Classes and Objects
Part |

Lecture 14b
Larry Ruzzo
(w/ thanks to Mary Kuhner for most slides)

Classes and Objects (part |)

e What is a class?
e What is an object?
e Why use one?

e How to define and use an object

A class is a defined data type

e Built-in classes in Python include string and dictionary

e A class defines the kinds of data and functions that are available

An object is an instance (example) of a class

e For example:

— string is a class
— mystring = "AGGCGT" creates an object of class string

e You can only have one class named “string”

e You can have many objects which all belong to class string:

— mystring = "AGGCGT"
— yourstring = " Fred”

e The string class provides many useful functions which all string objects
can use

e mystring.upper(), yourstring.split(), etc.

Why use a class?

e Keep related data together
e Keep functions connected to the data they work on

e Example:
— A date class could keep the day and month together

— |t could offer functions such as "Add a number to a date”

e This could be done without classes, but classes are convenient and help
organize the information

e A date class could help avoid the error where you add 15 to February 23
and get February 38

Defining a new class

e As an example, we will build up a simple date class
e A date consists of a day and month

e \We will also provide a way to add a number to a date and get a correct
answer

e A real date class would need a few more functions
e Years would be helpful!

e More error checking would be important too

Defining a new class

class date:
def __init__(self, day, month)
self .myday = day
self .mymonth = month
def printdate(self)

print self.myday, self.mymonth

mydate = date(15,"January")
mydate.printdate ()
15 January

What does that do??

e The class statement creates a new class

e Inside the class, the special name “self’ means the current object of that
class

e Any variable named self.something is a member of the class
e Every object of the class will have a variable of that name

e This class has variables self.myday and self.mymonth

More features of our class

e All functions in a class start with “self’ as an argument
e printdate(self) is a straightforward function
e |t prints the object’s day and month

e __init__ is a special function that is run whenever an object of this
class is created

e \We use it to give the new object its values

e Almost all classes will want an init function

A fancier date class

class date:
def __init__(self, day, month)
self .myday = day
self .mymonth = month
def printUS(self)
print self.mymonth, self.myday
def printUK(self)

print self.myday, self.mymonth

mydate = date(15,"January")
mydate.printUK()

15 January

mydate.printUS()

January 15

Adding a number to a date

e We would like a function on our date class that allows us to add a
number to a date

e This is fairly tricky; we'll build it in stages

e Rules:

— Try adding the number to the day
— If this goes past the end of a month, advance to the next month
— lgnore the leap year problem

Practice problem 1

e Create and fill up a dictionary:

— Key is name of month
— Entry is number of days in month

Practice problem 2

e Write a function nextmonth ()
e Argument: name of a month

e Return value: name of the next month

— If it receives “July” it should return “August”
— If it receives “December” it should return “January”

e You can do this with a big if statement, but there are easier ways

e (Hint: make a list of months with an extra “January” at the end)

Practice problem 3

e Copy the class definition into your program file
e Add a new class function add(self, numdays)
e This function accepts only positive number arguments

e |t should use the dictionary to find the number of days in a month, and
the nextmonth function to find the next month

Use your new date class

e Create an object of your date class, containing a date:
e birthday = date(6, "July")

e Try adding various numbers to it:

birthday.printUS()
July 6
birthday.add(8)
birthday.printUS()
July 14
birthday.add(30)
birthday.printUS()
August 13

Practice problem 1 solution

daysinmonth = {"January":31,
"February":28,
"March'":31,
"April":30,
"May" :31,
"June" : 30,
"July":31,
"August'":31,
"September":30,
"October":31,
"November" :30,
"December":31}

Practice problem 2 solution

Another way to do this would use a dictionary.
It could also be done with 12 if statements but
in general, shorter programs are easier to debug

def nextmonth(thismonth):
monthlist = ["January","February",'"March",
"April","May","June",
"July","August","September",
"October",'"November","December",

"January"]
for index in range(O,len(monthlist))
if (monthlist[index] == thismonth)

return monthlist[index + 1]
print "Illegal month", thismonth

Practice problem 3 solution

class date:
def init (self, day, month) :
self.myday = day
self.mymonth = month
def printUS(self) :

print self.mymonth, self.myday
def printUK(self) :

print self.myday, self.mymonth
def add(self, numdays) :

self.myday = self.myday + numdays
while self.myday > daysinmonth[self.mymonth]

self.myday = self.myday - daysinmonth[self.mymonth]
self.mymonth = nextmonth(self.mymonth)

Practice Problem 4

After using this for a while, you decide that it
was a mistake to keep “mymonth” as a string.
Instead, you now want to keep it as an integer
0..1'l. Change your class definition to do this,
but leave the interface to users of the class
unchanged. In particular the print methods
should still print the month as a string.

Practice 4 solution

daysinmonth = (31,28,31,30,31,30,31,31,30,31,30,31)
monthlist = ["January", "Feb ...,"November", "December"]
def nextmonth (thismonth) :
if 0 <= thismonth < 12
return (thismonth + 1) % 12
print "Illegal month", thismonth
def month2str (monthnum) :
return monthlist[monthnum]
def str2month (monthstr) :
for index in range (0, len (monthlist))
if (monthlist[index] == monthstr) : return index
print "Illegal month", monthstr
class date:
def init (self, day, monthstr)
self.myday = day
self.mymonth = str2month (monthstr)
def printUS (self)
print monthZ2str(self.mymonth), self.myday
def printUK(self)
print self.myday, month2str(self.mymonth)
def add(self, numdays)
self.myday = self.myday + numdays
while self.myday > daysinmonth[self.mymonth]
self.myday = self.myday - daysinmonth[self.mymonth]
self.mymonth = nextmonth (self.mymonth)

