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1 Minute Responses

biopython makes me appreciate python more; but I have new questions: if python was 
used to make biopython what was used to make python?  In other words, how do we 
get from bit code (0's & 1') to a package like python?
Biopython seems really useful.  Giving us ways to see how to use file was great.
thank you so much for the explanation of the homework!  I feel a lot better.  I still have 
some trepidation regarding biopython, but I feel better with the example.
the exercise were helpful to get used to Biopython.  Going over the homework 
approaches was also good.
Biopython seems like a very cool & useful set of tools!  I'm looking forward to digging 
through it more and hopefully using it in my work.
Nice class.  Going over the homework was helpful.
I really appreciate that you're going over biopython - very useful.
Thanks for showing us how to extract features -- this will be really helpful for using 
biopython.
Good class today, just need more time to play with everything.  It all seems a mystery 
until I get into the homework, then the pieces begin to come together.  No success yet 
w/ biopython & Vista, but I will continue to play

2



HW notes

def func(x):

handle = open(...)

...

return something

handle.close()
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Solution 1

from Bio import SeqIO 
handle = open("ls_orchid.fasta") 
for seqrec in SeqIO.parse(handle, "fasta"):

 print seqrec.id 

 s = seqrec.seq

 print s 

 print len(s), 

 na = s.count('A')

 nc = s.count('C')

 ng = s.count('G')

 nt = s.count('T')

 print "GC%=",(ng+nc)*100.0/(na+nc+ng+nt)
handle.close()

Q1:  there’s also a Biopython func to 
calc gc%; can you find it?

Q2:  Why did I not use (G+C)/len(s)?
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GenBank Format, too

from Bio import SeqIO
handle = open("ls_orchid.gbk")
for seq_record in SeqIO.parse(handle, "genbank") :
    print seq_record.id
    print repr(seq_record.seq)
    print len(seq_record)
handle.close()

This should give:

Z78533.1
Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGT
GG...CGC', IUPACAmbiguousDNA())
740
...
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Exercise 2

Change above example to save the records in a 
list called seqrecs 
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Solution 2

from Bio import SeqIO
handle = open("ls_orchid.gbk")
seqrecs = []
for seq_record in SeqIO.parse(handle, "genbank") :
    seqrecs.append(seq_record)
    print seq_record.id
    print repr(seq_record.seq)
    print len(seq_record)
handle.close()

This should give:

Z78533.1
Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGT
GG...CGC', IUPACAmbiguousDNA())
740
...

And...
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Feature Tables

>>>seqrecs[0]
SeqRecord(seq=Seq('CGTA...CGC', IUPACAmbiguousDNA()), 
id='Z78533.1', name='Z78533', description='C.irapeanum 
5.8S rRNA gene and ITS1 and ITS2 DNA.', dbxrefs=[])
>>> print seqrecs[0]
ID: Z78533.1
Name: Z78533
Description: C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA.
Number of features: 5
/sequence_version=1
/source=Cypripedium irapeanum
/taxonomy=['Eukaryota', ..., 'Cypripedium']
/keywords=['5.8S ribosomal RNA', ... 'ITS2']
/references=[<Bio.SeqFeature.Reference instance...]
/accessions=['Z78533']
/data_file_division=PLN
/date=30-NOV-2006
/organism=Cypripedium irapeanum
/gi=2765658
Seq('CGTAACAAGGTTTCCGTAGGTGA...CGC', IUPACAmbiguousDNA())
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Extracting Features 
(Lists of objects with dicts of lists of lists of dicts of ...Oh my!)

>>> seqrecs[0].annotations
{'sequence_version': 1, 'source': 'Cypripedium 
irapeanum', 'taxonomy': ['Eukaryota', ... ... ... ...}

# it’s a dictionary!  What keys does it have?

>>> seqrecs[0].annotations.keys()
['sequence_version', 'source', 'taxonomy', 'keywords', 
'references', 'accessions', 'data_file_division', 'date', 
'organism', 'gi']
# grab one dict entry
>>> seqrecs[0].annotations['keywords']  
['5.8S ribosomal RNA', '5.8S rRNA gene', 'internal 
transcribed spacer', 'ITS1', 'ITS2']

#It’s a list!   We can index into it...

>>> seqrecs[0].annotations['keywords'][1]
'5.8S rRNA gene'
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Searching GenBank

# This example & next require internet access

from Bio import GenBank 
gilist = GenBank.search_for("Opuntia AND rpl16")
# (that’s RPL-sixteen, not RP-one-one-six)

# gilist will be a list of all of the GenBank 
# identifiers that match our query: 
print gilist 
['6273291', '6273290', '6273289', '6273287', 
'6273286', '6273285', '6273284']
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Searching GenBank
ncbidict = GenBank.NCBIDictionary("nucleotide", "genbank") 
gbrecord = ncbidict[gilist[0]] 
print gbrecord

LOCUS      AF191665 902 bp DNA PLN 07-NOV-1999 
DEFINITION Opuntia marenae rpl16 gene; chloroplast gene for
           chloroplast product, partial intron sequence. 
ACCESSION  AF191665 
VERSION    AF191665.1 GI:6273291 
...

Exercise 3:  What kind of a thing is “gbrecord”?  Is there other stuff 
hidden with it like annotations or feature tables?   How do I access it?
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>>> type(gbrecord)
<type 'str'>

# Aha, it’s just a plain string.

>>> gbrecord
'LOCUS       AY851612                 892 bp    DNA     
linear   PLN 10-APR-2007\nDEFINITION  Opuntia subulata 
rpl16 gene, intron; chloroplast.\nACCESSION   
AY851612\nVERSION     AY851612.1  GI:
57240072\nKEYWORDS    .\nSOURCE      chloroplast 
Austrocylindropuntia subulata\n  ... ... ... ... ... ‘

Can we get Biopython to parse it?

Solution 3
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To parse a string

Turn a string 
into a handle

>>>SeqIO.parse(gbrecord, "genbank")
Traceback (most recent call last): blah blah blah...

# Oops, a string isn’t a handle...

>>> import cStringIO
>>> SeqIO.parse(cStringIO.StringIO(gbrecord), "genbank")
<generator object at 0x5254b8>  ## Oops, need loop
>>> for rec in SeqIO.parse(cStringIO.StringIO(gbrecord), 
... "genbank"): 
...     print rec
...
ID: AY851612.1
Name: AY851612
Description: Opuntia subulata rpl16 gene, intron; 
chloroplast.
Number of features: 3
/sequence_version=1
/source=chloroplast Austrocylindropuntia subulata  ...
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(Some) Other Capabilities

AlignIO
consensus
PSSM (weight matrix)

BLAST
both local and internet

Entrez EUtils
including GenBank and PubMed

Other Databases
SwissProt, Prosite, ExPASy, PDB
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How would I use Biopython?

Biopython is not a program itself; it's a collection of tools for 
Python bioinformatics programing 
When doing bioinformatics, keep Biopython in mind
Browse the documentation;become familiar with its capabilities
Use help(), type(), dir() & other built-in features to explore
You might prefer it to writing your own code for:

- Defining and handling sequences and alignments 
- Parsing database formats
- Interfacing with databases

You don't have to use it all!  Pick out one or two elements to 
learn first
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Code re-use

If someone has written solid code that does 
what you need, use it 

Don't "re-invent the wheel" unless you're doing 
it as a learning project 

Python excels as a "glue language" which can 
stick together other peoples' programs, 
functions, classes, etc.
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Exercises

Many!

As one suggestion, look at the “Cookbook” 
section of the tutorial.  Figure out how to read 
my hem6.txt Phylip alignment & make a WMM 
from it. 

Feel free to do something with one of the other 
pieces instead.
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