0.371) 
Asian vs. Non-asian 0.106 (0.282) 0.031 (0.562) 
White vs. Non-white −0.119 (0.220) −0.534 (0.501) 
Black vs. Non-black 0.340 (0.244) −0.103 (0.544) 
Native American vs. Non-native American 0.218 (0.390) 0.690 (0.926) 
Hispanic vs. Non-hispanic −0.136 (0.240) −0.770 (0.524) 
Unfavorable Outcome × Low Literacy 0.268 (0.240) 
Unfavorable Outcome × Above 45 −0.334 (0.307) 
Unfavorable Outcome × Below 25 0.215 (0.423) 
Unfavorable Outcome × Male 0.558∗ (0.242) 
Unfavorable Outcome × Bachelor’s Degree −0.723 (0.389) 
Unfavorable Outcome × Below Bachelor’s Degree −1.144∗∗ (0.393) 
Unfavorable Outcome × Asian 0.329 (0.624) 
Unfavorable Outcome × White 0.601 (0.533) 
Unfavorable Outcome × Black 0.918 (0.584) 
Unfavorable Outcome × Native American −0.600 (1.029) 
Unfavorable Outcome × Hispanic 0.117 (0.568) 
Biased Treatment × Low Literacy −0.034 (0.239) 
Biased Treatment × Above 45 −0.097 (0.306) 
Biased Treatment × Below 25 0.135 (0.425) 
Biased Treatment × Male −0.097 (0.245) 
Biased Treatment × Bachelor’s Degree 0.394 (0.387) 
Biased Treatment × Below Bachelor’s Degree 0.181 (0.385) 
Biased Treatment × Asian 0.011 (0.631) 
Biased Treatment × White 0.452 (0.549) 
Biased Treatment × Black 0.063 (0.583) 
Biased Treatment × Native American −0.241 (1.030) 
Biased Treatment × Hispanic 1.234∗ (0.581) 
Self-expected Pass vs. Self-expected Fail 0.598∗∗∗ (0.133) 0.562∗∗∗ (0.137) 
Constant 4.649∗∗∗ (0.319) 4.877∗∗∗ (0.622) 

R2 0.220 0.262 
Adjusted R2 0.200 0.209 

∗Note: p<0.05; ∗∗ p<0.01; ∗∗∗ p<0.001 

Table 5: Regression models predicting perceived fair-
ness from algorithm outcomes and individual differences. 
Model 1 shows the main effects, and Model 2 includes in-
teraction terms. 

95% CI: [-1.916, -0.372]). Figure 4 (a) and Figure 4 (b) visu-
alize how gender and education level interact with the effects 
of unfavorable outcomes on perceived fairness. 

DISCUSSION 
In this research, we seek to better understand the factors that 
impact perceptions of fairness around algorithmic decision-
making, focusing on three sets of factors: algorithm outcomes, 
development procedures, and individual differences. 

Algorithm Outcomes 
When a person is subjected to an algorithmic decision, the out-
come of that decision is a very important factor in understand-
ing how that person will evaluate the fairness of the process. 
In our study, participants who were told the algorithm gave 
them a “fail” decision rated the algorithmic decision-making 
process one point less fair, on average, on a seven point scale. 
The degree of this effect in our study was even greater than the 
effect of disclosing very biased prediction error rates across 
demographic groups, which caused participants to reduce their 
fairness evaluation by about 0.4 points (p<0.001). 

Before revealing the (randomly assigned) algorithm decision, 
we asked participants what decision they thought the algorithm 
would make. We find that the participants with the lowest over-
all aggregate fairness scores came from the group that had a 

“fail” self-expectation and an unfavorable outcome. This is 
surprising, since this group’s expectations align with the al-
gorithm’s predictions, which we would intuitively think of as 
“fair”. It is possible that people who think the algorithm will 
give them an unfavorable result generally have lower beliefs 
in the fairness of algorithmic decision-making, independent 
of the actual outcome. For example, in the open-ended re-
sponse, one participant in the condition of “biased treatment” 
mentioned that she had “fail” self-expectation because she 
believed she would be disadvantaged by the system based on 
the description of the algorithm, independent of her judgement 
of her own quality of work: “The process as you all described 
is definitely not fair. Being a woman over 54 years of age, puts 
me at at least 2 disadvantages with this system.” In our sam-
ple, we find that participants whose expectation is “fail” rate 
the fairness of the process 0.7 points lower than participants 
whose expectation is “pass” (p<0.01). 

Implications. The important influence of an algorithm’s out-
come on our perception of its fairness has several possible 
implications. First, organizations seeking to build fair algorith-
mic decision-making processes must understand that fairness 
is complicated, and is a broader concept than just a measure of 
biases against particular groups. Even when the algorithm is 
presented as fair based on error rate measures, users’ perceived 
fairness might still diverge due to the favorable or unfavorable 
outcome they receive personally. While recent work indicated 
that user feedback could be an important data source in evaluat-
ing algorithm fairness [38, 30], our work suggests that systems 
that evaluate algorithm fairness through user feedback must 
measure or incorporate an “outcome favorability” bias in their 
models. 

Another perspective is that we should show algorithmic deci-
sions to people to better understand if they are fair. The New 
York Times, in 2017 published an interactive survey to help 
people understand how a mathematical formula for determin-
ing legal immigration status to the United States would affect 
them personally [11]. While it is inevitable for algorithms 
to produce favorable outcomes to certain people and unfa-
vorable outcomes to the other, it is possible that interactive 
tools like these help people put themselves in the shoes of 
those who would be affected by an algorithm directly, proving 
them with a different perspective on fairness and inducing 
empathy across users. We look forward to future work that 
seeks to develop interactive tools for understanding outcomes 
of complicated algorithmic processes on different types of 
people. 

Development Procedures 
The four manipulations varying the description of the algo-
rithm’s development process had no main effect on partici-
pants’ fairness evaluations. We speculate that the lack of main 
effects may indicate a weak manipulation. It is possible that 
participants do not believe that the algorithms were actually 
developed as described. Another possibility is that partici-
pants, who are not algorithm experts, do not know to what 
extent “how” and “who” build the algorithms might impact 
the algorithm. For example, some participants believed more 
human involvement could make the decision-making process 

Paper 684 Page 9



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

more fair. One participant wrote: “[The process] should have 
some human oversight to increase its fairness.” However, 
other participants believed human involvement could bring in 
more potential biases. Another participant wrote: “I think it is 
somewhat fair because there is no human error from an Ama-
zon employee.” Non-expert stakeholders had different beliefs 
on how to build a “fairer” algorithmic system. The findings 
also suggest that the effect of development procedures is much 
smaller compared with the effect of algorithmic outcomes and 
biases to non-expert stakeholders. 

Several interesting interaction effects emerge from these ma-
nipulations. In particular, both an “outsourced” process and 
a “high transparency” process exacerbate the negative effect 
of algorithmic bias on perceptions of fairness (see Figure 3). 
One plausible explanation for the effect of outsourcing is that 
people feel an internal development team may have good rea-
sons for biased error rates (e.g., to maximize overall accuracy), 
while an outsourced team may not have the MTurker’s best 
interests in mind. Potentially, a more transparent process — 
which includes publishing benchmarks about the process’s 
accuracy — triggers a feeling that the process should be more 
fair, lowering the resulting fairness rating. Other prior research 
has also found complicated interactions between transparency 
and user perceptions of algorithms [67, 44]. 

Implications. Despite the possibility of weak experimental 
manipulation, one possible explanation of our results is that 
the relationship between development procedures and fairness 
is not immediately clear to lay audiences, pointing to further 
research on explanation tools that can bridge this gap. Our 
findings also suggest that the effect of development proce-
dures is much smaller compared with the effect of algorithmic 
outcomes and biases to non-expert stakeholders. Therefore, 
organizations seeking to build algorithmic systems that peo-
ple perceive as fair should think beyond just development 
procedures, as these procedures in themselves do not neces-
sarily have strong impacts on how lay audience think of the 
decision-making process as less or more fair. 

Individual Differences 
In our experiment, people with low computer literacy provided 
lower fairness evaluations than people with high computer 
literacy. This finding aligns with [65], who found that an hour-
long class session about algorithmic fairness caused students 
to more strongly favor the use of computer algorithms over 
human judges. 

Furthurmore, lower education levels appear to exacerbate the 
effect of getting a favorable or unfavorable outcome on per-
ceived fairness. In our experiment, participants with lower 
education levels provide much higher fairness ratings when 
they receive a favorable outcome rather than an unfavorable 
outcome, while participants with the highest education level 
(more than a Bachelor’s degree) barely change their fairness 
ratings as a result of the outcome (see Figure 4). 

Implications. The results suggest that education can help peo-
ple think beyond their own self-interest when considering the 
fairness of an algorithmic process that can affect many others. 
Therefore, developing algorithm-related education programs 

could help bring together people with different experience 
with algorithms and create a shared understanding towards the 
adoption of algorithmic decision-making. 

Limitations & Future Work 
We conducted this study on the Mechanical Turk platform, ask-
ing MTurkers to evaluate an algorithm for assigning the MTurk 
Master qualification. While this design has the advantage of 
asking participants about their perception of an algorithm in 
an area where they are personally invested and knowledgeable, 
there are a number of limitations. While we included an “at-
tention check” question and five “quiz” questions to reinforce 
understanding of the decision-making process, some workers 
may have not read the scenario carefully, while others may 
have forgotten some details of the description by the time they 
evaluated fairness. 

To determine the effect of bias against demographic groups, 
we picked two fixed sets of values: one with very comparable 
error rates across groups, and the other with different error 
rates between groups. While we picked these bias rates based 
on earlier work [12], we did not experiment with different 
values. Higher or lower error rates for different demographic 
groups may change the relative importance of bias versus 
other factors. Further, while we picked “error rate” to repre-
sent algorithmic bias, this is a simplistic representation, and 
especially keen participants may have wondered if the error 
rate was in favor of or against the groups with the higher error 
rates. For example, false positive rates and false negative rates 
have completely different implications for people who are 
subject to the algorithmic decision making. Future work could 
more carefully isolate different types of error rates between 
demographic groups. 

Generally speaking, the scenarios may be very influential in 
determining the judgments of fairness. It is possible that other 
scenarios (e.g., describing recidivism prediction, hiring, or 
school admission) would have led to very different results. 
We suggest that further work is necessary to understand the 
generalizability of these findings 

CONCLUSION 
In this research, we examine the factors that influence people’s 
perceptions of the fairness of algorithmic decision-making 
processes using a between-subjects randomized survey on 
Mechanical Turk. We focus our manipulations and analysis on 
several factors: algorithm outcomes, development procedures, 
and individual differences. We find that people’s evaluations 
of fairness are very sensitive to whether or not they receive 
a positive outcome personally, even surpassing the negative 
effect of describing an algorithm with strong biases against 
particular demographic groups. 
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