
RegExpr:Review & Wrapup;
List “Comprehensions”

Lecture 13b
Larry Ruzzo

(w/ thanks to Mary Kuhner for some slides)

1

Simple RegExpr Testing

>>> import re
>>> str1 = 'what foot or hand fell fastest'
>>> re.findall(r'f[a-z]*', str1)
['foot', 'fell', 'fastest']

>>> str2 = "I lack e's successor"
>>> re.findall(r'f[a-z]*',str2)
[]

Returns list of all matching substrings. (You don’t need
compile, etc.)

Definitely
recommend trying
this with examples
to follow, & more

2

RegExpr Syntax

They’re strings

Most punctuation is special; needs to be
escaped (e.g., “\.” instead of “.”) to get non-
special behavior

So, “raw” string literals (r’C:\new\.txt’) are
generally recommended for regexprs

Unless you double your backslashes judiciously

3

RegExpr Semantics, 1
Characters

RexExprs are patterns; they “match” sequences
of characters

Letters, digits (& escaped punctuation like ‘\.’)
match only themselves, just once

r’TATAAT’ ‘ACGTTATAATGGTATAAT’

4

RegExpr Semantics, 2
Character Groups

Character groups [abc], [a-zA-Z], [^0-9] also
match single characters, any of the characters
in the group.

‘.’ similar – matches any letter (except newline)

Built-in shortcuts, e.g. \s ≡ [\n\t\r\f\v]

r’T[AG]T[^GC].T’‘ACGTTGTAATGGTATnCT’

5

RegExpr Semantics, 3:
Concatenation, Or, Grouping

You can group subexpressions with parens

If R, S are RegExprs, then

RS matches the concatenation of strings matched
by R, S individually

R | S matches the union–either R or S

r’TAT(A.|.A)T’’TATCATGTATACTCCTATCCT’
?

6

RegExpr Semantics, 4
Repetition

If R is a RegExpr, then
R* matches 0 or more consecutive strings

(independently) matching R
R+ 1 or more
R{n} exactly n
R{m,n} any number between m and n, inclusive
R? 0 or 1

Beware precedence (* > concat > |)

r’TAT(A.|.A)*T’‘TATCATGTATACTATCACTATT’
?

7

RegExprs in Python

By default
Case sensitive, line-oriented (\n treated specially)

Matching is generally “greedy”
Finds longest version of earliest starting match

Next “findall()” match will not overlap

r".+\.py" "Two files: hw3.py and upper.py."

r"\w+\.py" "Two files: hw3.py and UPPER.py."

8

Python Mechanics

re.match(pat, str)
matches only at front of string
re.search(pat,str)
matches anywhere in string

re.findall(pat,str)
finds all (nonoverlapping) matches

Many others (split, substitute,...)

Return
“match”
objects

Return lists
of strings

9

“Match” Objects

Retain info about exactly where the pattern matched, and how.

Of special note, if your pattern contains parenthesized groups, you
can see what, if anything, matched each group, within the context of
the overall match.

str= 'My birthdate is 09/03/1988'
pat = r'[bB]irth.* (\d{2})/(\d{2})/(\d{4})'
match = re.match(pat,str)
match.groups()
('09', '03', '1988')

Many more options; see Python docs...

“digit” ≡ [0-9]

10

Pattern Objects & “Compile”

Compile: assemble, e.g. a report, from various sources

mypat = re.compile(pattern[,flags])

Preprocess the pattern to make pattern matching fast.
Useful if your code will do repeated searches with the
same pattern. (Optional flags can modify defaults, e.g.
case-sensitive matching, etc.)

Then use:

mypat.{match,search,findall,...}(string)

11

Exercise 1

Suppose “filenames” are upper or lower case
letters or digits, starting with a letter, followed
by a period (“.”) followed by a 3 character
extension (again alphanumeric). Scan a list of
lines or a file, and print all “filenames” in it,
without their extensions. Hint: use paren
groups.

12

List “Comprehensions”

A common pattern–build one list from another:

list1 = [2,4,6]
list2 = []
for i in list1:
 list2.append(i**2)

print list2
[4, 16, 36]

Shorthand:
 list2 = [i**2 for i in list1]

13

List “Comprehensions”, 2

More general form:

[expr(var) for var in iterable if cond(var)]

Example:

list2 = [i**2 for i in range(1,7) if i%2==0]
print list2
[4, 16, 36]

list, file, etc.

14

List “Comprehensions”, 3

Sometimes convenient, but never necessary

Can also iterate over multiple things, make
nested lists, etc. (But can get rather hard to
read, so restraint is also important,)

15

Practice

1. Make a list of powers of 2: [20, 21, ..., 210]

2. Make a list of lines from a file, each stripped
of leading and trailing whitespace

3. Make a list of lists, each inner list being the
list of uppercase equivalents of words from
one line of a file

16

Solution 1

import sys
import re
filename = sys.argv[1]
filehandle = open(filename,"r")
filecontents = filehandle.read()
myrule = re.compile(
 r"([a-zA-Z][a-zA-Z0-9]*)\.[a-zA-Z0-9]{3}")
#Finds skidoo.bar amidst 23skidoo.barber; ok?
match = myrule.findall(filecontents)
print match

17

Practice Solutions

Solution 1:
 [2**i for i in range(11)]
 [1,2,4,8,16,32,64,128,256,512,1024]

Solution 2:
 [line.strip() for line in file('mat.py')]
 ['a=[1,3,7]', 'mat=[]', 'for i in a:', ...]

Solution 3:
 [line.split() for line in file('mat.py')]
 [['a=[1,3,7]'], ['mat=[]'], ['for', 'i',
 'in', 'a:'],...]

18

