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ABSTRACT

We provide a detailed overview of the choices inherent in per-
forming a sequence database search, including the choice of algo-
rithm, substitution matrix and gap model. Each of these choices has
implications that can be described as restrictions on the underlying
model of sequence evolution, the expected degree of divergence be-
tween the query sequence and the database sequences (if one uses an
evolutionary based matrix), as well as the sensitivity and selectivity
of the search. We conclude with a series of recommendations for re-
searchers performing these searches based on our experience and
literature studies.

INTRODUCTION

Database searching is the application of knowledge gained
from previous examinations of well-characterized sequences
to the problem of discovering the biochemistry and physiolo-
gy of a newly discovered gene or its protein product. The ob-
jective of a database search is to distinguish sequences related
to the query sequence by some model (e.g., evolution) from
unrelated sequences. This objective is different from the ob-
jective of aligning sequences, which is to discover the most
likely history of changes between sequences already inferred
to be related. This difference in objectives implies a very dif-
ferent set of choices for parameters and strategies. A database
search is a computational investigation and, like a laboratory
investigation, must be performed thoughtfully. A database
search performed with injudicious parameters will lead to
wrong answers and missed discoveries. While the default pa-
rameters on most database search servers are appropriate to a
wide range of the most common circumstances, no single set
of parameters will be the best for all searches. Thus there are
at least three distinct situations where other parameters are
likely to give better results.

The first is when sequences in the database that are homol-
ogous to the query sequence are evolutionarily highly di-
verged. The second is when either the query sequence or its

homologues in the database are too short to achieve a statisti-
cally significant match using the default parameters. The third
is when the researcher is interested in finding homologues in
only a limited range of species whose evolutionary diver-
gence from the species in which the query sequence was
found is different from that implied by the default parameters.
Examples of all of these situations are reported in the litera-
ture cited in this paper. This discussion is intended to help re-
searchers recognize and adjust their database searches to
these circumstances.

Database searching helps to evaluate whether a newly de-
termined sequence is related to a previously determined and
characterized gene or protein through a common evolutionary
ancestor. Homology, relatedness through a common evolu-
tionary ancestor, is not directly observable. In sequence data-
base searching, we observe sequence likeness or similarity. If
the likeness is great enough, we may infer that the two se-
quences are homologous. Thus, much of the previously deter-
mined knowledge we apply in database searching involves
how to best measure sequence likeness and how to assess
whether the observed degree of sequence likeness is sufficient
to allow us to infer that the sequences are homologous; that is,
related through divergent evolution.

The similarity scores for pairs of sequence residues, either
amino acids or nucleotides, used to assess sequence likeness
are the major sources of previous biological knowledge for
database searching. Similarity matrices provide a quantifiable
measure of the ability of one residue to replace another, instead
of assuming that all residues are equally conserved and that all
mismatches are equally bad, as does the unitary scoring matrix.
Similarity matrices have been developed reflecting different
degrees of evolutionary divergence. The point accepted muta-
tion (PAM) (11) and block sum (BLOSUM) (14) similarity
matrices widely used in protein database searches are two good
examples. These matrices incorporate the information of which
residues have successfully replaced each other during the
course of evolution. Similar matrices are available, if not wide-
ly used, for nucleic acid sequences (30). The nucleic acid ma-
trices can incorporate knowledge about differential rates of
transitions and transversions in the same way that some amino
acid substitutions are judged more favorable than others in pro-
tein similarity matrices.

The algorithm used in searching the database incorporates
the knowledge of how to find the maximum degree of se-
quence likeness and is the second most important source of
previous knowledge. The three most widely used programs
today, Smith-Waterman (28), FASTA (25), and BLAST (3,4),
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place different restrictions on the simple evolutionary model
on which database searching is based. Smith-Waterman is the
most rigorous algorithm and does not place any heuristic re-
strictions on the evolutionary model; it is both the most sensi-
tive and the least selective algorithm. The actual pattern of
evolutionary changes between a newly determined sequence
and any homologue in the database can be incompatible with
the heuristic restrictions imposed by either BLAST or FAS-
TA. Alternatively, the additional selectivity that results from
these restrictions can sometimes be an advantage. There is no
single program that is always best at finding distantly related
sequences for all gene and protein families, although the
Smith-Waterman algorithm is most often the best (23,24).

Virtually all sequence database search programs now re-
turn an estimate of the statistical significance of the matches
observed between the query sequence and sequences in the
database. The statistical significance is an attempt to deter-
mine how often a score of a given value would be observed
from the comparison of a random sequence to the length and
composition of the query sequence and the sequences in the
database.

Finally, the sequence database itself represents a large
store of previously acquired knowledge. Making the best use
of this knowledge can save many months of expensive labo-
ratory experimentation and allow limited resources to be used
to acquire truly new knowledge. The size of this potential
gain is the determining factor in deciding how much effort to
devote to any particular database search.

SEARCH ALGORITHM

In the next section, we will describe the operation of the
three most widely used database searching algorithms: Dy-
namic Programming Algorithm [Smith-Waterman (28,33),
Needleman-Wunsch (21) and Sellers (26,27)], Word Search
[FASTA (25)] and Maximal Segments Pairs [BLAST (3)].

Dynamic Programming Algorithm

The dynamic programming algorithm is mathematically
rigorous and, given a specific substitution matrix and gap
model, is guaranteed to find the optimum score and alignment
(21,26,28,33). Several variants of the dynamic programming
algorithm are useful in different situations. The first use of the
dynamic programming algorithm for sequence analysis was
by Needleman and Wunsch (21) and independently by Sellers
(26). These equivalent variants of dynamic programming pro-
vide a global alignment between two sequences, which forces
the alignment to include the entire length of both sequences.
The Smith-Waterman algorithm (28,33) yields a local align-
ment, which provides the regions within the pair of sequences
that are the most similar given the choice of scoring matrix
and gap penalties. A third variant of the dynamic program-
ming algorithm first proposed by Sellers (27), often called the
quasi-global alignment algorithm, in a well-behaved case,
aligns an entire shorter sequence within the best matching re-
gion of a longer sequence. It has been shown that the Smith-
Waterman (local alignment) algorithm is the most effective of

the database searching dynamic programming algorithms for
finding similar sequences, although the Needleman-Wunsch
(global alignment) or Sellers (quasi-global) may be more ap-
propriate for problem-specific final alignment.

The Smith-Waterman algorithm is a recursive mathemati-
cal equation (28,33). Recursive means that the results are
computed in steps with any subsequent step depending on the
answers to previous steps. The Smith-Waterman algorithm
can be expressed as:

SWi,j = max{SWi-1,j-1 + s(ai,bj); SWi-k,j + gapj; SWi,j-k + gapi; 0}
where, for an affine gap penalty:
gapj = open_gap + (i-k+1)*extend_gap
gapi = open_gap + (j-k+1)*extend_gap [Eq. 1]

SWi,j is the Smith-Waterman score for the partial alignment
ending at residue i of sequence a and residue j of sequence b.
It can be visualized in a table form (Figure 1). The value of
SWi,j is the maximum of four different terms. The first term,
SWi–1,j–1 + s(ai,bj), corresponds to extending the alignment
by one residue from each sequence in which s(ai,bj) is the
similarity score for aligning the i residue in sequence a with
the j residue in sequence b. The second term, SWi–k,j + gapj,
describes extending the alignment by including residue j from
sequence b and inserting a gap of k residues in length in se-
quence a. The third term, SWi,j–k + gapi, is the equivalent
term for inserting a gap into sequence b. The fourth term, 0,
does not allow the computed score (SWi,j) to become nega-
tive. Thus, the best scoring regions do not have to overcome
the effects of surrounding regions of low similarity to achieve
a high score. For a global alignment (Needleman-Wunsch),
the fourth term is eliminated (21,26). That is, the partial
scores within the table are allowed to become negative and
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Figure 1. The two-way table layout of the calculations performed by the
Smith-Waterman algorithm. Each column in the table corresponds to one
residue of sequence A, ai, and each row corresponds to one residue of se-
quence B, bj. Each cell in the table, designated SWi,j, corresponds to a partial
alignment of sequence A with sequence B that ends at the sequence residues
ai and bj. Each arrow in the table represents a term that is computed and eval-
uated during the calculation of table cell SW4,4.



the boundaries of the alignment are defined by the ends of the
sequences.

The alignment for a local search corresponds to the path
that was used to compute the maximum score (19 in Table 1).
This is accomplished in the program by starting at the maxi-
mum score and backtracking along the path until the first zero
is reached. The bold and underlined numbers in Table 1
indicate this path. The MaxSegs algorithm developed by Wa-
terman and Eggert (33) allows retrieval from the same table of
additional, lower-scoring, nonintersecting alignments, which
frequently provide valuable additional information about the
relationship between the aligned sequences. 

The dynamic programming algorithm is computationally
demanding—all terms in Equation 1 for each cell in Table 1
must be computed to get the alignment score. Recovering the
actual alignment requires either the entire table in memory,
which for long sequences may require more memory than is
available, or doubling the number of computations, which
makes the required memory proportional to the length of the
longest sequence (20). These computational requirements
place database searches with the Smith-Waterman algorithm
beyond the capabilities of personal computers.

HEURISTIC ALGORITHMS

To reduce the computational requirements of routine data-
base searches, a number of heuristic algorithms have been de-
veloped. The most popular heuristics are FASTA and BLAST.
The heuristics can, in general, be described as a three-step
process (Table 2). The first step is the initial heuristic-specific
screening to identify which region (diagonal) of both the
query and database sequence contains sufficient similarity for
further consideration. The second step is the creation of an
initial alignment in the identified region, often followed by a
check to see if this alignment is statistically significant. The
third step is the final alignment, usually a restricted version of
the Smith-Waterman algorithm, in the region identified in
Table 2, Steps 1 and 2. Substantial computational resources
are saved because of the heuristic-specific reduction of the re-
gion (Table 2, Step 1) that must be investigated followed by

the savings in the restricted Smith-Waterman alignment
(Table 2, Step 3). The following sections will discuss the
heuristic-specific limitations in FASTA and the various im-
plementations of BLAST.

Word Search

The FASTA heuristic-specific screening is a word search.
In a word (or k-tuple) search, both the query and library se-
quence are divided into overlapping “words” of a specific
length (Figure 2). The lists of words from the query and li-
brary sequence are compared, and the diagonal with the most
matching words is taken as the region most likely to contain
the best alignment between the two sequences. The results
from the word search are used to determine if the two se-
quences have a region of sufficient similarity to merit further
examination, and combinations of the words are joined to cre-
ate an initial alignment. If it contains sufficient sequence sim-
ilarity, then a restricted Smith-Waterman alignment is
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Figure 2. Word Lists as they are created for FASTA and BLAST. The word size is 2 in both examples shown here. For the BLAST example, we used the
PAM120 matrix, and the threshold was arbitrarily assigned a score of 8. The sequence in this example is the adipokinetic hormone II from migratory locust.

g c t g g a a g g c a t
0 0 0 0 0 0 0 0 0 0 0 0 0

g 0 5 0 0 5 5 0 0 5 5 0 0 0
c 0 0 10 3 0 1 1 0 0 1 10 3 0
a 0 0 3 6 0 0 6 6 0 0 3 15 8
g 0 5 0 0 11 5 0 2 11 5 0 8 11
a 0 0 1 0 4 7 10 5 4 7 1 5 4
g 0 5 0 0 5 9 3 6 10 9 3 0 1
c 0 0 10 3 0 2 5 0 3 6 14 7 0
a 0 0 3 6 0 0 7 10 3 0 7 19 12
c 0 0 5 0 2 0 0 3 6 0 5 12 15
t 0 0 0 10 3 0 0 0 0 2 0 5 17

g a a g - g c a
g c a g a g c a

Similarity Scores: DNA PAM 47, Match = 5, Mismatch = -4;
Open Gap = 0, Extend Gap = -7

Table 1. Smith-Waterman Alignment Table
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performed on the region of the alignment table centered on
the diagonal with the highest score and bounded by the win-
dow size. The results of this restricted Smith-Waterman align-
ment are reported as the optimal score. The computational
savings can be seen for the comparison of two 300-residue
proteins: a total of 90 000 cells would need to be computed
for an unrestricted Smith-Waterman, while a restricted Smith-
Waterman would require, at most, 9100 cells (assuming a
window-size of 16 on the main diagonal).

The FASTA region-defining heuristic can be interpreted as
a series of restrictions on the sequence evolution model used
in comparing the sequences. The word-size parameter, usually
two for proteins and six for nucleic acids, defines the first re-
striction. Using this restriction, FASTA constrains the evolu-
tion between a pair of sequences to preserve a number of un-
changed dipeptides or hexanucleotides. The second restriction
is the window size that limits the total sum of insertions or
deletions one sequence can accumulate with respect to the oth-
er sequence in the course of evolution. The limitations in the
FASTA approach can be shown in two pathological examples.
The first example would have two proteins that share 50%
identity, but the proper alignment consists of alternating match
and mismatches. With a word size of two, there would be no
word matches along the main diagonal of the dot plot for the
sequences (although there will potentially be random or spuri-
ous word matches on the off-diagonals), and the proper align-
ment would probably not be found. The second case consists
of two proteins that are almost identical, except the second
protein has a 20-residue insertion into the middle of the se-
quence. If the window size is 16, then the restricted Smith-Wa-
terman alignment will have insufficient alignment space to
jump the 20-residue insertion. Thus, the resulting alignment
score will either not be significant enough to be identified or

the sequence before or after the insertion (whichever had the
higher diagonal scores) will be reported, while the observation
that the proteins were basically identical (with only one long
insertion) will be missed. In practice, these pathological cases
are very unlikely, but the word size restriction has been shown
to affect database search results (23,24).

Maximal Segment Pairs

Maximal segment pair (MSP) alignments are defined by
the first and fourth terms in the Smith-Waterman algorithm
(Equation 1). Thus, the MSP alignment consists of long
stretches of matches and mismatches without gaps. The ad-
vantage of this method is that the statistical significance of
each found segment is easily determined. The disadvantage is
that computational requirements can be comparable to Smith-
Waterman, which effectively precludes this approach for rou-
tine database searching.

The BLAST algorithm contains a heuristic for reducing the
computational requirements of the MSP algorithm. Like FAS-
TA, BLAST divides the sequence into a list of overlapping
words (Figure 2). BLAST extends the list to include all words
that score above a specific matrix-defined threshold for the
specified matrix. The value of the threshold limits the number
of matches that will survive the first step (screening). The
score for common, highly mutable peptides aligned with
themselves may not be above the threshold required for inclu-
sion in the list, and hence they would not be included. Howev-
er, BLAST does provide the option of forcing the word into
the list as long as the exact word is present in the sequence.
The expansion of the word list to include all words that match
with a suitably high score provides a large increase in sensitiv-
ity over using only words identically present in the sequence.

The alignment for the original BLAST algorithm was creat-
ed by taking each identified matching word and then extending
this match in both directions along the diagonal (without gaps)
until the alignment score went below a cutoff point. The origi-
nal algorithm reported the best segment if it was significant
(see below). The two components of the BLAST heuristics can,
as with those in FASTA, be interpreted as restrictions to the
evolutionary model. The word size, usually three for proteins
and 11 for nucleic acids, requires that there be at least one
word-size segment within the conserved region that scores
above the threshold. The second restriction is that a statistically
significant ungapped segment must be conserved between the
two sequences. For an average protein, the minimum length of
this ungapped segment is around 35 residues.

The BLAST algorithm has undergone several refinements
and improvements while attempting to maintain selectivity, in-
crease sensitivity, decrease computational requirements and
provide a better resulting alignment. The sensitivity was in-
creased while the computational requirements were decreased
by first lowering the threshold for the words to be identified and
then requiring that there be at least two identified, nonoverlap-
ping words on a diagonal before extending the alignment.
Thus, more words are identified, yet the number of initial align-
ments examined (by extending matches along the diagonal in
both directions) is decreased. The quality of the resulting align-
ment has been improved by first providing high-scoring

Step 1:Initial Word Search
• Identity for FASTA, expanded list for BLAST
• Initial filtering for both (BLAST requires two words

on the same diagonal)

Step 2:Initial Alignment
• FASTA links strong diagonals
• BLAST expands good extended-word matches

along the diagonal in both directions (final BLAST
I alignment)

• Significance test

Step 3:Final Alignment
• FASTA and prior versions of BLAST perform a

bounded (by window size) restricted Smith-
Waterman

• Most recent BLAST performs a centered (on
dipeptide in highest scoring 11-amino acid 
peptide) restricted Smith-Waterman

• Final significance test—BLAST uses the statistics
underlying the MSP, while FASTA uses the data-
base as a reference distribution.

Table 2. Schematic Representation of the Heuristic Algorithm
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segments that were near the maximal scoring segment. Later,
using an approach similar to FASTA, the maximal scoring seg-
ment is used to define a band that uses the Smith-Waterman al-
gorithm to find a gapped alignment within the band.

The new gapped BLAST circumvents the problem of be-
ing restrained within an alignment region bounded by the
window size while avoiding the high computational cost of an
unrestricted Smith-Waterman alignment by extending the
alignment out from a central high-scoring pair of aligned
amino acids in a way analogous to how BLAST extends the
initial maximal segment pair alignment. The initial pair of
aligned amino acids is chosen as the middle pair of the high-
est scoring, 11-residue window in the high-scoring segment
pair alignments. The Smith-Waterman algorithm is then used
to extend the alignment in both directions until the score falls
below a fixed percentage of the highest score computed in the
Smith-Waterman phase. This method will find the highest-
scoring Smith-Waterman alignment if two conditions are met.
First, the calculation is extended until a score of zero is
reached. Using a higher threshold for stopping the calculation
the way BLAST does may risk not finding the complete
alignment in return for a large savings in computer resources.
The second criterion that must be met is that the initial pair of
amino acids selected as the midpoint from which to extend
the alignment must actually be part of the one that would be
reported as the best by a complete Smith-Waterman align-
ment of the pair of sequences. The selection criteria appear to
be effective in selecting an appropriate pair of amino acids
from which to extend the alignment. Nonetheless, a full
Smith-Waterman or Needleman-Wunsch alignment is recom-
mended for publication.

Comparison of Search Algorithms

Both heuristics, FASTA and BLAST, approximate the
Smith-Waterman algorithm and were developed to reduce the
computational requirements to make routine database search-
es feasible. The heuristics will compute the same score for
each alignment in a database search as the full Smith-Water-
man if (i) the heuristic correctly identifies the proper region
(Table 2, Step 1); (ii) the initial screening decision to continue
analysis is correct (Table 2, Step 2); and (iii) the final align-
ment is correctly described by the restricted Smith-Waterman
(Table 2, Step 3). The refinements in identifying the proper re-
gion and screening the result have established these heuristics
as effective database search tools. Note that the computation
of the significance for each alignment is program specific.

The two parameters used to describe the performance of a
search algorithm are sensitivity and selectivity. Sensitivity is
the number of related sequences found in a database search,
while selectivity is the number of unrelated sequences identi-
fied in a database search. Ideally, one would want a program
that is highly sensitive (recovers all related sequences) while
being selective (no false positives). The Smith-Waterman al-
gorithm often shows better sensitivity than either heuristic, al-
though the heuristics have continued to be refined and opti-
mized so that the Smith-Waterman’s advantage is now
relatively small (4,5). All algorithms demonstrate similar se-
lectivity, with BLAST usually the most selective. The de-

creased sensitivity and increased selectivity of the heuristics
have been attributed to the initial word search and screening
(Table 2, Steps 1 and 2), which tend to eliminate more di-
verged sequences and false positives (24). With the advances
in algorithms, effective search parameters and statistical sig-
nificance models, the most common problem encountered by
the algorithms is sufficient sensitivity to find all related data-
base sequences (4,5,24). It is not uncommon for only half of
the known related sequences to be identified in a trial data-
base search (4,5,24).

For proteins, the BLAST word-based heuristic is usually
more sensitive than FASTA; however, the combination of a
long word size and modifications of the heuristic to improve
protein sensitivity decreases the BLAST performance for nu-
cleic acids relative to FASTA.

The failure to find all of the sequences alluded to above is
the limitation that gives rise to the first of the circumstances
mentioned previously where the default search parameters
can be inappropriate for a specific sequence database search.
A sequence database search need not find all of the homo-
logues but only find one or more characterized homologues
that provide leads for further experimentation. However, for a
particular newly determined query sequence there may be
only a few homologues in the sequence database, all of which
are highly diverged from the query sequence. None of these
few homologues may be discovered by a search using the de-
fault settings. This is because the default settings have been
appropriately chosen to find the largest number of sequences
for query sequences that are representative of the known
members of the family for a large number of families that are
present in large numbers in the sequence databases. Thus the
default parameters are generally set for a moderate level of se-
quence divergence rather than a very high level. Much of the
rest of this review addresses what to do in this circumstance.

SIMILARITY MATRICES

To use any of these search algorithms, one must quantify
whether the substitution of one residue for another is likely to
conserve the physical and chemical properties necessary to the
structure and function of the protein or is more likely to disrupt
essential structural and functional features of the protein. This
choice of similarity matrix is the most critical determinant of
which sequences will be reported as similar to the query se-
quence in the database search report. Numerous approaches
have been used to create such quantifications, referred to as
similarity matrices. Similarity matrices have been based on ex-
plicit or implicit (empirical) evolutionary models, structural
properties such as Chou-Fasman propensities, chemical prop-
erties such as charge, polarity, and shape, as well as combina-
tions such as those used in the structure-genetics matrix. Re-
gardless of the underlying approach, all similarity matrices are
attempts to quantify whether a mutation preserves or disrupts
the function of a protein. Note that the underlying approach of
the substitution matrix defines the basis for the similar se-
quences that will be found and reported in a database search.
Thus, if you wish to infer an evolutionary relationship between
similar sequences, you should use an evolution-based matrix.



1182 BioTechniques Vol. 28, No. 6 (2000)

The following discussion describes the approaches for several
early similarity matrices, followed by a presentation of the the-
ory and methodology for the creation of the two most com-
monly used evolution-based matrices. 

Early Matrices

Early sequence alignment programs used the unitary scor-
ing matrix, in which all matches were equally good and all
mismatches were equally penalized. This scoring matrix was
sometimes appropriate for DNA and RNA comparisons (in
which transitions equal transversions and the sequences are
moderately diverged), but not for protein comparisons.

Many alternatives to the unitary scoring matrix have been
suggested. One of the earliest suggestions was a scoring matrix
based on the minimum number of bases that must be mutated
to convert a codon for one amino acid into a codon for a second
amino acid. This matrix, known as the minimum mutation dis-
tance matrix, has succeeded in identifying more distant rela-
tionships among protein sequences than the unitary matrix
approach. The minimal mutation distance matrix is an improve-
ment over the unitary matrix because it incorporates knowledge
about the process of mutating one amino acid into another.
However, it is limited because the minimum mutation distance
matrix does not include codon usage or selection processes.

Another improvement over the unitary matrix is a scoring
matrix based on selected physical, chemical or structural
properties shared and not shared by the 400 pairs of amino
acids. Specific instances of this approach work well for some
sequences but not for others. The approach works best if the
matrix is based on properties that have been strongly con-
served during the evolution of the sequence family. This is be-
cause the properties matrix attempts to specify the criteria that
determine whether or not a mutation can survive and be fixed
in a population. However, this approach suffers from prob-
lems of balancing the contributions of the different properties
to the positive selection of mutations and from ignoring the
different rates at which different mutations are generated.

Empirical Evolutionary Matrices and Log-Odds Scores

The biggest improvement achieved over the unitary matrix
(and other theoretically based matrices) was based on the em-
pirical study of the evolutionary replacements of amino acids.

Margaret Dayhoff pioneered this approach in the 1970s when
she made an extensive study of the frequencies in which amino
acids substituted for each other during evolution (11). The
studies involved carefully aligning all of the proteins in sever-
al families and then constructing phylogenetic trees for each
family. This approach incorporates both the generation and se-
lection of mutations and has been successful in sequence
alignment applications. We present below more details of two
widely used families of these empirically based matrices.

Computing Similarity Matrices

A similarity score (Sij) is computed using information the-
ory to provide a measure for the probability of residue i re-
placing residue j in an alignment (Equation 2).

Sij = log2(Rij) = log2(qij/pipj) [Eq. 2]

where qij is the relative frequency with which residues i and j
are observed to replace each other in related sequences. 

In Dayhoff’s original research, a separate qij and qji were
tabulated. Dayhoff and others have since made the simplifying
assumption that qij = qji and averaged these values. The terms,
pi and pj, are the expected probabilities for these residues and
are usually the frequencies at which residues i and j occur in the
database. The product, pipj, is the frequency at which these
residues would be expected to replace each other if the pattern
of mutations were random. The similarity score (Sij) is the base
2 logarithm of the ratio (Rij) of the observed and expected fre-
quencies of mutation. The base 2 logarithm allows the direct
computation of entropy (see below) and a straightforward cal-
culation of statistical significance from the score. The similari-
ty matrices in common use have generally been scaled either by
using logarithms to the base ten (the Dayhoff PAM matrices) or
by multiplying by a factor of two or three (the BLOSUM ma-
trices). This scaling makes no differences in which sequences
are reported as similar by a database search (1,3) but is done to
allow the similarity matrices to be represented as integer num-
bers with a lesser loss of accuracy. Scores above zero (Sij > 0.0)
indicate that two residues replace each other more often than
would be expected if the replacement rate were random. Like-
wise, scores below zero indicate that residues replace each oth-
er less often than would be expected if the replacement rate
were random. Thus, a positive alignment score means that the
pattern of identities and substitutions described by an align-
ment is more likely to result from previously observed evolu-
tionary processes than to result from random replacements.

The average amount of information available per position
in an alignment computed using a specific matrix is referred
to as either the information content or relative entropy, which
is reported in bits. A bit is the amount of information required
to distinguish between two possibilities, such as distinguish-
ing between an alignment of homologous sequences from an
alignment of random sequences. The equation for calculating
entropy for a similarity matrix is shown in Equation 3 and
given for selected matrices in Table 3.

Entropy = Σ Σ qij • Sij [Eq. 3]
i =  l, 20     j =  l, 20

BLOSUM PAM

Matrix Entropy Matrix Entropy % Identity

BLOSUM90 1.18 PAM100 1.18 43

BLOSUM80 0.99 PAM120 0.98 38

BLOSUM60 0.66 PAM160 0.70 30

BLOSUM52 0.52 PAM200 0.51 25

BLOSUM45 0.38 PAM250 0.36 20

Table 3. BLOSUM and PAM Similarity Matrices Equating the Matrices
Based on the Entropy



1184 BioTechniques Vol. 28, No. 6 (2000)

Counting the Replacements

The primary difference between the two major evolution-
based similarity matrices is in the computations of the re-
placement frequency (qij). The PAM matrices use counts de-
rived from an explicitly tree-like, branching evolutionary
model. The BLOSUM matrices use counts derived from high-
ly conserved blocks within an alignment.

The PAM or Dayhoff Family of Matrices

Margaret Dayhoff and co-workers performed a careful
global alignment (including both highly conserved and vari-
able regions) on a number of closely related sequences, which
allowed them to create the appropriate evolutionary trees
(11). The ancestral sequences are computed for each of the in-
ternal nodes in the tree using the principle of minimum re-
placements or maximum parsimony. They then tabulated
which residues were conserved and which ones were mutated
for each branch in the evolutionary tree (Figure 3). Not all
mutations were observed (e.g.,W→C) because of the small
amount of data available. The tabulated counts were then con-
verted into the appropriate replacement frequencies for a sin-
gle point mutation. Using these underlying replacement fre-
quencies for a single point mutation, Dayhoff and co-workers
asked the question: what would the replacement frequencies
be after “n” PAM were observed within a stretch of 100
residues? Matrix multiplication of the single point mutational
frequencies results in replacement frequencies that can then
be converted (Equation 2) into similarity scores representing
the expected substitution pattern after a selected number of
mutations. An estimated percent identity for each matrix can
be computed, assuming a database-consistent distribution of
residues. This approach has been applied successfully to both
nucleic acids (30) and proteins (11).

Since each matrix is developed for a specific PAM distance,
how well do the matrices work if the sequences that are to be

identified are at a different PAM distance? That is, if two se-
quences are diverged by 240 PAM units, would a PAM40 ma-
trix identify them in a database search? The efficiency of a ma-
trix at the various PAM distances is computed as the ratio of
the sequence pairwise score for the matrix in question divided
by the sequence pairwise score with the properly diverged ma-
trix (1) (Figure 4). A more complete graph can be seen at
http://www.psc.edu/biomed/data/graphs.html. A database
search with a different matrix is indicated (1) if the new matrix
is able to increase the alignment score by 2 bits (or a signifi-
cance factor of four). For proteins, this level is approximately
(34-2)/(34) (where 34 bits is required for a significant database
result) or 0.94 efficiency. Figure 4 shows the efficiency of four
PAM matrices. Note that no matrix effectively covers the en-
tire range of percent identity above an efficiency of 0.94. The
PAM160 matrix provides the best coverage of the range of in-
teresting sequences typically found in a database search
(which is similar to the BLOSUM62). One would need two or
three different matrices for an effective search of all diver-
gence distances in a database search. We provide recommen-
dations for matrix selection from the literature in Table 5.

The BLOSUM Family of Matrices

Henikoff and Henikoff created multiple sequence align-
ments of related proteins and identified conserved regions
without gaps, the BLOCKS database, which serves as the
source of the data for the BLOSUM matrices. These BLOCKS
constitute the regions that would most likely be found in a
database search. To create a specific BLOSUM matrix, in each
BLOCK, all sequences that share at least n percent identity
(where n = 50% for the BLOSUM50) are grouped together to
create weighted set representations (Figure 5). The counts are
then tabulated between the weighted set representations within
each BLOCK (Figure 5). The counting procedure is the sum-
of-pairs evolutionary model that allows direct evolution be-
tween any pair of sequences in the family rather than through a

Figure 4. Efficiency plots for the protein scoring by the PAM40 (closed
circles), PAM120 (closed boxes), PAM160 (dashed line) and PAM240
(closed triangles) of sequences that are at an “actual PAM distance”
apart. The estimated (assuming a database-consistent distribution of residues)
percent identity is also provided for reference. The solid line (efficiency =
0.94) represents the level at which using a second matrix would be beneficial.

Figure 3. An evolutionary tree with the recreated ancestral sequences at
the internal nodes and three amino acid substitutions indicated on
branches of the tree. The observed amino acid substitutions tabulated in
computing the Dayhoff PAM similarity matrices were counted by using such
recreated ancestral sequences and substitutions.
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branching process involving intermediate sequences (Figure
3). The counts are then added across all BLOCKS and used to
compute the qij values (Equation 2).

The efficiency of the BLOSUM series of matrices can also
be estimated but not directly computed because these matri-
ces are not determined based on a single set of single point
mutation frequencies that are then matrix-multiplied to a giv-
en set of distances. The BLOSUM62 is often the default ma-
trix in a number of search programs. The BLOSUM62 ma-
trix, which is similar in efficiency to the PAM160 matrix
(Figure 4), has the widest span across the range of interesting
sequences found in a database search. Thus, the BLOSUM62
is often the default matrix in database searching programs.
But, once again, for complete coverage of all divergence dis-
tances, multiple matrices should be used.

Differences between the PAM and BLOSUM Models

The BLOSUM and PAM matrices are the most widely
used amino acid similarity matrices for database searching
and sequence alignment. There are three primary differences
between the PAM and BLOSUM matrices: (i) all PAM matri-
ces are derived using matrix multiplication from a single set
of single point mutation frequencies derived from an explicit
evolutionary model, while BLOSUM matrices are derived
with a sum-of-pairs evolutionary model using the BLOCKS
database with different weight set representations (sequence
groups); (ii) the PAM matrices are based on mutations ob-
served in both highly conserved and variable regions in a
global alignment; while the BLOSUM matrices are based ex-
clusively on local, highly conserved regions without gaps;
and (iii) the PAM matrices are based on a limited number of

observations (e.g., C→W was not observed), while the BLO-
SUM matrices are based on a large number of observations.

In empirical tests of the effectiveness of the two series of
matrices, both generally perform well (11,14).  However,
when comparing the results of a single database search, the
BLOSUM matrices will usually perform slightly better
(15,17,24). This likely reflects the fact that the BLOSUM ma-
trices are based on the replacement patterns found in more
highly conserved regions of the sequences. These patterns
discovered in database searches serve as anchor points in
alignments involving complete sequences. It is reasonable to
expect that the replacements that occur in highly conserved
regions will be more restricted than those that occur in highly
variable regions of the sequence.

The PAM matrices still perform relatively well despite the
small amount of data underlying them. The most likely rea-
sons for this are the care used in constructing the alignments
and phylogenetic trees used in counting replacements and the
fact that they are explicitly based on a simple model of evolu-
tion. They still perform better than many of the more modern
matrices that have been less carefully constructed. Both the
PAM and BLOSUM matrices generally perform better than
matrices based explicitly on criteria other than observed re-
placement frequencies (17) (e.g., properties, structure-genetic
and minimum mutation distance). 

Scores for Nucleic Acids

For coding regions of genes, it is generally better to use the
translated amino acid sequence for a database search (2).
Many factors can interfere with nucleic acid-based searches.
One of these is the compositional bias found in many organ-
isms and organelles. Another is that some DNA sequences are
derived from mRNA while others are genomic DNA with in-
trons, and the exons may be too short to give a significant
alignment with an mRNA-derived sequence. A third reason is
that for distant relationships, the protein sequence alignment
will generally contain more information (Table 4).

For noncoding regions, there are additional considerations
in the choice of search algorithm. BLAST uses a very long
word size for nucleic acid sequences. Also, the modifications
to the BLAST heuristic that improve its sensitivity for protein
sequences do not work well for nucleic acid sequences be-
cause nucleic acids have only a four-letter alphabet and the
similarity scores are usually calculated with equal frequencies
of replacement for all of the nucleotides (transitions equal
transversions). Thus, FASTA is more sensitive than BLAST
for even moderately diverged nucleic acid sequences and
should be used instead of BLAST if a heuristic is desired.

Transition versus Transversion

It is possible to use different sets of evolutionary matrices
for nucleic acids just as have been recommended for proteins.
Two theoretical PAM models have been proposed, one using
a uniform evolution model assuming equal rates of transitions
and transversions and another using a biased model with a 3
to 1 transition to transversion ratio (29). Note that the uniform
model at PAM 47 provides substitution values similar to the

Figure 5. Counting replacements for a BLOSUM70 similarity matrix.
Three different groups were defined: group 1 = Bpi (bovine and human),
group 2 = Cept (human) and group 3 = Lbp (human and rabbit). Replace-
ments within a group were not counted.
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ones historically recommended by Smith et al. (29). 
There have also been a few empirical studies on gene-

pseudogene evolution (7,16). These studies provide replace-
ment frequencies that can be easily converted into empirical
log-odds scoring matrices such as the BLOSUM protein ma-
trices already described. These derived log-odds matrices
may prove useful for researchers interested in searching for
pseudogenes.

SCORING INSERTIONS AND DELETIONS

The gap penalty represents the probability that an insertion
will start or continue relative to either a match or mismatch.
Thus, the value of the gap penalty must be consistent with and
coupled to the values contained within the substitution ma-
trix. Furthermore, the value of the gap penalty must be con-
sistent with the goal of the alignment—finding similar se-
quences in a database search or aligning sequences to provide
the best estimate of the evolutionary history. There have been
many approaches to quantify the gap penalty (12,32).

The most commonly used gap penalty consists of two
terms, an open gap penalty and extended gap penalty. These
terms allow the gap penalty to separate the cost of opening an
insertion versus extending the preexisting gap. This two-term
gap penalty performs better both in database searches (24)
and in providing the best alignment (12). In practice, the open
gap penalty is usually relatively large, while the extended gap
penalty is more modest.

Database searching scores for related sequences are usual-
ly dominated by relative long ungapped segments. Thus, the
gap penalty value has only a modest effect on computing the
score for related sequences, but the expected score for a ran-
dom sequence alignment increases with a decrease in the gap
penalty. Decreasing the gap penalty increases the chances for
identifying spurious sequences (decreasing selectivity). For
database searches, a general rule of thumb is that the open gap
penalty should be larger than the largest match score and
twice the largest mismatch penalty, while the extend gap
penalty is usually set at a minimal value of -1.

The final alignment represents the best estimate of the evo-
lutionary history of changes that occurred during the diver-
gence of the two sequences from their most recent ancestor.

Studies of protein structural alignments (22) and pseudogenes
(13) indicate that insertions and deletions are usually short
(one or two residues in length) and become more frequent as
the sequences become more highly diverged. Producing the
best alignment usually requires reducing the open gap penalty
and increasing the extended gap penalty, which results in the
formation of small gaps in variable regions. Thus, the contrast
between database searching and final alignment is easy to
see—database searching identifies long, highly conserved re-
gions, while the final alignment contains shorter conserved
regions separated by small gaps.

STATISTICAL SIGNIFICANCE

A database search will yield a number of high-scoring
alignments, which leads to the question: is the score or the
length of the alignment of the query and database sequence
greater than what one would expect from a random sequence?
BLAST uses an explicit approach to assess significance,
while FASTA and most implementations of the dynamic pro-
gramming algorithm use a semi-empirical approach.

Explicit Approach: Using Information Theory and the
Length of the Alignment

Each alignment contains a certain amount of information
per position, which is approximately the product of the en-
tropy of the matrix used (Table 3) and the length of the align-
ment (1,18,19) or, more exactly, the alignment score in bits.
Current statistical models have not developed the ability to
compute entropy for a gap. Thus, the information content of
only ungapped alignments can be explicitly computed (18,19).

The amount of information in a database search required
for an alignment to be significant is the base 2 logarithm of
the product of the length of query sequence and the total num-
ber of residues in the database. From these two relationships,
we can determine the minimum required length of an un-
gapped alignment (Equation 4).

log2 (query length • residues in db)Minimum Significant Alignment Length = _____________________________________
entropy of matrix

[Eq. 4]

Protein Protein Protein Protein N.A. to N.A. N.A. N.A. N.A.
Percent PAM Sig. Len. Info. Per. Protein Info. Per. Sig. Len. PAM Percent
Identity Distance (34 bits) Residue Efficiency Codon (41 bits) Distance Identity

100 0 8 4.17 1.44 6.0 21 0 100

83 20 12 2.95 1.23 3.63 34 16 86

63 50 17 2.00 1.01 2.02 61 40 69

43 100 29 1.18 0.73 0.86 143 80 51

32 150 45 0.76 0.51 0.39 315 120 40

Data derived from Dayhoff et al. (5) and States et al. (6).
N.A. = Nucleic Acid; Info. Per. = Information Per; Sig. Len. = Significant Length

Table 4. Significance Levels Using a Protein or a Nucleic Acid Query
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Thus, using a 500-residue query sequence to search a 40 mil-
lion-residue database using a BLOSUM62 matrix (Table 3)
requires a minimum alignment of 36 residues to be signifi-
cant. BLAST (maximal segment pairs) uses this approach,
along with a similar sum statistic, to determine significance in
the second step (Table 2). If the query sequence is shorter than
the required minimum length, then no match from a database
search can be judged to be significant, and one needs to select
a higher entropy matrix.

Semi-Empirical Approach: Using the Database Search to
Create a Reference Distribution

FASTA and various implementations of the dynamic pro-
gramming algorithm (e.g., Smith-Waterman) allow the align-
ment to contain gaps. Thus, the explicit approach described
above cannot be used to determine the significance of the align-
ment resulting from the query and a database sequence. A num-
ber of models has been developed to allow the estimation of the
maximum score (cutoff score) for a random sequence to be
aligned with the query sequence. The majority of these models
are based on the simple observation that, with respect to any
newly determined query sequence, the database contains pri-
marily random sequences. That is, the pertinent random
process is evolution from independent, unrelated ancestral se-
quences rather than from a common ancestral sequence.

The results of the database search are usually presented as
a histogram of score versus frequency of occurrence. There is
a large peak in the histogram representing the bulk of the
database, the random sequence portion and then a number of
isolated peaks representing the high-scoring hits. It is the
large peak representing the random sequence portion of the
database that needs to be fit. Two approaches will be de-
scribed in detail. First, the histogram of scores for the random
sequence portion of the database is fitted using an extreme
value distribution. This allows the determination of the mean
for the histogram, the size of a standard deviation and the
computation of the maximum random score. Second, the de-
cay after the peak of the histogram of scores is empirically
observed to be exponential (9,10,32). When the log of the fre-
quency is plotted, this decay is a straight line. Extrapolating
this line to a frequency of one sequence (essentially the axis
intercept) computes a score larger than might be reasonably
expected from a random sequence in the database (9,10).
Thus, any appreciably higher score is statistically rare. This is
the approach used in many implementations of the dynamic
programming algorithm.

Both approaches to determine the cutoff score are based on
a well-defined random sequence portion of the database
search. The shape of this region depends on the gap penalty
being large enough (32). If the gap penalty is too low, the
scores are observed to decay much more slowly, broadening
the distribution of scores, which may confuse either approach
to fit the histogram and obscure the significant hits.

All significance computations are based on a given proba-
bility of finding and aligning specific residues, usually the data-
base composition. Thus, a region formed almost exclusively of
one or two residues (e.g., a stretch as small as 20–30 residues
of poly-C or poly-G) can skew the significance computation
and lead to unrealistic results. Methods exist to remove these
low-complexity regions before database searches (2).

FUTURE CONSIDERATIONS

It is not uncommon for only half of the related sequences
to be identified in a trial database search with a well-charac-
terized, large family of sequences (4,5,24). What happens
when a database search reveals no related sequences? Are
there no related sequences or are the already sequenced mem-
bers of the family too diverse from the query to be identified
in a database search? Assuming the latter, one needs to im-
prove the sensitivity of the search. Radical improvement in
sensitivity will require a major shift in the underlying model
of evolution implied by the database search. There is a maxi-
mum sensitivity for the combination of search algorithm and
substitution matrix that cannot be improved. The heuristics,
which are approximations of the Smith-Waterman algorithm,
are approaching the quality of the Smith-Waterman and prob-
ably have limited room for improvement. The evolution mod-
el expressed in the general database searching programs de-
pends on residue-specific mutation rates regardless of the
position of the residue in either the three-dimensional struc-
ture or the function of the residue in the protein. With this
simplistic model, there is little overall difference between a
highly diverged sequence and a random sequence.

In our opinion, the best hope for improving the sensitivity
of the database searching algorithm is to improve the under-
lying evolutionary model, probably through the use of more
sophisticated statistical models, such as the maximum likeli-
hood alignments (6,31) or related methods using hidden
Markov representations (8). These algorithms evaluate all
possible alignments rather than exclusively consider the best
scoring alignment. In general, highly diverged homologous
sequences have many alignments that are almost as good as
the best ones, while alignment scores for nonhomologous se-
quences decrease rapidly from the best score. Thus, addition
over the alternative alignments allows more sensitive discrim-
ination between highly diverged homologous sequences and
unrelated, nonhomologous sequences. These algorithms are
at least as computationally demanding as dynamic program-
ming algorithms, and there are still no effective heuristic ap-
proximations available because the algorithms themselves are
still at the research stage.

One would assume that finding related sequences should
become easier in the future because the sequence databases are

PAM Matrices BLOSUM Matrices

3 Matrices 2 Matrices 3 Matrices 2 Matrices

PAM40 PAM120 BLOSUM60 BLOSUM60

PAM120 PAM250 BLOSUM40 BLOSUM35

PAM240 BLOSUM30

Table 5. Recommended Matrices to Be Used for a Database Search



doubling in size almost yearly, and several complete genomes
have been sequenced. Thus, the potential number of hits
should increase. While this number will increase, the nonho-
mologous portion of the database will increase at least as fast.
Actually, this doubling of the sequence databases may in-
crease the difficulty in identifying related sequences. This can
be clearly seen when using the explicit approach to compute
significance. Each year, an additional bit of information will
be required for an alignment to be significant because the data-
base doubles in size. Over the next five years, this will result
in lengthening the minimum required ungapped alignment
from 36 to almost 45 residues. One approach to ease the prob-
lems of growth in the database is to reduce its size by creating
a nonredundant database. That is, for each cluster of highly
identical sequences, one sequence is kept, while the others are
removed. Alternatively, species- or genus-specific databases
are also being created. While these approaches do limit the ef-
fects of the growth of the database, neither approach is ideal
and can result in lost data. For example, sequentially searching
a number of species-specific databases will provide a greater
measure of significance than is actually valid.

Alternatively, one can use an abstraction to represent
groups of sequences, creating what is in essence a nonredun-
dant database. The group of sequences is usually a sequence

family, while the abstraction can be a consensus sequence,
weighted set representations, hidden Markov model (HMM)
or position-specific scoring matrix (PSSM). This approach is
now being used by the classification libraries ProSite,
BLOCKS (PSSM), PRINTS (PSSM) and Pfam (HMM).
Many of the abstractions allow a more accurate model for
evolution, that is, defining some positions as rigorously con-
served, while others allow random mutations.

CONCLUSION

In this paper, we have reviewed the four major aspects of
sequence database searching: algorithm, substitution matrix,
gap penalty and significance calculation. We have described
how these components relate and how the choices affect the
results of a database search. Based on this discussion, we rec-
ommend the following procedure for carrying out an effective
database search: (i) use a local favorite program (Smith-Wa-
terman, BLAST or FASTA) or the Web server of your choice;
(ii) use at least two and preferably three similarity tables
(Table 5); and (iii) if Smith-Waterman or FASTA is used, be
sure the open gap penalty is large enough.

If the initial runs do not uncover any similar sequences and
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a heuristic has been used, repeat the search using a highly di-
verged matrix and the Smith-Waterman algorithm. Alterna-
tively, assuming an evolution-based matrix was used, use a
highly diverged matrix from the other series (e.g., if three
BLOSUM matrices were used, then try the PAM320).

To produce the final alignment between two sequences,
choose a matrix that reflects the appropriate divergence for
the two sequences (Table 2), reduce the gap penalty relative to
the values used in the database search and use the MaxSegs
(Waterman-Eggert) version of the dynamic programming al-
gorithm to provide the best local alignment and also search
for repeats in the sequences.

If there are questions about which matrix or open gap pen-
alty should be used, try several choices to see which parts of
the alignment are invariant and which parts are more suspect.
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