
Genome 559
Intro to Statistical and

Computational Genomics
2009

Lecture 16b:
Classes and Objects, III

Larry Ruzzo

1

Continuing “Date” example

class Date:
 def __init__(self, day, month) :
 self.myday = day
 self.mymonth = month
 def printdate(self)
 print self.myday, self.mymonth

mydate = Date(15,"January")
mydate.printdate()
15 January

2

Practice (cont.)

Write a function for our date class that adds a number to a date
Algorithm:

add the number to the day; if this goes past the end of a month,
advance to the next month; repeat

Step 1: Set up a dictionary mapping month name (key) to number
of days in month (value)
Step 2: Write a function nextmonth(month_name) returning name
of the next month.
Step 3: Write add(self, numdays). Assume numdays > 0. (Use the
algorithm above, dictionary to find the number of days in a month,
and the nextmonth function to find the next month.)

3

Practice: Step 1 solution

daysinmonth = {
"Jan":31,
"Feb":28,
"Mar":31,
"Apr":30,
"May":31,
"Jun":30,
"Jul":31,
"Aug":31,
"Sep":30,
"Oct":31,
"Nov":30,
"Dec":31
}

4

Practice: step 2 solution

It could also be done with 12 if statements
but in general, simpler is better

def nextmonth(thismonth):
monthlist = ["Jan","Feb","Mar",

 "Apr","May","Jun",
 "Jul","Aug","Sep",
 "Oct","Nov","Dec",
 "Jan"]

for index in range(0,len(monthlist)) :
if (monthlist[index] == thismonth) :
return monthlist[index + 1]

print "Illegal month", thismonth

Q: What’s returned if illegal?

5

Practice step 2, alternate solution a

use a dictionary to hold the
“next month” mapping

def nextmonth(thismonth):
nextmonthdict = {
"Jan":"Feb", "Feb":"Mar", "May":"Apr",
"Apr":"May", "May":"Jun", "Jun":"Jul",
"Jul":"Aug", "Aug":"Sep", "Sep":"Oct",
"Oct":"Nov", "Nov":"Dec", "Dec":"Jan"}

if thismonth in nextmonthdict :
return nextmonthdict[thismonth]

else :
print "Illegal month", thismonth

6

Practice step 2, alternate solution b

A handy nerdy trick: “a % b”, usually read
“a mod b”, means the remainder when a is
divided by b. E.g., (1%12, ..., 11%12) ==
(1,...,11), but 12%12 == 0, so Dec + 1
wraps around to Jan again; sweet!

def nextmonth(thismonth):
monthlist = ["Jan","Feb","Mar",

"Apr","May","Jun",
"Jul","Aug","Sep",
"Oct","Nov","Dec"]

for index in range(0,len(monthlist)) :
if (monthlist[index] == thismonth) :
return monthlist[(index + 1) % 12]

print "Illegal month", thismonth

7

Practice step 3 solution

class Date:
 def _ _init_ _(self, day, month) :
 self.myday = day self.mymonth = month
 def printUS(self) :
 print self.mymonth, self.myday
 def printUK(self) :
 print self.myday, self.mymonth def
 add(self, numdays) :
 self.myday = self.myday + numdays
 while self.myday > daysinmonth[self.mymonth] :
 self.myday = self.myday-daysinmonth[self.mymonth]
 self.mymonth = nextmonth(self.mymonth)

 Q: where could/should daysinmonth & nextmonth() go?

8

date.add() changes its argument

If you say mybirthday.add(8) you change mybirthday
It might be better to return a new date object:

def addnew(self, numdays) :
 newmonth = self.mymonth
 newday = self.myday + numdays
 while newday > daysinmonth[newmonth] :
 newday = newday - daysinmonth[newmonth]
 newmonth = nextmonth(newmonth)
 return Date(newday,newmonth) Make a new

“Date” object

9

Using date.addnew()
>>> mybirthday = Date(6,"July")
>>> mybirthday.printUS()

July 6

>>> party = mybirthday.addnew(4)
>>> party.printUS()

July 10

>>> mybirthday.printUS()

July 6

10

How to print a date

Why is “print” fine for numbers, tuples, etc.

>>> print ("Jan",5)
('Jan', 5)

but funky for class instances?

print mydate
<__main__.date instance at 0x247468>

Yes, mydate.printUS() works, but seems clunky

11

Here’s another way

Actually, “print” doesn’t need special knowledge
of how to print numbers, strings, tuples, ...
It just knows how to print strings, and relies on
each class to have a __str__() method that
returns a pretty string representing the object.

(“<__main__.date instance at 0x247468>” is the
result of calling the default __str__() method.)

12

Printing dates

class Date:
 def __init__(self, day, month) :
 self.myday = day
 self.mymonth = month

 def __str__(self) :
 return ‘%s %s’%(self.mymonth, self.myday)

 add(self, numdays) :
 (etc., as before)

birthday = date(3,”Sep”)
print “It’s”, birthday, “. Happy Birthday!”

13

Advanced topic:
Allowing the plus sign

While we’re at it, how come “+” works (but
differently) for numbers and strings and tuples
and ..., but not for dates?

Yes,
“party = mybirthday.addnew(4)”

works to add numbers to dates, but
“party = mybirthday + 4”

seems so much more natural. Can we do it?

14

Advanced topic: Overloading “+”

Yes! Again, ‘+’ isn’t as smart as you thought; it calls class-
specific “add” methods (“__add__()”) to do the real work:

def _ _add_ _(self, numdays) :
 newmonth = self.mymonth
 newday = self.myday + numdays
 while newday > daysinmonth[newmonth] :
 newday = newday - daysinmonth[newmonth]
 newmonth = nextmonth(newmonth)
 return Date(newday,newmonth)

usage example
mybirthday = Date(6,"July")
party = mybirthday + 4 mybirthday.__add__(4)
print mybirthday, party
July 6 July 10

15

Operator overloading

This shows some of the power of classes in Python; we
can make new classes, like Date, behave like built-in ones

Operator overloads involve names with underscores
Common operator overloading methods

_ _init_ _ # object creation
_ _add_ _ # addition (+)
_ _mul_ _ # multiplication (*)
_ _sub_ _ # subtraction (-)
_ _lt_ _ # less than (<)
_ _str_ _ # printing
_ _call_ _ # function calls
... # And more for indexing, slicing,iteration...

Try “>>>dir(object)” in Python to see what’s there

16

Pros and Cons

Good aspects of operator overloading
- Make the date class easier to use
- Can use your own classes just as you use built-in ones
- It's very cool

Bad aspects:
- If you overload the + sign to do subtraction, you will make your life miserable
- Must be sure that the resulting functions don't contain boobytraps
- Cool code can distract you from getting the job done

Bottom line: this is an advanced technique which you
may or may not need
One exception: almost all classes will need init functions

17

class Seq:
 def print_FASTA(self): ...
class DNA(Seq):
 def digest(self): ...
 def rev_comp(self): ...
class Prot(Seq):
 def digest(self): ...

myseq = DNA(file.readline())
frags = myseq.digest()
myseq.print_FASTA()

Inheritance:
do the common parts once

Superclass for seqs in general, with
appropriate methods common to all

Separate subclasses for protein vs
DNA sequences, with methods
appropriate to each

myseq is a “DNA” object; doesn’t
have a “print_FASTA” method, but
inherits it from Seq superclass

18

“Classes”: Summary

Most useful in (but not restricted to) large programs

Classes package together related data plus the functions
(“methods”) appropriate thereto

Method calls automatically find the def of the given name
within their own class, not some other one spelled the same

The relevant object is always passed to the method as its 1st
parameter, called “self” by convention

Method names starting & ending with “_ _” are special,
allowing “operator overloading” and other emulation of
“standard” behavior

19

Practice Problem 4

After using “date” for a while, you decide that it
was a mistake to keep “mymonth” as a string.
Instead, you now want to keep it as an integer
0..11. Change your class definition to do this,
but leave the interface to users of the class
unchanged. In particular the constructor and
print methods should still take/print the month
as a string.

20

Practice 4 solution
daysinmonth = (31,28,31,30,31,30,31,31,30,31,30,31)
monthlist = ["January", "February”, ..., "December"]
def nextmonth(thismonth):
 if 0 <= thismonth < 12 :
 return (thismonth + 1) % 12
 print "Illegal month", thismonth
def month2str(monthnum):
 return monthlist[monthnum]
def str2month(monthstr):
 for index in range(0,len(monthlist)) :
 if (monthlist[index] == monthstr) : return index
 print "Illegal month", monthstr

21

Practice 4 solution
class date:
 def __init__(self, day, monthstr) :
 self.myday = day
 self.mymonth = str2month(monthstr)
 def print(self) :
 print month2str(self.mymonth), self.myday
 def add(self, numdays) :
 self.myday = self.myday + numdays
 while self.myday > daysinmonth[self.mymonth] :
 self.myday=self.myday - daysinmonth[self.mymonth]
 self.mymonth = nextmonth(self.mymonth)

22

