More Regular
Expressions

Lecture |12b
Larry Ruzzo
(w/ thanks to Mary Kuhner for many slides)

grep

Not part of Python (predates it by 20 years)

A useful utility in its own right, & a quick way
to test some reg exp basics (but syntax is
slightly different)

Just run it from the command line

% grep “re\.compile” *.py

Strings Again

"abc’

n abc ”n

Ilabclll

r'’'abc’

Strings Again

"abc\n’

"abc\n” \\\\

newline

abc}/a

Why so many!?

* vs " lets you put the other kind inside
7' lets you run across many lines
all 3 let you include “invisible” characters

r’..." (raw strings) can’t do invisible stuff, but avoid problems
with backslash

open(’'C:\new\text.dat’) vs
open(’'C:\\new\\text.dat’) s
open(r’'C:\new\text.dat’)

Regular Expressions

e Regular expressions (regexp) are a text-matching tool embedded in
Python

e They are useful in creating string searches and string modifications

You can always use regular Python instead, but regexps are often much
easier

Documentation: http://docs.python.org/library/re.html

Basics of regexp construction

e |etters and numbers match themselves
e Normally case sensitive

e Watch out for punctuation—most of it has special meanings!

Matching one of several alternatives

e Square brackets mean that any of the listed characters will do
e [ab] means either "a" or "b"
e You can also give a range:

e [a-d] means "a" "b" "c" or"d"

e Negation: caret means "not”

[“a-d] # anything but a, b, c or d

Wild cards

e "." means "any character”

e If you really mean you must use a backslash

e WARNING:

— backslash is special in Python strings

— It's special again in regexps

— This means you need too many backslashes
— We will use "raw strings” instead

— Raw strings look like r" ATCGGC"

Using . and backslash

e To match file names like "hw3.pdf" and "hwb.txt":

hw.\....

10

10

Zero or more copies

e The asterisk repeats the previous character 0 or more times
e "ca*t" matches "ct”, "cat”, "caat”, "caaat” etc.
e The plus sign repeats the previous character 1 or more times

e "ca-+t" matches "cat’, "caat” etc. but not "ct”

11

11

Repeats

e Braces are a more detailed way to indicate repeats
e A{1,3} means at least one and no more than three A’s

e A{4,4} means exactly four A’s

12

12

simple testing

>>> import re
>>> string = 'what foot or hand fell fastest'

>>> re.findall(r'f[a-z]*', string)
[' foot', 'fell', 'fastest']

Practice problem 1

o Write a regexp that will match any string that starts with "hum"” and
ends with "001" with any number of characters, including none, in
between

e (Hint: consider both ".” and "*")

13

14

Practice problem 2

There must be at least one character before the

e ".py’ is not a legal Python file name

(Imagine the problems if you imported it!)

Write a regexp that will match any Python (.py) file.

14

15

Using the regexp

First, compile it:

import re

myrule = re.compile(xr".+\.py")

print myrule

<_sre.SRE_Pattern object at 0Oxb7e3eb5c0>

The result of compile is a Pattern object which represents your regexp

15

16

Using the regexp

Next, use it:

mymatch = myrule.search(myDNA)

print mymatch

None

mymatch = myrule.search(someotherDNA)
print mymatch

<_sre.SRE_Match object at Oxb7df9170>

The result of match is a Match object which represents the result.

16

17

All of these objects! What can they do?

Functions offered by a Pattern object:

e match()—does it match the beginning of my string? Returns None or a
match object

e search()—does it match anywhere in my string? Returns None or a
match object

e findall()—does it match anywhere in my string? Returns a list of
strings (or an empty list)

e Note that findall () does NOT return a Match object!

17

18

All of these objects! What can they do?

Functions offered by a Match object:

e group ()-return the string that matched
group ()—the whole string
group (1)—the substring matching 1st parenthesized sub-pattern
group(1,3)—tuple of substrings matching 1st and 3rd parenthesized
sub-patterns

e start()—return the starting position of the match
e end ()—return the ending position of the match

e span()—return (start,end) as a tuple

18

19

A practical example

Does this string contain a legal Python filename?

import re

myrule = re.compile(r".+\.py")

mystring = "This contains two files, hw3.py and uppercase.py."
mymatch = myrule.search(mystring)

print mymatch.group()

This contains two files, hw3.py and uppercase.py

not what I expected! Why?

19

20

Matching is greedy

My regexp matches "hw3.py”

Unfortunately it also matches " This contains two files, hw3.py”

And it even matches " This contains two files, hw3.py and uppercase.py”

Python will choose the longest match

| could break my file into words first

Or | could specify that no spaces are allowed in my match

20

21

A practical example

Does this string contain a legal Python filename?

import re

myrule = re.compile(xr"[~ J+\.py")

mystring = "This contains two files, hw3.py and uppercase.py."
mymatch = myrule.search(mystring)

print mymatch.group()

hw3.py

allmymatches = myrule.findall(mystring)

print allmymatches

[’hw3.py’, ’uppercase.py’]

21

22

Practice problem 3

Create a regexp which detects legal Microsoft Word file names

The file name must end with ".doc” or ".DOC"

There must be at least one character before the dot.

We will assume there are no spaces in the names

Print out a list of all the legal file names you find

Test it on testre.txt (on the web site)

22

23

Practice problem 4

e Create a regexp which detects legal Microsoft Word file names that do
not contain any numerals (0 through 9)

e Print out the start location of the first such filename you encounter

e Test it on testre.txt

23

24

Practice problem

e Create a regexp which detects legal Microsoft Word file names that do
not contain any numerals (0 through 9)

e Print out the “base name”, i.e., the file name after stripping of the .doc
extension, of each such filename you encounter. Hint: use parenthesized

sub patterns.

e Test it on testre.txt

24

25

Practice problem 1 solution

Write a regexp that will match any string that starts with "hum” and ends
with "001" with any number of characters, including none, in between

9

25

26

Practice problem 2 solution

Write a regexp that will match any Python (.py) file.

myrule = re.compile(r".+\.py")

if you want to find filenames embedded in a bigger

string, better is:

myrule = re.compile(xr"[~ J+\.py")

this version does not allow whitespace in file names

26

27

Practice problem 3 solution

Create a regexp which detects legal Microsoft Word file names, and use it
to make a list of them

import sys

import re

filename = sys.argv[1]

filehandle = open(filename,"r")
filecontents = filehandle.read()

myrule = re.compile(r" [~]+\.[dD] [o0] [cC]")
matchlist = myrule.findall(filecontents)
print matchlist

27

28

Practice problem 4 solution

Create a regexp which detects legal Microsoft Word file names which do
not contain any numerals, and print the location of the first such filename
you encounter

import sys

import re

filename = sys.argv[1]

filehandle = open(filename,"r")

filecontents = filehandle.read()

myrule = re.compile(r" [~ 0-9]+\.[dD] [o0] [cC]")
match = myrule.search(filecontents)

print match.start()

28

29

Regular expressions summary

e The re module lets us use regular expressions

e These are fast ways to search for complicated strings

e They are not essential to using Python, but are very useful
e File format conversion uses them a lot

e Compiling a regexp produces a Pattern object which can then be used
to search

e Searching produces a Match object which can then be asked for
information about the match

29

30

