
Genome 559

Web page:
http://evolution.gs.washington.edu/gs559/yr2009/web/index.html

One-minute responses

� The phylogeny info was mostly review for me, though I de�nitely found
it helpful.

� Given the mathematical limitations with searching for trees, will we ever
be able to do anything interesting with trees in Python?

� I liked the explanation of phylogenies, especially list of tips/topologies{it
was easy to understand why some approaches aren't feasible. the exercise
on trees and scoring was helpful too.

� I was really interested in the phylogeny section of today. (x3)

� Today's class was interesting. I like how the relevance of programming
to analyzing sequence data was mentioned.

� I really enjoyed the phylogeny portion of the talk today. The programming
portion was very challenging, but the review was very helpful.

� It will be interesting to see how we use the Python tools we have to
address bioinformatics issues.

One-minute responses

� I felt somewhat more comfortable with looping last time; today's problems
made me more confused. I think I just needed more time to work through
the problems and will do so on my own.

� It would be helpful to have more time for sample problems. (x2)

� I'm still a bit (or more than a bit) confused on for... but, I think I'm
slowly getting there....

� Good class content today and I appreciated taking the time to go back
over for loops. A little hard in the programming section, but made
sense over time.

� Problems were challenging. (x3)

� I appreciate the ample time to work on problems. Also liked the use of
FASTA data and biological reference of practice problems.

� Very confusing class{mostly the Python part!

One-minute responses

� I don't know what \+=" or \!=" means. \x += 2" means \x = x +

2". \x != 2" means \x is not equal to 2" and is used in if statement

tests.

� It would be nice to have had the for loop summary in the lecture notes.
(x3) I printed last year's notes, not this year's! Oops.

� Could we still get the summary slides of code that we've gone over each
day? Yes.

� It would be helpful in the in-class problems to have the code input and
output{just so it's clear what's expected. I'll try to do this.

� Sometimes it was hard to hear due to printer, people talking etc. Please
tell me when you can't hear me!

More on loops

� There are many ways to write a loop

� Some of them don't work very well!

� We'll look at a simple case in detail

Print the �rst ten lines from a �le

� We'll look at several ways to do this

� Points to consider:

{ What if the �le is huge?
{ What if it has less than 10 lines?

Ready the �le for reading

I assume the �le name is read from the command line

#open file for reading

import sys

filename = sys.argv[1]

filehandle = open(filename,"r")

I'll assume each program starts with this boilerplate.

For loop

#read entire file

linelist = filehandle.readlines()

#print first 10 lines

count = 0

for myline in linelist :

if count < 10 :

print myline

count += 1

filehandle.close()

For loop

#read entire file

linelist = filehandle.readlines()

#print first 10 lines

count = 0

for myline in linelist :

if count < 10 :

print myline

count += 1

filehandle.close()

This is not ideal:

� It reads the whole �le unnecessarily

� It loops many more times than necessary

� It does handle a short �le correctly

Di�erent for loop

#read entire file

linelist = filehandle.readlines()

#print first 10 lines

for index in range(0,10) :

print linelist[index]

filehandle.close()

For loop

#read entire file

linelist = filehandle.readlines()

#print first 10 lines

for index in range(0,10) :

print linelist[index]

filehandle.close()

This is di�erent but still awed

� It still reads the whole �le unnecessarily

� It loops only 10 times

� It ends with an error if there are less than 10 lines

For loop

#read and print first 10 lines

for counter in range(0,10) :

myline = filehandle.readline()

print myline

filehandle.close()

For loop

#read and print first 10 lines

for counter in range(0,10) :

myline = filehandle.readline()

print myline

filehandle.close()

This is much better:

� It reads only 10 lines

� It loops only 10 times

� Readline() returns the empty string if there are no more lines, so this
program works correctly for very short �les

While loop

#read and print first 10 lines

count = 0

while count < 10 :

myline = filehandle.readline()

print myline

count += 1

filehandle.close()

While loop

#read and print first 10 lines

count = 0

while count < 10 :

myline = filehandle.readline()

print myline

count += 1

filehandle.close()

This is good too:

� It reads only 10 lines

� It loops only 10 times

� Readline() returns the empty string if there are no more lines, so this
program works correctly for very short �les

� It's harder to write than the for loop

Too many possibilities?!

� You don't need to be comfortable with all of them

� If you have a collection of something, consider for �rst

� If you don't have a collection, consider for with a range

� If neither for makes sense, try while

The result of readlines() is a list of strings

� The �rst entry is the �rst line

� The second entry is the second line

� What does this do?

� mylines = filehandle.readlines()

� target = mylines.find(">")

The result of readlines() is a list of strings

� The �rst entry is the �rst line

� The second entry is the second line

� What does this do?

� mylines = filehandle.readlines()

� target = mylines.find(">")

� AttributeError: 'list' object has no attribute 'find'

The result of readline is a string

� The �rst entry is the �rst character

� The second entry is the second character

� What does this do?

� myline = filehandle.readline()

� target = myline.find(">")

Practice problem 1

� Read the �rst 5 lines from a �le

� Print characters 7-12 of each line

� Test this with the �le short.txt from last lecture

� Make sure to handle lines with less than 12 characters safely

loop.py

import sys

filename = sys.argv[1]

filehandle = open(filename,"r")

read first 5 lines

for index in range(0,5) :

line = filehandle.readline()

we don't count the end-of-line character

numchars = len(line) - 1

if numchars > 12 :

print line[6:12]

else :

print line[6:numchars]

loop.py results

python loop.py small.txt
THEPA
LFNILC
NVVIWE
VFSLNM
LINVFS

Iterating over two containers with zip

seq1 = "ATGGCGA"

seq2 = "AAGGCGT"

count = 0

for (b1, b2) in zip(seq1, seq2) :

if b1 != b2 :

count += 1

print count

Summary of commands (this lecture and last)

Example Meaning
for <item> in <container>: iterate over container
while <condition>: iterate until condition is met
x += 5 x = x + 5
x != 5 x not equal to 5
range(0,10) create a list of 0, 1, 2, ... 9
zip(<container1>,<container2>) create a list of tuples

