
Genome 559
Intro to Statistical and

Computational Genomics
2009

Lecture 16b:
Biopython

Larry Ruzzo
(Thanks again to Mary Kuhner for many slides)

1

1 Minute Responses

Bioinformatics
Liked Harrow summary & data integration
More on LLR?

Python
Classes finally clicking (several)
Repetitive today (some)
Liked “dir()” & other details
Is “return” the diff between “mutable” and not?
Can Python process non-.txt files? .ppt, .doc, etc?

2

Biopython

What is Biopython?
How do I get it to run on my computer?
What can it do?

3

Biopython

Biopython is tool kit, not a program–a set of
Python modules useful in bioinformatics
Features include:

- Parsing files in different database formats
- Interfaces to progs/DBs like Blast, Entrez, PubMed
- Sequence class (can transcribe, translate, invert, etc)
- Code for handling alignments of sequences
- Clustering algorithms

Useful tutorials at http://biopython.org

4

Making Biopython available on
your computer

http://biopython.org/DIST/docs/install/
installation.html

1.49 is latest; works with Python 2.5 (& newer?)

Runs on Windows, MaxOSX, and Linux

5

Sequence class

>>> from Bio.Seq import Seq # sequence class
>>> myseq = Seq("AGTACACTGGT")
>>> myseq.alphabet
Alphabet()
>>> print myseq.tostring()
AGTACACTGGT

6

More functionality than a plain string

>>> myseq
Seq('AGTACACTGGT', Alphabet())
>>> myseq.complement()
Seq('TCATGTGACCA', Alphabet())
>>> myseq.reverse.complement()
Seq('ACCAGTGTACT', Alphabet())

7

A sequence in a specified
alphabet

>>> from Bio.Seq inport Seq
>>> from Bio.Alphabet import IUPAC
>>> myseq=Seq('AGTACACTGGT',IUPAC.unambiguous.dna)
>>> myseq
Seq('AGTACACTGGT', IUPACUnambiguousDNA())

8

Transcribe

>>> from Bio import Transcribe
>>> mydna = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC",
... IUPAC.unambiguous.dna)
>>> myrna = mydna.transcribe()
>>> print myrna
Seq('GAUCGAUGGGCCUAUAUAGGAUCGAAAAUCGC',IUPACUnambiguousRNA())
>>> myprot = myrna.translate()
Seq('DRWAYIGSKI', ExtendedIUPACProtein())
>>> s2 = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG",
... IUPAC.unambiguous_rna)
>>>s2.translate()
Seq('MAIVMGR*KGAR*', HasStopCodon(IUPACProtein(), '*'))

9

Parsing a database format

FASTA database file named "ls_orchid.fasta":

>gi|2765658|emb|Z78533.1|CIZ78533 C.irapeanum 5.8S rRNA gene
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTG
AATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGTGACCCTGATTTGTTGTTGGG
....
from Bio import SeqIO
handle = open("ls_orchid.fasta")
for seq.record in SeqIO.parse(handle, "fasta") :

print seq.record.id
print seq.record.seq
print len(seq.record.seq)

handle.close()

gi|2765658|emb|Z78533.1|CIZ78533
Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTG ...',
 SingleLetterAlphabet())
740

10

Searching GenBank

from Bio import GenBank
gilist = GenBank.search_for("Opuntia AND rpl16")

gilist will be a list of all of the GenBank
identifiers that match our query:
print gilist
['6273291', '6273290', '6273289', '6273287',
'6273286', '6273285', '6273284']

11

Searching GenBank
ncbidict = GenBank.NCBIDictionary("nucleotide", "genbank")
gbrecord = ncbidict[gilist[0]]
print gbrecord

LOCUS AF191665 902 bp DNA PLN 07-NOV-1999
DEFINITION Opuntia marenae rpl16 gene; chloroplast gene for
 chloroplast product, partial intron sequence.
ACCESSION AF191665
VERSION AF191665.1 GI:6273291
...

12

How would I use Biopython?

Browse the documentation;become familiar with its capabilities
When doing bioinformatics, keep Biopython in mind
Prefer it to writing your own code for:

- Defining and handling sequences and alignments
- Parsing database formats
- Interfacing with databases

Biopython is not a program itself; it's a collection of tools for
Python bioinformatics programs
You don't have to use it all: pick out one or two elements to
learn first

13

Code re-use

If someone has written solid code that does
what you need, use it

Don't "re-invent the wheel" unless you're doing
it as a learning project

Python excels as a "glue language" which can
stick together other peoples' programs,
functions, classes, etc.

14

