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ABSTRACT

We provide a detailed overview of the choices inherent in per-
forming a sequence database search, including the choice of algo-
rithm, substitution matrix and gap model. Each of these choices has
implications that can be described as restrictions on the underlying
model of sequence evolution, the expected degree of divergence be-
tween the query sequence and the database sequences (if one usesan
evolutionary based matrix), as well as the sensitivity and selectivity
of the search. We conclude with a series of recommendations for re-
searchers performing these searches based on our experience and
literature studies.

INTRODUCTION

Database searching is the application of knowledge gained
from previous examinations of well-characterized sequences
to the problem of discovering the biochemistry and physiolo-
gy of anewly discovered gene or its protein product. The ob-
jective of adatabase search isto distinguish sequences related
to the query sequence by some model (e.g., evolution) from
unrelated sequences. This objective is different from the ob-
jective of aligning sequences, which is to discover the most
likely history of changes between sequences already inferred
to berelated. Thisdifference in objectivesimplies avery dif-
ferent set of choicesfor parameters and strategies. A database
search is a computational investigation and, like a laboratory
investigation, must be performed thoughtfully. A database
search performed with injudicious parameters will lead to
wrong answers and missed discoveries. While the default pa-
rameters on most database search servers are appropriate to a
wide range of the most common circumstances, no single set
of parameters will be the best for all searches. Thusthere are
at least three distinct situations where other parameters are
likely to give better results.

Thefirst iswhen sequencesin the database that are homol -
ogous to the query sequence are evolutionarily highly di-
verged. The second is when either the query sequence or its
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homol ogues in the database are too short to achieve a statisti-
cally significant match using the default parameters. The third
iswhen the researcher isinterested in finding homologuesin
only a limited range of species whose evolutionary diver-
gence from the species in which the query sequence was
found isdifferent from that implied by the default parameters.
Examples of al of these situations are reported in the litera-
ture cited in this paper. Thisdiscussion isintended to help re-
searchers recognize and adjust their database searches to
these circumstances.

Database searching helps to evaluate whether a newly de-
termined sequence is related to a previously determined and
characterized gene or protein through acommon evolutionary
ancestor. Homology, relatedness through a common evolu-
tionary ancestor, is not directly observable. In sequence data-
base searching, we observe sequence likeness or similarity. If
the likeness is great enough, we may infer that the two se-
quences are homologous. Thus, much of the previously deter-
mined knowledge we apply in database searching involves
how to best measure sequence likeness and how to assess
whether the observed degree of sequence likenessis sufficient
to alow usto infer that the sequences are homologous; that is,
related through divergent evolution.

The similarity scores for pairs of sequence residues, either
amino acids or nucleotides, used to assess sequence likeness
are the major sources of previous biological knowledge for
database searching. Similarity matrices provide a quantifiable
measure of the ability of one residueto replace another, instead
of assuming that all residues are equally conserved and that all
mismatches are equally bad, as does the unitary scoring matrix.
Similarity matrices have been developed reflecting different
degrees of evolutionary divergence. The point accepted muta-
tion (PAM) (11) and block sum (BLOSUM) (14) similarity
matriceswidely used in protein database searches are two good
examples. These matricesincorporate theinformation of which
residues have successfully replaced each other during the
course of evolution. Similar matrices are available, if not wide-
ly used, for nucleic acid sequences (30). The nucleic acid ma
trices can incorporate knowledge about differential rates of
transitions and transversionsin the same way that some amino
acid substitutions are judged more favorable than othersin pro-
tein similarity matrices.

The algorithm used in searching the database incorporates
the knowledge of how to find the maximum degree of se-
guence likeness and is the second most important source of
previous knowledge. The three most widely used programs
today, Smith-Waterman (28), FASTA (25), and BLAST (3,4),
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place different restrictions on the simple evolutionary model
on which database searching is based. Smith-Waterman isthe
most rigorous algorithm and does not place any heuristic re-
strictions on the evolutionary modd!; it is both the most sensi-
tive and the least selective algorithm. The actual pattern of
evolutionary changes between a newly determined sequence
and any homol ogue in the database can be incompatible with
the heuristic restrictions imposed by either BLAST or FAS-
TA. Alternatively, the additional selectivity that results from
these restrictions can sometimes be an advantage. Thereisno
single program that is always best at finding distantly related
sequences for all gene and protein families, athough the
Smith-Waterman algorithm is most often the best (23,24).

Virtually all sequence database search programs now re-
turn an estimate of the statistical significance of the matches
observed between the query sequence and sequences in the
database. The statistical significance is an attempt to deter-
mine how often a score of a given value would be observed
from the comparison of a random sequence to the length and
composition of the query sequence and the sequences in the
database.

Finally, the sequence database itself represents a large
store of previously acquired knowledge. Making the best use
of this knowledge can save many months of expensive labo-
ratory experimentation and allow limited resourcesto be used
to acquire truly new knowledge. The size of this potential
gain isthe determining factor in deciding how much effort to
devoteto any particular database search.

SEARCH ALGORITHM

In the next section, we will describe the operation of the
three most widely used database searching algorithms: Dy-
namic Programming Algorithm [Smith-Waterman (28,33),
Needleman-Wunsch (21) and Sellers (26,27)], Word Search
[FASTA (25)] and Maxima Segments Pairs[BLAST (3)].

Dynamic Programming Algorithm

The dynamic programming agorithm is mathematically
rigorous and, given a specific substitution matrix and gap
model, is guaranteed to find the optimum score and alignment
(21,26,28,33). Severa variants of the dynamic programming
algorithm are useful in different situations. Thefirst use of the
dynamic programming algorithm for sequence analysis was
by Needleman and Wunsch (21) and independently by Sellers
(26). These equivalent variants of dynamic programming pro-
vide aglobal alignment between two sequences, which forces
the alignment to include the entire length of both sequences.
The Smith-Waterman algorithm (28,33) yields alocal align-
ment, which providesthe regionswithin the pair of sequences
that are the most similar given the choice of scoring matrix
and gap penalties. A third variant of the dynamic program-
ming algorithm first proposed by Sellers (27), often called the
quasi-global alignment algorithm, in a well-behaved case,
aligns an entire shorter sequence within the best matching re-
gion of alonger sequence. It has been shown that the Smith-
Waterman (local alignment) algorithm isthe most effective of
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the database searching dynamic programming algorithms for
finding similar sequences, although the Needleman-Wunsch
(global alignment) or Sellers (quasi-global) may be more ap-
propriate for problem-specific final alignment.

The Smith-Waterman algorithm is a recursive mathemati-
cal equation (28,33). Recursive means that the results are
computed in steps with any subsequent step depending on the
answers to previous steps. The Smith-Waterman algorithm
can be expressed as:

SW; = max{ SWi_yj.1 + s(&,by); SWij + 9ap;; SW; . + gap;; O}
where, for an affine gap penalty:
gap; = open_gap + (i-k+1)*extend_gap
gap; = open_gap + (j-k+1)* extend_gap [Eq. 1

SW; ; is the Smith-Waterman score for the partial alignment
ending at residue i of sequence aand residuej of sequenceb.
It can be visualized in atable form (Figure 1). The value of
SW;  is the maximum of four different terms. The first term,

SWi_1j1 + S(a by), corresponds to extending the alignment
by one residue from each sequence in which s(g;,y) is the
similarity score for aligning the i residuein %quence awith
the j residue in sequence b. The second term, SWi + 9ap;

describes extending the alignment by including residue from
sequence b and inserting a gap of k residuesin length in se-
quence a The third term, SW;;_ + gap;, is the equivalent
term for inserting a gap into %quence b. The fourth term, O,

does not allow the computed score (SW; ;) to become negar
tive. Thus, the best scoring regions do not have to overcome
the effects of surrounding regions of low similarity to achieve
a high score. For a global alignment (Needleman-Wunsch),
the fourth term is eliminated (21,26). That is, the partial
scores within the table are allowed to become negative and

Smith-Waterman Implementation

a, a, a, a, ag ag
(open gap + 3 * extend gap)

b,
b (open gap + 2 * extend gap)

2
b, SW3,3 +s(ayby) (open gap + extend gap)
b, ;m¢

—-—-—_—’V

b SW‘H,4 +g;1=1,2,0r3

Figure 1. Thetwo-way tablelayout of the calculations performed by the
Smith-Waterman algorithm. Each column in the table corresponds to one
residue of sequence A, g, and each row corresponds to one residue of se-
quence B, by. Each cell inthe table, designated SW ;, correspondsto apartial
alignment of sequence A with sequence B that ends at the sequence residues
& and b;. Each arrow in the table represents aterm that is computed and eval -
uated during the calculation of table cell SW, 4.
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the boundaries of the alignment are defined by the ends of the
sequences.

The alignment for a local search corresponds to the path
that was used to compute the maximum score (19 in Table 1).
This is accomplished in the program by starting at the maxi-
mum score and backtracking along the path until thefirst zero
is reached. The bold and underlined numbers in Table 1
indicate this path. The MaxSegs algorithm developed by Wa-
terman and Eggert (33) allowsretrieval from the same table of
additional, lower-scoring, nonintersecting alignments, which
frequently provide valuable additional information about the
relationship between the aligned sequences.

The dynamic programming algorithm is computationally
demanding—all terms in Equation 1 for each cell in Table 1
must be computed to get the alignment score. Recovering the
actual alignment requires either the entire table in memory,
which for long sequences may require more memory than is
available, or doubling the number of computations, which
makes the required memory proportional to the length of the
longest sequence (20). These computational requirements
place database searches with the Smith-Waterman algorithm
beyond the capahilities of personal computers.

HEURISTIC ALGORITHMS

To reduce the computational requirements of routine data-
base searches, anumber of heuristic algorithms have been de-
veloped. Themost popular heuristicsare FASTA and BLAST.
The heuristics can, in general, be described as a three-step
process (Table 2). Thefirst stepistheinitial heuristic-specific
screening to identify which region (diagonal) of both the
guery and database sequence contains sufficient similarity for
further consideration. The second step is the creation of an
initial alignment in the identified region, often followed by a
check to seeif this alignment is statistically significant. The
third step isthefinal alignment, usually arestricted version of
the Smith-Waterman algorithm, in the region identified in
Table 2, Steps 1 and 2. Substantial computational resources
are saved because of the heuristic-specific reduction of there-
gion (Table 2, Step 1) that must be investigated followed by

Table 1. Smith-Waterman Alignment Table

g ¢ t g g a a g g c a t
0O 0 0 0OOO O 0O OO 0 o00DO
g 0O 5 005 5 0 0 55 0 00
c 0 010 3 0 1 1 0 O 1 10 3 O
a 0 0 36 0 0 6 6 0 0 315 8
g 0 5 0 011 5 0 2 11 5 0 8 11
a 0 0 1 0 4 710 5 4 7 1 5 4
g 0 5 005 9 3 6 10 9 3 01
c 0 010 3 0 2 5 0O 3 6 14 7 O
a 0 0 36 0 0 7 10 3 0 7 19 12
c 0 05 0 2 0 0 3 6 0 51215
t 0 0 010 3 0 O O O 2 0 517
g a a g-g c a
g ¢C a gag ¢ a
Similarity Scores: DNA PAM 47, Match = 5, Mismatch = -4;
Open Gap =0, Extend Gap =-7

the savings in the restricted Smith-Waterman alignment
(Table 2, Step 3). The following sections will discuss the
heuristic-specific limitations in FASTA and the various im-
plementations of BLAST.

Word Search

The FASTA heuristic-specific screening is aword search.
In aword (or k-tuple) search, both the query and library se-
guence are divided into overlapping “words’ of a specific
length (Figure 2). The lists of words from the query and li-
brary sequence are compared, and the diagonal with the most
matching words is taken as the region most likely to contain
the best alignment between the two sequences. The results
from the word search are used to determine if the two se-
guences have aregion of sufficient similarity to merit further
examination, and combinations of the words are joined to cre-
ateaninitial alignment. If it contains sufficient sequence sim-
ilarity, then a restricted Smith-Waterman alignment is

a
ag ag
g w

nf,af,ny,df,qf,ef,gf, hf,kEf,sf,t£f,bf, 2f
s fs,fa,fn, fd, £fg,£fp, ft, £b,ys
s no words scored 8 or more,

SEQUENCE
glnfsesagw
FASTA BLAST
gl gl,qgm,hl,zl
1n In,1b
n f
£

gw,aw, rw,nw,dw, qw,ew, hw, iw, kw, mw, pw,
sw, tw, vw, bw, zw, xw

including sa

Figure2. Word Lists asthey are created for FASTA and BLAST. The word size is 2 in both examples shown here. For the BLAST example, we used the
PAM 120 matrix, and the threshold was arbitrarily assigned a score of 8. The sequence in this example isthe adipokinetic hormone Il from migratory locust.

1176 BioTechniques

Vol. 28, No. 6 (2000)



Table 2. Schematic Representation of the Heuristic Algorithm

Step 1:Initial Word Search
« ldentity for FASTA, expanded list for BLAST
« Initial filtering for both (BLAST requires two words
on the same diagonal)

Step 2:Initial Alignment
« FASTA links strong diagonals
« BLAST expands good extended-word matches
along the diagonal in both directions (final BLAST
| alignment)
« Significance test

Step 3:Final Alignment

* FASTA and prior versions of BLAST perform a
bounded (by window size) restricted Smith-
Waterman

« Most recent BLAST performs a centered (on
dipeptide in highest scoring 11-amino acid
peptide) restricted Smith-Waterman

« Final significance test—BLAST uses the statistics
underlying the MSP, while FASTA uses the data-
base as a reference distribution.

performed on the region of the alignment table centered on
the diagonal with the highest score and bounded by the win-
dow size. Theresults of thisrestricted Smith-Waterman align-
ment are reported as the optimal score. The computational
savings can be seen for the comparison of two 300-residue
proteins: atotal of 90000 cells would need to be computed
for an unrestricted Smith-Waterman, while arestricted Smith-
Waterman would require, at most, 9100 cells (assuming a
window-size of 16 on the main diagonal).

The FASTA region-defining heuristic can be interpreted as
a series of restrictions on the sequence evolution model used
in comparing the sequences. The word-size parameter, usually
two for proteins and six for nucleic acids, defines the first re-
gtriction. Using this restriction, FASTA constrains the evolu-
tion between a pair of sequences to preserve a number of un-
changed dipeptides or hexanucleotides. The second restriction
is the window size that limits the total sum of insertions or
deletions one sequence can accumul ate with respect to the oth-
er sequence in the course of evolution. The limitationsin the
FASTA approach can be shown in two pathological examples.
The first example would have two proteins that share 50%
identity, but the proper alignment consists of alternating match
and mismatches. With aword size of two, there would be no
word matches along the main diagona of the dot plot for the
sequences (although there will potentially be random or spuri-
ous word matches on the off-diagonals), and the proper align-
ment would probably not be found. The second case consists
of two proteins that are almost identical, except the second
protein has a 20-residue insertion into the middle of the se-
guence. If thewindow sizeis 16, then the restricted Smith-Wa-
terman alignment will have insufficient alignment space to
jump the 20-residue insertion. Thus, the resulting alignment
score will either not be significant enough to be identified or
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the sequence before or after the insertion (whichever had the
higher diagonal scores) will be reported, while the observation
that the proteins were basicaly identical (with only one long
insertion) will be missed. In practice, these pathological cases
arevery unlikely, but the word size restriction has been shown
to affect database search results (23,24).

Maximal Segment Pairs

Maximal segment pair (MSP) alignments are defined by
the first and fourth terms in the Smith-Waterman algorithm
(Equation 1). Thus, the MSP alignment consists of long
stretches of matches and mismatches without gaps. The ad-
vantage of this method is that the statistical significance of
each found segment is easily determined. The disadvantageis
that computational requirements can be comparableto Smith-
Waterman, which effectively precludes this approach for rou-
tine database searching.

The BLAST agorithm contains aheuristic for reducing the
computationa requirements of theMSP algorithm. Like FAS
TA, BLAST divides the sequence into a list of overlapping
words (Figure 2). BLAST extendsthelist to include al words
that score above a specific matrix-defined threshold for the
specified matrix. The value of the threshold limits the number
of matches that will survive the first step (screening). The
score for common, highly mutable peptides aligned with
themselves may not be above the threshold required for inclu-
sioninthelist, and hence they would not be included. Howev-
er, BLAST does provide the option of forcing the word into
the list as long as the exact word is present in the sequence.
The expansion of theword list to include al words that match
with a suitably high score provides alargeincreasein sensitiv-
ity over using only wordsidentically present in the sequence.

Theaignment for the origina BLAST algorithm was creat-
ed by taking each identified matching word and then extending
this match in both directions a ong the diagona (without gaps)
until the alignment score went below a cutoff point. The origi-
nal agorithm reported the best segment if it was significant
(see below). Thetwo components of the BLAST heuristics can,
as with those in FASTA, be interpreted as restrictions to the
evolutionary model. The word size, usually three for proteins
and 11 for nucleic acids, requires that there be at least one
word-size segment within the conserved region that scores
abovethethreshold. The second restriction isthat astatistically
significant ungapped segment must be conserved between the
two sequences. For an average protein, the minimum length of
this ungapped segment is around 35 residues.

The BLAST algorithm has undergone several refinements
and improvements while attempting to maintain selectivity, in-
crease sensitivity, decrease computational requirements and
provide a better resulting alignment. The senditivity was in-
creased while the computational requirements were decreased
by first lowering the threshold for the wordsto beidentified and
then requiring that there be at least two identified, nonoverlap-
ping words on a diagonal before extending the alignment.
Thus, morewords areidentified, yet the number of initial align-
ments examined (by extending matches along the diagonal in
both directions) is decreased. The quality of the resulting align-
ment has been improved by first providing high-scoring
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segments that were near the maximal scoring segment. L ater,
using an approach similar to FASTA, the maximal scoring seg-
ment is used to define aband that uses the Smith-Waterman al-
gorithm to find agapped alignment within the band.

The new gapped BLAST circumvents the problem of be-
ing restrained within an alignment region bounded by the
window size while avoiding the high computational cost of an
unrestricted Smith-Waterman alignment by extending the
alignment out from a central high-scoring pair of aligned
amino acids in away analogous to how BLAST extends the
initial maximal segment pair alignment. The initial pair of
aligned amino acids is chosen as the middle pair of the high-
est scoring, 11-residue window in the high-scoring segment
pair alignments. The Smith-Waterman algorithm is then used
to extend the alignment in both directions until the score falls
below afixed percentage of the highest score computed inthe
Smith-Waterman phase. This method will find the highest-
scoring Smith-Waterman alignment if two conditions are met.
First, the calculation is extended until a score of zero is
reached. Using ahigher threshold for stopping the cal culation
the way BLAST does may risk not finding the complete
alignment in return for alarge savingsin computer resources.
The second criterion that must be met isthat theinitial pair of
amino acids selected as the midpoint from which to extend
the alignment must actually be part of the one that would be
reported as the best by a complete Smith-Waterman align-
ment of the pair of sequences. The selection criteriaappear to
be effective in selecting an appropriate pair of amino acids
from which to extend the alignment. Nonetheless, a full
Smith-Waterman or Needleman-Wunsch alignment is recom-
mended for publication.

Comparison of Search Algorithms

Both heuristics, FASTA and BLAST, approximate the
Smith-Waterman algorithm and were devel oped to reduce the
computational requirements to make routine database search-
es feasible. The heuristics will compute the same score for
each alignment in a database search as the full Smith-Water-
man if (i) the heuristic correctly identifies the proper region
(Table 2, Step 1); (ii) theinitial screening decision to continue
analysisis correct (Table 2, Step 2); and (iii) the fina align-
ment is correctly described by the restricted Smith-Waterman
(Table 2, Step 3). Therefinementsin identifying the proper re-
gion and screening the result have established these heuristics
as effective database search tools. Note that the computation
of the significance for each alignment is program specific.

The two parameters used to describe the performance of a
search agorithm are sensitivity and selectivity. Sengitivity is
the number of related sequences found in a database search,
while selectivity isthe number of unrelated sequencesidenti-
fied in a database search. Ideally, one would want a program
that is highly sensitive (recovers all related sequences) while
being selective (no false positives). The Smith-Waterman al-
gorithm often shows better sensitivity than either heuristic, al-
though the heuristics have continued to be refined and opti-
mized so that the Smith-Waterman's advantage is now
relatively small (4,5). All agorithms demonstrate similar se-
lectivity, with BLAST usually the most selective. The de-
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creased sensitivity and increased selectivity of the heuristics
have been attributed to the initial word search and screening
(Table 2, Steps 1 and 2), which tend to eliminate more di-
verged sequences and false positives (24). With the advances
in algorithms, effective search parameters and statistical sig-
nificance models, the most common problem encountered by
the algorithms is sufficient sensitivity to find all related date-
base sequences (4,5,24). It is not uncommon for only half of
the known related sequences to be identified in atrial date-
base search (4,5,24).

For proteins, the BLAST word-based heuristic is usually
more sensitive than FASTA; however, the combination of a
long word size and modifications of the heuristic to improve
protein sensitivity decreasesthe BLAST performance for nu-
cleic acidsrelativeto FASTA.

Thefailureto find all of the sequences alluded to aboveis
the limitation that gives rise to the first of the circumstances
mentioned previously where the default search parameters
can be inappropriate for a specific sequence database search.
A sequence database search need not find all of the homo-
logues but only find one or more characterized homologues
that provide leads for further experimentation. However, for a
particular newly determined query sequence there may be
only afew homologuesin the sequence database, al of which
are highly diverged from the query sequence. None of these
few homologues may be discovered by a search using the de-
fault settings. This is because the default settings have been
appropriately chosen to find the largest number of sequences
for query sequences that are representative of the known
members of the family for alarge number of familiesthat are
present in large numbers in the sequence databases. Thus the
default parameters are generally set for amoderate level of se-
guence divergence rather than avery high level. Much of the
rest of thisreview addresses what to do in this circumstance.

SIMILARITY MATRICES

To use any of these search algorithms, one must quantify
whether the substitution of one residue for another islikely to
conserve the physical and chemical properties necessary to the
structure and function of the protein or ismorelikely to disrupt
essential structural and functional features of the protein. This
choice of similarity matrix is the most critical determinant of
which sequences will be reported as similar to the query se-
guence in the database search report. Numerous approaches
have been used to create such quantifications, referred to as
similarity matrices. Similarity matrices have been based on ex-
plicit or implicit (empirical) evolutionary models, structural
properties such as Chou-Fasman propensities, chemical prop-
erties such as charge, polarity, and shape, aswell as combina-
tions such as those used in the structure-genetics matrix. Re-
gardless of the underlying approach, all similarity matricesare
attempts to quantify whether a mutation preserves or disrupts
the function of aprotein. Note that the underlying approach of
the substitution matrix defines the basis for the similar se-
guences that will be found and reported in a database search.
Thus, if youwishtoinfer an evolutionary relationship between
similar sequences, you should use an evolution-based matrix.

Vol. 28, No. 6 (2000)



Table3. BLOSUM and PAM Similarity Matrices Equating the M atrices
Based on the Entropy

BLOSUM PAM
Matrix Entropy Matrix ~ Entropy % ldentity
BLOSUM90 1.18 PAM100 1.18 43
BLOSUM80  0.99 PAM120 0.98 38
BLOSUM60  0.66 PAM160 0.70 30
BLOSUM52  0.52 PAM200 0.51 25
BLOSUM45 0.38 PAM250 0.36 20

Thefollowing discussion describes the approaches for several
early similarity matrices, followed by apresentation of thethe-
ory and methodology for the creation of the two most com-
monly used evolution-based matrices.

Early Matrices

Early sequence alignment programs used the unitary scor-
ing matrix, in which all matches were equally good and all
mismatches were equally penalized. This scoring matrix was
sometimes appropriate for DNA and RNA comparisons (in
which transitions equal transversions and the sequences are
moderately diverged), but not for protein comparisons.

Many alternatives to the unitary scoring matrix have been
suggested. One of the earliest suggestions was a scoring matrix
based on the minimum number of bases that must be mutated
to convert acodon for oneamino acid into acodon for asecond
amino acid. This matrix, known as the minimum mutation dis-
tance matrix, has succeeded in identifying more distant rela
tionships among protein sequences than the unitary matrix
approach. The minimal mutation distance matrix isan improve-
ment over the unitary matrix becauseit incorporates knowledge
about the process of mutating one amino acid into another.
However, it is limited because the minimum mutation distance
matrix does not include codon usage or selection processes.

Another improvement over the unitary matrix is a scoring
matrix based on selected physical, chemical or structural
properties shared and not shared by the 400 pairs of amino
acids. Specific instances of this approach work well for some
sequences but not for others. The approach works best if the
matrix is based on properties that have been strongly con-
served during the evolution of the sequence family. Thisisbe-
cause the properties matrix attemptsto specify the criteriathat
determine whether or not a mutation can survive and be fixed
in a population. However, this approach suffers from prob-
lems of balancing the contributions of the different properties
to the positive selection of mutations and from ignoring the
different rates at which different mutations are generated.

Empirical Evolutionary Matricesand L og-Odds Scor es
The biggest improvement achieved over the unitary matrix

(and other theoretically based matrices) was based on the em-
pirical study of the evolutionary replacements of amino acids.
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Margaret Dayhoff pioneered this approach in the 1970s when
she made an extensive study of the frequenciesin which amino
acids substituted for each other during evolution (11). The
studiesinvolved carefully aigning al of the proteinsin sever-
al families and then constructing phylogenetic trees for each
family. This approach incorporates both the generation and se-
lection of mutations and has been successful in sequence
alignment applications. We present below more details of two
widely used families of these empirically based matrices.

Computing Similarity Matrices

A similarity score (S;) is computed using information the-
ory to provide a measure for the probability of residuei re-
placing residuej in an alignment (Equation 2).

S;j = 1002(Ryj) = 10g,(a;/pip;) [Ea. 2]
where g; isthe relative frequency with which residuesi and j
are observed to replace each other in related sequences.

In Dayhoff’s original research, a separate ¢; and gj; were
tabulated. Dayhoff and others have since made the s mpJI ifying
assumption that g;; = ¢ and averaged these values. The terms,
p; and p;, are the expected probabilities for these residues and
are usuai ly the frequencies at which residuesi and j occur inthe
database. The product, pip;, is the frequency at which these
residues would be expectedJ to replace each other if the pattern
of mutationswere random. The similarity score (S;;) isthe base
2 logarithm of theratio (R;;) of the observed and expected fre-
guencies of mutation. The base 2 logarithm allows the direct
computation of entropy (see below) and a straightforward cal-
culation of statistical significance from the score. The similari-
ty matricesin common use have generally been scaled either by
using logarithmsto the base ten (the Dayhoff PAM matrices) or
by multiplying by afactor of two or three (the BLOSUM ma
trices). This scaling makes no differences in which sequences
arereported as smilar by adatabase search (1,3) but isdoneto
allow the similarity matricesto be represented as integer num-
berswith alesser loss of accuracy. Scores above zero (§;> 0.0)
indicate that two residues replace each other more often than
would be expected if the replacement rate were random. Like-
wise, scores bel ow zero indicate that residues repl ace each oth-
er less often than would be expected if the replacement rate
were random. Thus, a positive alignment score means that the
pattern of identities and substitutions described by an align-
ment is more likely to result from previoudy observed evolu-
tionary processes than to result from random replacements.

The average amount of information available per position
in an alignment computed using a specific matrix is referred
to as either the information content or relative entropy, which
isreported in bits. A bit isthe amount of information required
to distinguish between two possibilities, such as distinguish-
ing between an alignment of homol ogous sequences from an
alignment of random sequences. The equation for cal culating
entropy for a similarity matrix is shown in Equation 3 and
given for selected matricesin Table 3.

Entropy =i§ , Sdi* S

1,20 j=1,20 [Ea. 3]
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Counting the Replacements

The primary difference between the two major evolution-
based similarity matrices is in the computations of the re-
placement frequency (g;;). The PAM matrices use counts de-
rived from an explicitly tree-like, branching evolutionary
model. The BLOSUM matrices use counts derived from high-
ly conserved blocks within an alignment.

ThePAM or Dayhoff Family of Matrices

Margaret Dayhoff and co-workers performed a careful
global alignment (including both highly conserved and vari-
ableregions) on anumber of closaly related sequences, which
allowed them to create the appropriate evolutionary trees
(11). The ancestral sequences are computed for each of thein-
ternal nodes in the tree using the principle of minimum re-
placements or maximum parsimony. They then tabulated
which residues were conserved and which ones were mutated
for each branch in the evolutionary tree (Figure 3). Not all
mutations were observed (e.g.,W® C) because of the small
amount of data available. The tabulated counts were then con-
verted into the appropriate replacement frequenciesfor asin-
gle point mutation. Using these underlying replacement fre-
guenciesfor asingle point mutation, Dayhoff and co-workers
asked the question: what would the replacement frequencies
be after “n” PAM were observed within a stretch of 100
residues? Matrix multiplication of the single point mutational
frequencies results in replacement frequencies that can then
be converted (Equation 2) into similarity scores representing
the expected substitution pattern after a selected number of
mutations. An estimated percent identity for each matrix can
be computed, assuming a database-consistent distribution of
residues. This approach has been applied successfully to both
nucleic acids (30) and proteins (11).

Since each matrix is developed for aspecific PAM distance,
how well do the matrices work if the sequences that are to be

identified are at a different PAM distance? That is, if two se-
quences are diverged by 240 PAM units, would a PAM40 ma
trix identify them in adatabase search? The efficiency of ama-
trix at the various PAM distances is computed as the ratio of
the sequence pairwise score for the matrix in question divided
by the sequence pairwise score with the properly diverged ma-
trix (1) (Figure 4). A more complete graph can be seen at
http://www.psc.edu/biomed/data/graphs.html. A database
search with adifferent matrix isindicated (1) if the new matrix
is able to increase the alignment score by 2 bits (or a signifi-
cance factor of four). For proteins, thislevel is approximately
(34-2)/(34) (where 34 bitsisrequired for asignificant database
result) or 0.94 efficiency. Figure 4 showsthe efficiency of four
PAM matrices. Note that no matrix effectively covers the en-
tire range of percent identity above an efficiency of 0.94. The
PAM160 matrix provides the best coverage of therange of in-
teresting sequences typically found in a database search
(whichissimilar to the BLOSUM62). One would need two or
three different matrices for an effective search of al diver-
gence distances in a database search. We provide recommen-
dations for matrix selection from theliteraturein Table 5.

TheBLOSUM Family of Matrices

Henikoff and Henikoff created multiple sequence align-
ments of related proteins and identified conserved regions
without gaps, the BLOCKS database, which serves as the
source of the datafor the BLOSUM matrices. These BLOCKS
congtitute the regions that would most likely be found in a
database search. To create aspecific BLOSUM matrix, in each
BLOCK, all sequences that share at least n percent identity
(where n = 50% for the BLOSUM50) are grouped together to
create weighted set representations (Figure 5). The counts are
then tabul ated between the weighted set representationswithin
each BLOCK (Figure 5). The counting procedure is the sum-
of-pairs evolutionary model that allows direct evolution be-
tween any pair of sequencesin thefamily rather than through a

Amino Acid Substitutions: Dayhoff Model
Common Ancestral Sequence
(t,d,k,y,l‘)it'c'(gaﬂ)

(t,d.k,y)it-c-(g,a)
(t.k,d)it-c-g

tW)lt-cg .

tit-c-k
Cobra

titsc-g
Cobra

kit-csg
Shieldnose

rit-c-a
Human

dit-ctd yit-c-g
Krait Rattlesnake

Figure 3. An evolutionary treewith therecreated ancestral sequences at
the internal nodes and three amino acid substitutions indicated on
branches of the tree. The observed amino acid substitutions tabulated in
computing the Dayhoff PAM similarity matrices were counted by using such
recreated ancestral sequences and substitutions.
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Figure 4. Efficiency plots for the protein scoring by the PAM40 (closed
circles), PAM120 (closed boxes), PAM 160 (dashed line) and PAM 240
(closed triangles) of sequences that are at an “actual PAM distance”
apart. The estimated (assuming a database-consi stent distribution of residues)
percent identity is also provided for reference. The solid line (efficiency =
0.94) represents the level at which using a second matrix would be beneficial.
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branching process involving intermediate sequences (Figure
3). The counts are then added across all BLOCK S and used to
compute the ¢f; values (Equation 2).

The efficiency of the BLOSUM series of matrices can also
be estimated but not directly computed because these matri-
ces are not determined based on a single set of single point
mutation frequencies that are then matrix-multiplied to agiv-
en set of distances. The BLOSUMG62 is often the default ma-
trix in a number of search programs. The BLOSUM62 ma-
trix, which is similar in efficiency to the PAM160 matrix
(Figure 4), has the widest span across the range of interesting
sequences found in adatabase search. Thus, the BLOSUM62
is often the default matrix in database searching programs.
But, once again, for complete coverage of all divergence dis-
tances, multiple matrices should be used.

Differ ences between the PAM and BLOSUM M odels

The BLOSUM and PAM matrices are the most widely
used amino acid similarity matrices for database searching
and sequence alignment. There are three primary differences
between the PAM and BLOSUM matrices: (i) all PAM matri-
ces are derived using matrix multiplication from a single set
of single point mutation frequencies derived from an explicit
evolutionary model, while BLOSUM matrices are derived
with a sum-of-pairs evolutionary model using the BLOCKS
database with different weight set representations (sequence
groups); (i) the PAM matrices are based on mutations ob-
served in both highly conserved and variable regions in a
global alignment; while the BLOSUM matrices are based ex-
clusively on local, highly conserved regions without gaps;
and (iii) the PAM matrices are based on a limited number of

Muitiple sequence alignment:

npovVvk
eaGivcRIt

Weighted set representation:

Group 1: {nJ{p}{G{%i, av}{v]l¥a, 4vI[RIN s, Yatlfa) (gL M)y Hal{ s cliglal
{e]lAt.4all 4, ) 2a, Yt [1[QIEK ][I VoK, Y2e]

Group 2: [el[a){GIHVI[IRIMI K pIRILIMVI IR el GRIKIVIEQI al lq)
Group 3:

[a]{pHGIMIYL, Yav]{¥ea, O IR I d) (k] @){L1{YAq, Veel vl [a) [al{ Voq, Yar ) fe ] g} T al (1]
[QIf¥as, Yar e, Yk

Replacement Counts:

v -> £ = 0.0 (within the same group)
v ->a=05%1.0 = 0.5
v -> 1 =0.5* (0.5 + 0.5} = 0.5
t -»a=20.5* 1.0 = 0.5
t ->1=0.5*% (0.5 + 0.5) = 0.5
a ->1=1.0%* (0.5 + 0.5) = 1.0
1 -»> 1= 0.0 {(within the same group)

Figure 5. Counting replacements for a BLOSUM 70 similarity matrix.
Three different groups were defined: group 1 = Bpi (bovine and human),
group 2 = Cept (human) and group 3 = Lbp (human and rabbit). Replace-
ments within agroup were not counted.
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observations (e.g., C® W was not observed), while the BLO-
SUM matrices are based on alarge number of observations.

In empirical tests of the effectiveness of the two series of
matrices, both generaly perform well (11,14). However,
when comparing the results of a single database search, the
BLOSUM matrices will usualy perform dlightly better
(15,17,24). Thislikely reflects the fact that the BLOSUM ma
trices are based on the replacement patterns found in more
highly conserved regions of the sequences. These patterns
discovered in database searches serve as anchor points in
alignments involving complete sequences. It is reasonable to
expect that the replacements that occur in highly conserved
regionswill be more restricted than those that occur in highly
variable regions of the sequence.

The PAM matrices still perform relatively well despite the
small amount of data underlying them. The most likely rea-
sons for this are the care used in constructing the alignments
and phylogenetic trees used in counting replacements and the
fact that they are explicitly based on asimple model of evolu-
tion. They dtill perform better than many of the more modern
matrices that have been less carefully constructed. Both the
PAM and BLOSUM matrices generally perform better than
matrices based explicitly on criteria other than observed re-
placement frequencies (17) (e.g., properties, structure-genetic
and minimum mutation distance).

Scoresfor Nucleic Acids

For coding regions of genes, it isgenerally better to usethe
translated amino acid sequence for a database search (2).
Many factors can interfere with nucleic acid-based searches.
One of these is the compositional bias found in many organ-
isms and organelles. Another isthat some DNA sequencesare
derived from mRNA while others are genomic DNA with in-
trons, and the exons may be too short to give a significant
alignment with an mRNA-derived sequence. A third reasonis
that for distant relationships, the protein sequence alignment
will generally contain more information (Table 4).

For noncoding regions, there are additional considerations
in the choice of search algorithm. BLAST uses a very long
word size for nucleic acid sequences. Also, the modifications
tothe BLAST heuristic that improveits sensitivity for protein
sequences do not work well for nucleic acid sequences be-
cause nucleic acids have only a four-letter alphabet and the
similarity scores are usually calculated with equal frequencies
of replacement for al of the nucleotides (transitions equal
transversions). Thus, FASTA is more sensitive than BLAST
for even moderately diverged nucleic acid sequences and
should be used instead of BLAST if aheuristicisdesired.

Transition versus Transversion

It is possible to use different sets of evolutionary matrices
for nucleic acids just as have been recommended for proteins.
Two theoretical PAM models have been proposed, one using
auniform evolution model assuming equal rates of transitions
and transversions and another using a biased model with a3
to 1 trangition to transversion ratio (29). Note that the uniform
model at PAM 47 provides substitution values similar to the

BioTechniques 1185



Table 4. Significance LevelsUsing a Protein or aNucleic Acid Query

Protein Protein Protein Protein N.A. to N.A. N.A. N.A. N.A.

Percent PAM Sig. Len. Info. Per. Protein Info. Per. Sig. Len. PAM Percent

Identity Distance (34 bits) Residue Efficiency Codon (41 bits) Distance Identity

100 0 8 4.17 1.44 6.0 21 0 100

83 20 12 2.95 1.23 3.63 34 16 86
63 50 17 2.00 1.01 2.02 61 40 69
43 100 29 1.18 0.73 0.86 143 80 51
32 150 45 0.76 0.51 0.39 315 120 40

Data derived from Dayhoff et al. (5) and States et al. (6).

N.A. = Nucleic Acid; Info. Per. = Information Per; Sig. Len. = Significant Length

ones historically recommended by Smith et al. (29).

There have also been a few empirical studies on gene-
pseudogene evolution (7,16). These studies provide replace-
ment frequencies that can be easily converted into empirical
log-odds scoring matrices such as the BLOSUM protein ma-
trices already described. These derived log-odds matrices
may prove useful for researchers interested in searching for
pseudogenes.

SCORING INSERTIONSAND DELETIONS

The gap penalty represents the probability that an insertion
will start or continue relative to either a match or mismatch.
Thus, the value of the gap penalty must be consistent with and
coupled to the values contained within the substitution ma-
trix. Furthermore, the value of the gap penalty must be con-
sistent with the goal of the alignment—finding similar se-
guencesin adatabase search or aligning sequencesto provide
the best estimate of the evolutionary history. There have been
many approaches to quantify the gap penalty (12,32).

The most commonly used gap penalty consists of two
terms, an open gap penalty and extended gap penalty. These
terms alow the gap penalty to separate the cost of opening an
insertion versus extending the preexisting gap. Thistwo-term
gap penalty performs better both in database searches (24)
and in providing the best alignment (12). In practice, the open
gap penalty isusually relatively large, while the extended gap
penalty is more modest.

Database searching scores for related sequences are usual -
ly dominated by relative long ungapped segments. Thus, the
gap penalty value has only a modest effect on computing the
score for related sequences, but the expected score for aran-
dom sequence alignment increases with a decrease in the gap
penalty. Decreasing the gap penalty increases the chances for
identifying spurious sequences (decreasing selectivity). For
database searches, ageneral rule of thumb isthat the open gap
penalty should be larger than the largest match score and
twice the largest mismatch penalty, while the extend gap
penalty isusually set at aminimal value of -1.

Thefina alignment represents the best estimate of the evo-
lutionary history of changes that occurred during the diver-
gence of the two sequences from their most recent ancestor.
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Studies of protein structural alignments (22) and pseudogenes
(13) indicate that insertions and deletions are usually short
(one or two residues in length) and become more frequent as
the sequences become more highly diverged. Producing the
best alignment usually requires reducing the open gap penalty
and increasing the extended gap penalty, which resultsin the
formation of small gapsin variable regions. Thus, the contrast
between database searching and final alignment is easy to
see—database searching identifieslong, highly conserved re-
gions, while the final alignment contains shorter conserved
regions separated by small gaps.

STATISTICAL SIGNIFICANCE

A database search will yield a number of high-scoring
alignments, which leads to the question: is the score or the
length of the alignment of the query and database sequence
greater than what one would expect from arandom sequence?
BLAST uses an explicit approach to assess significance,
while FASTA and most implementations of the dynamic pro-
gramming a gorithm use a semi-empirical approach.

Explicit Approach: Using Information Theory and the
Length of the Alignment

Each alignment contains a certain amount of information
per position, which is approximately the product of the en-
tropy of the matrix used (Table 3) and the length of the align-
ment (1,18,19) or, more exactly, the alignment score in bits.
Current statistical models have not developed the ability to
compute entropy for a gap. Thus, the information content of
only ungapped alignments can be explicitly computed (18,19).

The amount of information in a database search required
for an alignment to be significant is the base 2 logarithm of
the product of the length of query sequence and the total num-
ber of residuesin the database. From these two relationships,
we can determine the minimum required length of an un-
gapped alignment (Equation 4).

log, (query length « residuesin db)
entropy of matrix

Minimum Significant Alignment Length =

[Eq. 4]
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Table5. Recommended Matricesto Be Used for a Database Sear ch

PAM Matrices BLOSUM Matrices

3 Matrices 2 Matrices 3 Matrices 2 Matrices
PAM40 PAM120 BLOSUM60 BLOSUM60
PAM120 PAM250 BLOSUM40 BLOSUM35
PAM240 BLOSUM30

Thus, using a 500-residue query sequence to search a40 mil-
lion-residue database using a BLOSUM®62 matrix (Table 3)
requires a minimum alignment of 36 residues to be signifi-
cant. BLAST (maximal segment pairs) uses this approach,
along with asimilar sum statistic, to determine significancein
the second step (Table 2). If the query sequenceis shorter than
the required minimum length, then no match from a database
search can be judged to be significant, and one needsto select
ahigher entropy matrix.

Semi-Empirical Approach: Using the Database Search to
Createa ReferenceDistribution

FASTA and various implementations of the dynamic pro-
gramming agorithm (e.g., Smith-Waterman) allow the align-
ment to contain gaps. Thus, the explicit approach described
above cannot be used to determine the significance of the align-
ment resulting from the query and adatabase sequence. A num-
ber of moddl s has been devel oped to allow the estimation of the
maximum score (cutoff score) for a random sequence to be
aligned with the query sequence. The mgjority of these models
are based on the ssimple observation that, with respect to any
newly determined query sequence, the database contains pri-
marily random sequences. That is, the pertinent random
process is evolution from independent, unrelated ancestral se-
guences rather than from acommon ancestral sequence.

The results of the database search are usually presented as
ahistogram of score versusfrequency of occurrence. Thereis
a large peak in the histogram representing the bulk of the
database, the random sequence portion and then a number of
isolated peaks representing the high-scoring hits. It is the
large peak representing the random sequence portion of the
database that needs to be fit. Two approaches will be de-
scribed in detail. First, the histogram of scoresfor the random
sequence portion of the database is fitted using an extreme
value distribution. This allows the determination of the mean
for the histogram, the size of a standard deviation and the
computation of the maximum random score. Second, the de-
cay after the peak of the histogram of scores is empirically
observed to be exponential (9,10,32). When thelog of thefre-
guency is plotted, this decay is a straight line. Extrapolating
this line to afrequency of one sequence (essentially the axis
intercept) computes a score larger than might be reasonably
expected from a random sequence in the database (9,10).
Thus, any appreciably higher scoreisstatistically rare. Thisis
the approach used in many implementations of the dynamic
programming algorithm.

1188 BioTechniques

Both approaches to determine the cutoff score are based on
a well-defined random sequence portion of the database
search. The shape of this region depends on the gap penalty
being large enough (32). If the gap pendlty is too low, the
scores are observed to decay much more slowly, broadening
the distribution of scores, which may confuse either approach
to fit the histogram and obscure the significant hits.

All significance computations are based on a given proba
bility of finding and digning specific residues, usually the data-
base composition. Thus, aregion formed almost exclusively of
one or two residues (e.g., a stretch as small as 20-30 residues
of poly-C or poly-G) can skew the significance computation
and lead to unrealistic results. Methods exist to remove these
low-complexity regions before database searches (2).

FUTURE CONSIDERATIONS

It is not uncommon for only half of the related sequences
to beidentified in atrial database search with awell-charac-
terized, large family of sequences (4,5,24). What happens
when a database search reveals no related sequences? Are
there no related sequences or are the already sequenced mem-
bers of the family too diverse from the query to be identified
in a database search? Assuming the latter, one needs to im-
prove the sensitivity of the search. Radical improvement in
sensitivity will require amajor shift in the underlying model
of evolution implied by the database search. There is a maxi-
mum sensitivity for the combination of search algorithm and
substitution matrix that cannot be improved. The heuristics,
which are approximations of the Smith-Waterman a gorithm,
are approaching the quality of the Smith-Waterman and prob-
ably have limited room for improvement. The evol ution mod-
el expressed in the general database searching programs de-
pends on residue-specific mutation rates regardless of the
position of the residue in either the three-dimensional struc-
ture or the function of the residue in the protein. With this
simplistic model, there is little overall difference between a
highly diverged sequence and arandom sequence.

In our opinion, the best hope for improving the sensitivity
of the database searching algorithm is to improve the under-
lying evolutionary model, probably through the use of more
sophisticated statistical models, such as the maximum likeli-
hood alignments (6,31) or related methods using hidden
Markov representations (8). These algorithms evaluate al
possible alignments rather than exclusively consider the best
scoring alignment. In general, highly diverged homologous
sequences have many alignments that are ailmost as good as
the best ones, while alignment scores for nonhomol ogous se-
guences decrease rapidly from the best score. Thus, addition
over the alternative alignments allows more sensitive discrim-
ination between highly diverged homologous sequences and
unrelated, nonhomol ogous sequences. These algorithms are
at least as computationally demanding as dynamic program-
ming algorithms, and there are till no effective heuristic ap-
proximations avail able because the al gorithms themselves are
dtill at the research stage.

One would assume that finding related sequences should
become easier in the future because the sequence databases are
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doubling in size almost yearly, and several complete genomes
have been sequenced. Thus, the potential number of hits
should increase. While this number will increase, the nonho-
mologous portion of the database will increase at least asfast.
Actualy, this doubling of the sequence databases may in-
crease the difficulty in identifying related sequences. This can
be clearly seen when using the explicit approach to compute
significance. Each year, an additional bit of information will
be required for an alignment to be significant because the data-
base doubles in size. Over the next five years, thiswill result
in lengthening the minimum required ungapped alignment
from 36 to almost 45 residues. One approach to ease the prob-
lems of growth in the database isto reduceits size by creating
a nonredundant database. That is, for each cluster of highly
identical sequences, one sequence iskept, whilethe othersare
removed. Alternatively, species- or genus-specific databases
are also being created. While these approaches do limit the ef -
fects of the growth of the database, neither approach is ideal
and can result in lost data. For example, sequentially searching
a number of species-specific databases will provide a greater
measure of significancethan isactually valid.

Alternatively, one can use an abstraction to represent
groups of sequences, creating what isin essence a nonredun-
dant database. The group of sequencesis usually a sequence

family, while the abstraction can be a consensus sequence,
weighted set representations, hidden Markov model (HMM)
or position-specific scoring matrix (PSSM). This approach is
now being used by the classification libraries ProSite,
BLOCKS (PSSM), PRINTS (PSSM) and Pfam (HMM).
Many of the abstractions allow a more accurate model for
evolution, that is, defining some positions as rigorously con-
served, while others allow random mutations.

CONCLUSION

In this paper, we have reviewed the four major aspects of
seguence database searching: agorithm, substitution matrix,
gap penalty and significance calculation. We have described
how these components relate and how the choices affect the
results of adatabase search. Based on this discussion, we rec-
ommend the following procedure for carrying out an effective
database search: (i) use alocal favorite program (Smith-Wa-
terman, BLAST or FASTA) or the Web server of your choice;
(i) use at least two and preferably three similarity tables
(Table 5); and (iii) if Smith-Waterman or FASTA is used, be
sure the open gap penalty islarge enough.

If theinitial runs do not uncover any similar sequencesand




aheuristic has been used, repeat the search using ahighly di-
verged matrix and the Smith-Waterman algorithm. Alterna-
tively, assuming an evolution-based matrix was used, use a
highly diverged matrix from the other series (e.g., if three
BLOSUM matrices were used, then try the PAM 320).

To produce the final alignment between two sequences,
choose a matrix that reflects the appropriate divergence for
the two sequences (Table 2), reduce the gap penalty relativeto
the values used in the database search and use the MaxSegs
(Waterman-Eggert) version of the dynamic programming al-
gorithm to provide the best local alignment and also search
for repeatsin the sequences.

If there are questions about which matrix or open gap pen-
alty should be used, try several choices to see which parts of
the alignment are invariant and which parts are more suspect.
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