
Genome 559
Intro to Statistical and

Computational Genomics
2009

Lecture 15b: Classes and Objects, II
Larry Ruzzo

Your explanation of classes was much clearer than the book's!

I liked the explanation of objects and classes.

Class was fine today. The new programming stuff is a little hard
but I am slowly getting it.

1 Minute Reflections

Classes and objects will require some practice for me to feel
comfortable with them.

Until now Python seemed very intuitive. Now with class
definitions (esp. the use of "self" and __init__) Python became
counter-intuitive. But your explanations were clear. Thanks for
taking the time to explain slowly.

Today's explanations were good, but I still couldn't figure out
the practice problems.

Today's class was OK. But the class and object part was a bit
confusing to me. I guess I just need more practice.

Where I previously felt confident with the
programing, I now feel a bit overwhelmed and a
bit lost.

It would be helpful for me to have a more generalized example
of the new code elements we're talking about to know what is
essential for Python and what is optional. A good place for this
would be a summary slide of important functions/code.

Will try.

What are the general limits for classes you create? Are classes
something "risky" to create? (I.e., could you really screw up
Python by creating a class with a really huge error in it?)

Classes are optional, and no, not risky. About the worst you can
do is inadvertently duplicate/override a name that Python
expects and uses.

I think it would be useful to see some examples of larger
Python programs and go over what each part does during class.

Yes, I plan to do this.

If you are still thinking about what to do with the rest of the
class, it would be nice to have a lot of practice time with
Python, with problems that incorporate the things we've
learned over the last quarter.

I’m definitely open to suggestions and this is a good one.

Today

A comment on old homework

More on the practice problems from Thursday

More fun with classes

Comment on old homework

It's important to read/define the problem carefully
Programs that do something slightly different are a bad idea
Example:

- In a PHYLIP file, the first 10 characters are the species name
- Commonly, the name ends with a space and has no spaces inside
- If you rely on this, easy to use string.split()
- BUT legal PHYLIP files can break that code:

- Homosapie ATGCGGGCGGTCAATC - OK
- HomosapienATGCGGGCGGTCAATC - FAIL
- Homo sapieATGCGGGCGGTCAATC - FAIL

- In this case, using slice[:10] is better
If you have a format specification, use it: don't just look at the sample file
(If the two don't match, talk to the person who asked you to write this
program: they may be confused, and the sooner you find out, the better.)
 (And yes, my GenBank homework was perhaps teaching you bad habits...)

More on Classes

Much in modern programming languages is motivated by the
need to write large programs

BioPython is 25 megabytes, ~0.5 million lines
And that isn’t near the large end of the scale
Large programs aren’t just small programs on steroids
(Not always easy to appreciate until it’s too late)

Python modules are one such feature

Classes/“object oriented programming” are another

My goal is not to make you instant experts at this, but to acquaint
you with the issues so you can use “object-oriented” tools, e.g.,
BioPython, and won’t be intimidated by these features.

What’s in a Name?

Management of (many!) names is one issue
myseq = file.readline()
frags = digest(mysequence)

Hmm, did you mean:
EcoR1 + DNA? frag = dna_digest(myseq)
trypsin + protein? frag = tryp_digest(myseq)

Oh, and your pal sent you rev_comp_DNA()
Will you ever forget/use the wrong name/case?

Modules Might Help

Have a module named DNA for all your DNA-based
tools
import DNA
antisense = DNA.rev_comp(myseq1)
frags = DNA.digest(myseq1)

Another module named prot for protein tools
import prot
frags = prot.digest(myseq2)

At least you now have consistent spelling
But you might still twitch and call the wrong .digest()

“Classes” might help?

Have separate classes for protein vs DNA sequences,
each with appropriate methods

class SeqDNA:
 def digest(theseq): ...
 def rev_comp(aseq): ...
class SeqProt:
 def digest(someseq): ...
myseq = SeqDNA(file.readline())
frags = SeqDNA.digest(myseq)

A lot like the “module” version: consistent spelling, but
still error-prone, and extra “constructor” step

yes, this really works

Classes help more:
methods & the “self” shorthand

Instead of:

classname.methodname(class_instance)

Do this:

class_instance.methodname()

E.g.:

myseq.digest() SeqDNA.digest(myseq)

How? The class instance knows what class it’s in, and
effectively “inherits” that class’s methods.

Automatically converted

Auto conv

Have separate classes for protein vs DNA sequences,
each with appropriate methods

class SeqDNA:
 def digest(self): ...
 def rev_comp(self): ...
class SeqProt:
 def digest(self): ...
myseq = SeqDNA(file.readline())
frags = myseq.digest()

Better than the “module” version: yes, still the extra
“constructor” step, but since objects know which class
they’re in, you always get the class-specific method

Classes help more

Continuing “Date” example

class date:
 def __init__(self, day, month) :
 self.myday = day
 self.mymonth = month
 def printdate(self)
 print self.myday, self.mymonth

mydate = date(15,"January")
mydate.printdate()
15 January

Practice

Write a function for our date class that allows us to add a
number to a date

Algorithm:
 add the number to the day; if this goes past the end of a
month, advance to the next month; repeat

Step 1: Set up a dictionary mapping month name (key) to
number of days in month (value)

Step 2: Write a function nextmonth(month_name) returning
name of the next month.

E.g., nextmonth(“Apr”) == “May”, nextmonth(“Dec") == “Jan"

You can do this with a big if statement, but there are easier
ways

(Hint: make a list of months with an extra “January" at the end)

Step 3: Copy the class definition into your program file

Add a new class function add(self, numdays)

This function accepts only positive number arguments

It should use the dictionary to find the number of days in a
month, and the nextmonth function to find the next month

