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“Classical” RNAs

• mRNA
• tRNA
• rRNA
• snRNA (small nuclear - spl icing)
• snoRNA (small nucleolar - guides for t/rRNA

modifications)
• RNAseP (tRNA maturation; ribozyme in bacteria)
• SRP (signal recognition particle; co-translational

targeting of proteins to membranes)
• telomerases



Non-coding RNA

• Messenger RNA - codes for proteins
• Non-coding RNA - all the rest

– Before, say, mid 1990’s, 1-2 dozen known
(critically important, but narrow roles: e.g. tRNA)

• Since mid 90’s dramatic discoveries
– Regulation, transport, stability/degradation
– E.g. “microRNA”: ≈ 100’s in humans

• By some estimates, ncRNA >> mRNA



ncRNA Example: Xist

• large (12kb?)
• unstructured RNA
• required for X-inactivation in mammals



ncRNA Example: 6S

• medium size (175nt)
• structured
• highly expressed in e. coli in certain

growth conditions
• sequenced in 1971; function unknown

for 30 years



ncRNA Example: IRE

Iron Response Element: a short conserved stem-
loop, bound by iron response proteins (IRPs). Found
in UTRs of various mRNAs whose products are
involved in iron metabolism. E.g., the mRNA of ferritin
(an iron storage protein) contains one IRE in its 5' UTR.
When iron concentration is low, IRPs bind the ferritin
mRNA IRE. repressing translation. Binding of multiple
IREs in the 3' and 5' UTRs of the transferrin receptor
(involved in iron acquisition) leads to increased mRNA
stability. These two activities form the basis of iron
homeostasis in the vertebrate cell.



ncRNA Example: MicroRNAs

• short (~22 nt) unstructured RNAs excised
from ~75nt precursor hairpin

• approx antisense to mRNA targets, often in 3’
UTR

• regulate gene activity, e.g. by destabilizing
(plants) or otherwise suppressing (animals)
message

• several hundred, w/ perhaps thousands of
targets, are known



ncRNA Example: Riboswitches

• UTR structure that directly senses/binds
small molecules & regulates mRNA

• widespread in prokaryotes
• some in eukaryotes



E.g.: the Glycine Riboswitch

• Glycine - simplest amino acid
• Uses - make proteins, make energy
• Not enough OR too much - wasteful
• Hypothetical answer:

gcvT (glycine cleavage)

gg

prot
gprot

gcvT
protein

g

g

gcvT promoter



The Glycine Riboswitch

• Actual answer (in many bacteria):
Look Ma, no protein

gcvT (glycine cleavage)

g

g

g

gcvT mRNA

gcvT
protein



Why?

• RNA’s fold,
and function

• Nature uses
what works



“Central Dogma”
=

 “Central Chicken & Egg”?
DNA      RNA      Protein

Was there once an “RNA World”?

DNA 
(chromosome) RNA
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cell



Outline

• ncRNA: what/why?
• What does computation bring?
• How to model and search for ncRNA?
• Faster search
• Better model inference



IRE (partial seed alignment):

Hom.sap.  GUUCCUGCUUCAACAGUGUUUGGAUGGAAC
Hom.sap.  UUUCUUC.UUCAACAGUGUUUGGAUGGAAC
Hom.sap.  UUUCCUGUUUCAACAGUGCUUGGA.GGAAC
Hom.sap.  UUUAUC..AGUGACAGAGUUCACU.AUAAA
Hom.sap.  UCUCUUGCUUCAACAGUGUUUGGAUGGAAC
Hom.sap.  AUUAUC..GGGAACAGUGUUUCCC.AUAAU
Hom.sap.  UCUUGC..UUCAACAGUGUUUGGACGGAAG
Hom.sap.  UGUAUC..GGAGACAGUGAUCUCC.AUAUG
Hom.sap.  AUUAUC..GGAAGCAGUGCCUUCC.AUAAU
Cav.por.  UCUCCUGCUUCAACAGUGCUUGGACGGAGC
Mus.mus.  UAUAUC..GGAGACAGUGAUCUCC.AUAUG
Mus.mus.  UUUCCUGCUUCAACAGUGCUUGAACGGAAC
Mus.mus.  GUACUUGCUUCAACAGUGUUUGAACGGAAC
Rat.nor.  UAUAUC..GGAGACAGUGACCUCC.AUAUG
Rat.nor.  UAUCUUGCUUCAACAGUGUUUGGACGGAAC
SS_cons   <<<<<...<<<<<......>>>>>.>>>>>

Iron Response Element



6S mimics an
open promoter

Barrick et al. RNA 2005
Trotochaud et al. NSMB 2005
Willkomm et al. NAR 2005

E.coli



ORF 3’ element
Dengue virus genome:

Dengue virus
West Nile virus
Yellow Fever
Omsk Hemorrhagic fever
Japanese encephalitis
Tick-borne encephalitis
Kunjin virus
Langat virus
Louping ill
Murray Valley virus
Powassan virus

Dengue virus

With our techniques
(70% sequence identity)

Known distribution
(96% sequence
identity)



polyadenylation inhibition
element RNA

Human, mouse, rabbit
Zebrafish, Tetraodon, Fugu
Frog

Human, mouse, rabbit

With our techniques
(75% sequence identity)

Known distribution
(90% sequence identity)

U1 small nuclear ribonucleoprotein A RNA element

3’ UTR



Impact of RNA homology search

B. subtilis

L. innocua

A. tumefaciens

V. cholera

M. tuberculosis

(Barrick, et al., 2004)

(and 19 more species)

operon
glycine
riboswitch



Impact of RNA homology search

B. subtilis

L. innocua

A. tumefaciens

V. cholera

M. tuberculosis

(Barrick, et al., 2004)

(and 19 more species)

operon
glycine
riboswitch

(and 42 more species)

Using our
techniques, we
found…



The Glycine Riboswitch

• Actual answer (in many bacteria):
Look Ma, no protein

gcvT (glycine cleavage)

gg

g g

gcvT mRNA

gcvT
protein



• More examples means better alignment
• Understand phylogenetic distribution
• Find riboswitch in front of new gene

(Mandal, Lee, Barrick,
Weinberg, Emilsson,
Ruzzo, Breaker,
Science 2004)

And…
gcvT ORF

5’

3’





RNA Informatics

• RNA: Not just a messenger anymore
– Dramatic discoveries
– Hundreds of families (besides classics like

tRNA, rRNA, snRNA…)
– Widespread, important roles

• Computational tools important
– Discovery, characterization, annotation
– BUT: slow, inaccurate, demanding



Q: What’s so hard?
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Computational Challenges

• Search - given
related RNA’s, find
more

• Modeling - describe
a related  family

• Meta-modeling -
what’s a good
modeling
framework?

• Covariance Models

• Hand-curated
alignments -> CMs

• CM-based search



Predict Structure from Multiple Sequences

… GA … UC …
… GA … UC …
… GA … UC …
… CA … UG …
… CC … GG …
… UA … UA …

Compensatory
mutations reveal
structure, but in
usual alignment
algorithms they are
doubly penalized.



How to model an RNA “Motif”?

• Conceptually, start with a profile HMM:
– from a multiple alignment, estimate nucleotide/ insert/delete

preferences for each position
– given a new seq, estimate likelihood that it could be

generated by the model, & align it to the model

all Gmostly G del ins



How to model an RNA “Motif”?

• Covariance Models (aka “profile SCFG”)
– Probabilistic models, like profile HMMs, but adding

“column pairs” and pair emission probabilities for
base-paired regions

paired columns<<<<<<<                         >>>>>>>
   …                               …



“RNA sequence analysis
using covariance models”

Eddy & Durbin
Nucleic Acids Research, 1994

vol 22 #11, 2079-2088



What

• A probabilistic model for RNA families
– The “Covariance Model”
– ≈ A Stochastic Context-Free Grammar
– A generalization of a profile HMM

• Algorithms for Training
– From aligned or unaligned sequences
– Automates “comparative analysis”
– Complements Nusinov/Zucker RNA folding

• Algorithms for searching



Main Results

• Very accurate search for tRNA
– (Precursor to tRNAscanSE - current

favorite)
• Given sufficient data, model

construction comparable to, but not
quite as good as, human experts

• Some quantitative info on importance of
pseudoknots and other tertiary features



Probabilistic Model Search

• As with HMMs, given a sequence, you
calculate llikelihood ratio that the model could
generate the sequence, vs a background
model

• You set a score threshold
• Anything above threshold => a “hit”
• Scoring:

– “Forward” / “Inside” algorithm - sum over all paths
– Viterbi approximation - find single best path

(Bonus: alignment & structure prediction)



Example:
searching for
tRNAs



Alignment Quality



Comparison to TRNASCAN
• Fichant & Burks - best heuristic then

– 97.5% true positive
– 0.37 false positives per MB

• CM A1415 (trained on trusted alignment)
– > 99.98% true positives
– <0.2 false positives per MB

• Current method-of-choice is “tRNAscanSE”, a CM-
based scan with heuristic pre-filtering (including
TRNASCAN?) for performance reasons.
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CM Structure
• A: Sequence + structure
• B: the CM “guide tree”
• C: probabilities of letters/

pairs & of indels
• Think of each branch being

an HMM emitting both sides
of a helix (but 3’ side emitted
in reverse order)



Overall CM
Architecture
• One box (“node”) per node of

guide tree
• BEG/MATL/INS/DEL just like

an HMM
• MATP & BIF are the key

additions: MATP emits pairs of
symbols, modeling base-pairs;
BIF allows multiple helices



CM Viterbi Alignment

! 

! 

xi = i
th letter of input

xij = substring i,..., j of input

Tyz = P(transition y" z)

Exi ,x j

y
= P(emission of xi,x j from state y)

Sij
y

=max# logP(xij generated starting in state y via path # )



! 

Sij
y

=max" logP(xij generated starting in state y via path " )

Sij
y

=

maxz[Si+1, j#1
z

+ logTyz + logExi ,x j

y ] match pair

maxz[Si+1, j
z

+ logTyz + logExi

y ] match/insert left

maxz[Si, j#1
z

+ logTyz + logEx j

y ] match/insert right

maxz[Si, j
z

+ logTyz] delete

maxi<k$ j[Si,k
yleft + Sk+1, j

yright ] bifurcation
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Viterbi, cont.



Model Training



Mutual Information

• Max when no sequence conservation but perfect
pairing

• MI = expected score gain from using a pair state
• Finding optimal MI, (i.e. optimal pairing of columns) is

NP-hard(?)
• Finding optimal MI without pseudoknots can be done

by dynamic programming

! 

Mij = fxi,xj
xi,xj

" log2
fxi,xj

f xi f xj
; 0 # Mij # 2





• “just like Nussinov/Zucker folding”
• BUT, need enough data---enough sequences at right

phylogenetic distance

MI-Based Structure-Learning

! 

Si, j =max

Si+1, j
Si, j"1
Si+1, j"1 + Mi, j

maxi< j<k Si,k + Sk+1, j

# 

$ 
% % 

& 
% 
% 



Pseudoknots
disallowed   allowed

! 

max j Mi, j
i=1

n

"# $ % 
& 
' 
( /2





Accelerating CM search

Zasha Weinberg
& W.L. Ruzzo

Recomb ‘04, Bioinformatics ‘04, ‘06



Rfam database
(Release 7.0, 3/2005)

503 ncRNA families

8 riboswitches, 235 small nucleolar RNAs,
8 spliceosomal RNAs, 10 bacterial
antisense RNAs, 46 microRNAs, 9
ribozymes, 122 cis RNA regulatory
elements, …

280,000 annotated ncRNAs



IRE (partial seed alignment):

Hom.sap.  GUUCCUGCUUCAACAGUGUUUGGAUGGAAC
Hom.sap.  UUUCUUC.UUCAACAGUGUUUGGAUGGAAC
Hom.sap.  UUUCCUGUUUCAACAGUGCUUGGA.GGAAC
Hom.sap.  UUUAUC..AGUGACAGAGUUCACU.AUAAA
Hom.sap.  UCUCUUGCUUCAACAGUGUUUGGAUGGAAC
Hom.sap.  AUUAUC..GGGAACAGUGUUUCCC.AUAAU
Hom.sap.  UCUUGC..UUCAACAGUGUUUGGACGGAAG
Hom.sap.  UGUAUC..GGAGACAGUGAUCUCC.AUAUG
Hom.sap.  AUUAUC..GGAAGCAGUGCCUUCC.AUAAU
Cav.por.  UCUCCUGCUUCAACAGUGCUUGGACGGAGC
Mus.mus.  UAUAUC..GGAGACAGUGAUCUCC.AUAUG
Mus.mus.  UUUCCUGCUUCAACAGUGCUUGAACGGAAC
Mus.mus.  GUACUUGCUUCAACAGUGUUUGAACGGAAC
Rat.nor.  UAUAUC..GGAGACAGUGACCUCC.AUAUG
Rat.nor.  UAUCUUGCUUCAACAGUGUUUGGACGGAAC
SS_cons   <<<<<...<<<<<......>>>>>.>>>>>

Rfam

• Input (hand-tuned):
– MSA
– SS_cons
– Score Thresh T
– Window Len W

• Output:
– CM
– scan results



Covariance
Model

Key difference of CM vs HMM:
Pair states emit paired symbols, 
corresponding to base-paired 
nucleotides; 16 emission
probabilities here.



EMBL

CM

hits

Z

Our Work

~2 months,
1000 computers

CM’s are good, but slow

EMBL

CM

hits
junk

Rfam Goal

10 years,
1000 computers

Rfam Reality

EMBL

CM

hitsjunk

Blast

1 month,
1000 computers



Oversimplified CM
(for pedagogical purposes only)
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CM to HMM

25 emisions per state        5 emissions per state, 2x states
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Key Issue: 25 scores  10

• Need: log Viterbi scores CM ≤ HMM

CM HMM



Viterbi/Forward Scoring

• Path π defines transitions/emissions
• Score(π) = product of “probabilities” on π
• NB: ok if “probabilities” aren’t, e.g. ∑≠1
• E.g. in CM, emissions are odds ratios vs 0th-

order background
• For any nucleotide sequence x:

– Viterbi-score(x) = max{ score(π) | π emits x}
– Forward-score(x) = ∑{ score(π) | π emits x}



Key Issue: 25 scores  10

• Need: log Viterbi scores CM ≤ HMM
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PCA ≤ LC + RA
PCC ≤ LC + RC
PCG ≤ LC + RG
PCU ≤ LC + RU
PC–  ≤ LC + R–
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Rigorous Filtering

• Any scores satisfying the linear
inequalities give rigorous filtering

Proof:
  CM Viterbi path score
    ≤ “corresponding” HMM path score
    ≤  Viterbi HMM path score
              (even if it does not correspond to any CM path)

PAA ≤ LA + RA
PAC ≤ LA + RC
PAG ≤ LA + RG
PAU ≤ LA + RU
PA–  ≤ LA + R–…



Some scores filter better
PUA = 1  ≤  LU + RA
PUG = 4  ≤  LU + RG

Assuming ACGU ≈ 25%
Option 1:   Opt 1:

LU = RA = RG = 2    LU + (RA + RG)/2 = 4

Option 2:   Opt 2:
 LU = 0, RA = 1, RG = 4    LU + (RA + RG)/2 = 2.5



Optimizing filtering

• For any nucleotide sequence x:
Viterbi-score(x) = max{ score(π) | π emits x }
Forward-score(x) = ∑{ score(π) | π emits x }

• Expected Forward Score
E(Li, Ri) = ∑x Forward-score(x)*Pr(x)
– NB: E is a function of Li, Ri only

• Optimization:
Minimize E(Li, Ri)  subject to score L.I.s
– This is heuristic (“forward↓ ⇒ Viterbi↓ ⇒ filter↓”)
– But still rigorous because “subject to score L.I.s”

Under 0th-order 
background model



Calculating E(Li, Ri)

E(Li, Ri) = ∑x Forward-score(x)*Pr(x)

• Forward-like: for every state, calculate
expected score for all paths ending
there, easily calculated from expected
scores of predecessors & transition/
emission probabilities/scores



Minimizing E(Li, Ri)

• Calculate E(Li, Ri) symbolically, in terms
of emission scores, so we can do partial
derivatives for a numerical convex
optimization algorithm

! 

"E (L1 ,L2 ,...)

"L
i



What should the probabilities be?

• Convex optimization problem
– Constraints: enforce rigorous property
– Objective function: filter as aggressively as

possible
• Problem sizes:

– 1000-10000 variables
– 10000-100000 inequality constraints



Estimated Filtering Efficiency
(139 Rfam 4.0 families)

37.99 - 1.0

46.25 - .99

22.10 - .25

311.01 - .10

17810-4 - 10-2

110105< 10-4

# families
(expanded)

# families
(compact)

Filtering
fraction

Averages 283 times faster than CM

≈ 
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k 
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Results: buried treasures

7290283U4 snRNA

1200199U5 snRNA

3131128S-box

5412369Purine riboswitch

313

1464

264

193

59

1106
322
180

# found
rigorous filter
+ CM

1312U7 snRNA

21462U6 snRNA

13251Hammerhead III

26167Hammerhead I

4811Retron msr

1021004Histone 3’ element
121201Iron response element
12357Pyrococcus snoRNA

# new# found
BLAST
+ CM

Name



What if filtering is poor?

• Profile HMM filter discards structure info
– Surprise is that they usually do very well
– But not always; e.g. a dozen families with

filtering > .01,  including stars like tRNA
• Three ideas:

– Sub CM: graft in SM for a critical part
– Store Pair: retain a few critical pairs
– Filter Chains: run fast, crude filters first



Sub-CM filters
A U
A U

G
AG

C GU A
CC

CFull CM

Profile HMM ACUCCCAGAAGAGUUA

A A

Sub-CM
C GU A
CC

C

A AAGAGUUAA sub-CM

Sub-profile-HMM



Store-pair filters

ACUCCCAGAAGAGUUA

A U
A U

G
AG

C GU A
CC

CFull CM
A A

Store pair

“Profile” HMM:



ACCGAT
GGACA

Rigorous filter

ncRNAs
CM

Rigorous filter

Rigorous filter

Filter Chains



Why run filters in series?

200N/ACM
100.01Filter 2
10.25Filter 1
Run time (sec/Kbase)Filtering fraction

• CM alone: 200 s/Kb
• Filter 2  CM: 10 + 0.01*200 = 12 s/Kb
• Filter 1  Filter 2  CM: 1 + 0.25*10 +

0.01*200 = 5.5 s/Kb



Store pair
Ru

n 
tim

e
(s

ec
/K

b)

Filtering fraction

0

0.5

1

1.5

2

2.5

1E-06 0.0001 0.01 1

Sub-CM

0
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Properties of a filter:
• Filtering fraction
• Run time (sec/Kb)
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• Simplified performance model (selectivity and
speed)

• Independence assumptions for base pairs
• Use dynamic programming to rapidly explore

base pair combinations
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Rigorous series of filters + CM time (days)

Results: faster
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Results: more sensitive than BLAST

121322201Iron response
element

And more…

117160Lysine
riboswitch

21247226tmRNA

33160395708Group II intron
51586376758609Rfam tRNA

# new# with rigorous
filters + CM

# with
BLAST+CM



Is there anything more to do?

• Rigorous filters can be too cautious
– E.g., 10 times slower than heuristic filters
– Yet only 1-3% more sensitive

• We want to
– Run scans faster with minimal loss of sensitivity
– Know empirically what sensitivity we’re losing



Heuristic Profile HMMs

CM CAG
AAU
CAG
AAU

<.>
…

CAG
AAU
CAG
AAU

...

…
Profile
HMM

CAG
AAU
<.>

Input
Multiple
Sequence
Alignment

Infinite Multiple
sequence
alignments

Base paired
columns

(Weinberg & Ruzzo, 2006)



ROC-like curves
(lysine riboswitch)

Filtering fraction
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BLAST
Filter
sends
80% of
hits to
CM



tRNAscan-SE: the leading brand
(Lowe & Eddy 1997)

• Designed for tRNAs
• Used in virtually every genome project
• Uses CMs
• Heuristics:

– selected 2 tRNA detection programs

An ambitious target to shoot for



tRNAscan-SE vs. heuristic HMMs

(Each filter sends same number of nucleotides to CM)

581.1
19.0
64.3
36.7
1.76

rigorHMMt-SEHMMt-SE

30.93.4190.483.4Human
1.120.0899.399.7Drosophila
1.030.1397.598.1C. elegans
10.02.7999.899.4Eubacteria
0.670.2199.398.5Archaea

Run time (hours)Sensitivity (%)



tRNAscan-SE vs. heuristic HMMs

HMMtRNAscan-SE

• 10 seconds to type
a command
• 15 minutes to
create & calibrate
HMM

≥ 8 papers

Time to create heuristic filters for tRNAs

Point is not that heuristic HMM is better than tRNAscan-
SE --- it’s not; point is that it’s in the ballpark, so may be
easy way to get useful results for new families.



Building CM’s

• Hand-curated alignments + structure as
in Rfam are great, but it doesn’t scale

• Example Application:
Given 5-20 upstream regions (~500 nt)
of orthologous bacterial genes, some
(but not all) plausibly regulated by a
common riboswitch, could we find it?



CMFinder
Harder: Finding CMs without alignment

Yao, Weinberg & Ruzzo, Bioinformatics, 2006

Folding 
predictions

Smart 
heuristics

Candidate
alignment CM

Realign

Search



CMfinder Accuracy
(on Rfam families with flanking sequence)

/CW
/CW



Importance of Alignment

• Blue boxes, e.g., should be lined up.
• Structure is invisible otherwise.



Early Semi-automated Example

• Started with 16 genes orthologous to folC in
B. subtilis

• Found 10 sharing good structural motif
• Searched all bacterial genomes for this motif
• Found 234 hits
• Realigned these to refine structural motif
• Found 367 hits
• 257 match RFAM’s T-box

– (Based on hand-curated alignment of 67 knowns)





Chloroflexus aurantiacus

Geobacter metallireducens
Geobacter sulphurreducens

Chloroflexi
δ -Proteobacteria

Symbiobacterium thermophilum

 
Initial orthologs
Found by scan



An approach for cis-regulatory
RNA discovery in bacteria

1. Choose a bacterial genome
2. For each gene, collect 10-30 close orthologs
3. Find most promising genes, based on

sequence motifs conserved among orthologs
4. From those, find most promising genes,

incorporating structure in the motifs
5. From those, genome-wide searches for more

instances
6. Expert analyses (Breaker Lab, Yale)



Genome Scale Search: Why

• Most riboswitches, e.g., are present in ~5
copies per genome

• Throughout (most of) clade
• More examples give better model, hence

even more examples, fewer errors
• More examples give more clues to function



Genome Scale Search: How

CMfinder is directly usable for/with search

Folding 
predictions

Smart 
heuristics

Candidate
alignment CM

Realign

Search



Results

• Process largely complete in
– bacillus/clostridia
– gamma proteobacteria
– cyanobacteria
– actinobacteria

• Analysis ongoing



Some Preliminary Actino Results
Rfam Family Type (metabolite) Rank accession function/metabolite

THI riboswitch (thiamine) 4 RF00059 thiamin (pyrophosphate?) aka B1

ydaO-yuaA riboswitch (unknown) 19 RF00379 osmotic shock; triggers AA transporters

Cobalamin riboswitch (cobalamin) 21 RF00174 adenosylcobalamin (aka b12?)

SRP_bact gene 28 RF00169 signal recognition particle

RFN riboswitch (FMN) 39 RF00050 flavin mononucleotide (FMN)

yybP-ykoY riboswitch (unknown) 48 RF00080 unknown (diverse genes); called SraF in E.coli

gcvT riboswitch (glycine) 53 RF00504 glycine

S_box riboswitch (SAM) 401 RF00162 SAM: s-adenyl methionine

tmRNA gene Not found RF00023 aka 10Sa RNA or SsrA; frees mRNAs from stalled ribosomes

RNaseP gene Not found RF00010 tRNA maturation; is a ribozyme in bacteria

not cis-
regulatory



More Prelim Actino Results

• Many others (not in Rfam) are likely real
of top 50:
– known (Rfam, 23S) 10
– probable (Tbox, CIRCE, LexA, parP, pyrR) 7
– ribosomal genes 9
– potentially interesting 12
– unknown or poor 12

• One other being bench-verified



Software

• Infernal - (Eddy et al.) most of Eddy & Durbin
• RaveNna - (Weinberg) fast filtering
• CMfinder - (Yao) Motif discovery (local alignment)



Summary

• ncRNA is a “hot” topic
• For family homology modeling: CMs
• Training & search like HMM (but slower)
• Dramatic acceleration possible
• Automated model construction
• Hopefully leading to new discoveries


