
One-minute responses

� I de�nitely need more time to practice with the problems outside of class.

� The Python section builds well on what we've done previously.

� It helps me a lot when we go through various pitfalls/common mistakes{it
was good to stop after the �rst sample program. (x2)

� I am �nally beginning to see how one can layer functions and modules in
Python to achieve complex tasks.

� I really appreciate that only 1 or 2 new Python concepts are being

� I usually get distracted during Python explanations because I am trying
to �x silly errors in my program instead of listening and taking notes.

� Programming section was more challenging than I thought it would be.

� Today's class the pace was great, although it might have been better
if I had been encouraged to start the second problem immediately after
completing the �rst{I wasn't sure if we should have waited to review
before moving on. In general, feel free to move on if you are done.

One-minute responses

� Did not really get what you were saying about modules or problem 3 in
class.

� I'm still confused about how to use a module.

� A module is a collection of variables and functions in a �le. The

module is like a bag of useful tools. It doesn't do anything itself, but

it provides access to those tools. modulename.toolname refers to one

tool within the bag; for example math.log() is the log function o�ered

by the math module.

� We might write a module with all kinds of useful functions to

handle the FASTA database format, and call it the fasta module.

Then, when our program needed to handle FASTA data we would

import fasta and use the functions in it, such as myname =

fasta.getspeciesname(myline).

Sorting

� Basic sorting

� Sorting di�erent kinds of containers

� Comparison functions for more complex sorting

How to swap two variables

� Suppose I have a drawer of shirts and a drawer of pants

� I'd like to switch the two drawers

� Generally I need some temporary place to store the things I'm moving

drawer1 = "shirts"

drawer2 = "pants"

swap shirts and pants

temp = drawer1

drawer1 = drawer2

drawer2 = temp

Swapping in a list

clotheslist = ["shirts","pants","socks"]

print clotheslist[0]

'shirts'

print clotheslist[1]

'pants'

swap shirts and pants

temp = clotheslist[0]

clotheslist[0] = clotheslist[1]

clotheslist[1] = temp

print clotheslist

['pants','shirts','socks']

sort()

� The sort method modi�es a list in-place

� It normally sorts in ascending order

mylist = [3,2,1]

print mylist

[3, 2, 1]

mylist.sort()

print mylist

[1, 2, 3]

Sorting of strings in lexicographic order

mylist = ["Mary", "Joe", "Steve"]

mylist.sort()

print mylist

['Joe','Mary','Steve']

case matters!

mylist.append("kevin")

mylist.append("bill")

mylist.sort()

print mylist

['Joe', 'Mary', 'Steve', 'bill', 'kevin']

How to sort a tuple?

� sort changes a list in place

� tuples are immutable and can't be changed in place

� mytuple.sort() is therefore a Python error

� To sort a tuple, make a list copy:

How to sort a tuple?

mytuple = (3,2,1)

mytuple.sort()

AttributeError: 'tuple' object has no attribute 'sort'

mylist = list(mytuple)

mylist.sort()

print mylist

[1, 2, 3]

mytuple = tuple(mylist)

print mytuple

(1, 2, 3)

How to sort a dictionary?

� Dictionaries are kept in an order Python �nds convenient

� You aren't allowed to sort them

� However, you can sort the keys, which is nearly the same:

mydict = {"Mary":"1023", "Jon":"2324", "Fred":"0023"}

sortkeys = mydict.keys()

sortkeys.sort()

for key in sortkeys :

print key, "--", mydict[key]

How to sort a dictionary?

What if we want to sort by entry, not by key? One solution is to make a
reversed dictionary:

mydict = {"Mary":"1023", "Jon":"2324", "Fred":"0023"}

want to sort by number, not name

keylist = mydict.keys()

reversedict = {}

for key in keylist :

reversedict[mydict[key]] = key

sortkeys = reversedict.keys()

sortkeys.sort()

for key in sortkeys :

print key, "--", reversedict[key]

More complicated sorting problems

� What if we want to sort by a di�erent rule than ascending order?

� We need to write a comparison function

� mylist.sort(mycomparison) will use the function

Comparison function

� Must take 2 arguments

� Return -1 if the �rst argument should �rst

� Return 0 if there is a tie

� Return 1 if the �rst argument should come second

Comparison function: sort in descending order

mylist = [10, 17, 12]

mylist.sort()

print mylist

[10, 12, 17]

def reverseCompare (first, second):

if (first > second) :

return (-1)

elif (first < second) :

return 1

else :

return 0

mylist.sort(reverseCompare)

print mylist

[17, 12, 10]

Practice problem 1

� Write a function which compares two strings, ignoring upper/lower case

� Return -1 if the �rst string should come �rst

� Return 0 if the two strings are tied

� Return 1 if the second string should come �rst

� "Mary" and "maRY" should give a 0

Importing a function

� Suppose our function was called caselessCompare and was in �le
nocase.py.

� We could use it in a di�erent �le by importing it:

note that there is no ".py" here; just the bare filename

the filename becomes the module name

import nocase

note that the name of an imported function

begins with the name of its module

mylist.sort(nocase.caselessCompare)

Practice problem 2

� Write a program which:

{ Reads in a whole �le
{ Separates the �le into a list of words
{ Sorts the words using your comparison function
{ Prints the sorted words

� Try it on �le sample.txt

Practice problem 3

� Modify your previous program so that if a word appears several times, it
is only printed once

� Hint: don't try to change the list in place

� Make a new list holding only one copy of each word

Problem 1 solution

def caselessCompare(first,second) :

first = first.lower()

second = second.lower()

if (first < second) :

return (-1)

elif (first > second) :

return (1)

else :

return 0

Problem 2 solution

import sys

filename = sys.argv[1]

filehandle = open(filename,"r")

get the whole file as a big string

filestring = filehandle.read()

split into words

wordlist = filestring.split()

sort

import nocase

wordlist.sort(nocase.caselessCompare)

for word in wordlist :

print word

Problem 3 solution

import sys

filename = sys.argv[1]

filehandle = open(filename,"r")

filestring = filehandle.read()

wordlist = filestring.split()

import nocase

wordlist.sort(nocase.caselessCompare)

make a list containing the first word

uniquewords = [wordlist[0]]

for index in range(1,len(wordlist)) :

if it's a new word, add it

if wordlist[index].lower() != wordlist[index-1].lower() :

uniquewords.append(wordlist[index])

for word in uniquewords :

print word

Issues with these solutions

� If you test these solutions, you will �nd that punctuation confuses them

� They think "students," is a di�erent word than "students"

� A good take-home problem: how to �x this?

