Algorithmsfor a Smple Point Placement Problem

Joshua Redstone and Walter L. Ruzzo

Department of Computer Science & Engineering
University of Washington
Box 352350
Seattle, WA 98195-2350
{redstone,ruzzo} @cs.washington.edu

Abstract. We consider algorithmsfor asimple one-dimensional point placement
problem: given N pointson aline, and noisy measurements of the distancesbe-
tween many pairs of them, estimate the relative positions of the points. Problems
of thisflavor arisein avariety of contexts. The particular motivating examplethat
inspired this work comes from molecular biology; the points are markers on a
chromosomeand the goal isto map their positions. The problem is NP-hard under
reasonable assumptions. We present two algorithms for computing least squares
estimates of the ordering and positions of the markers: a branch and bound al-
gorithm and a highly effective heuristic search algorithm. The branch and bound
algorithm is able to solve to optimality problemsof 18 markersin about an hour,
visiting about 10° nodes out of a search space of 10*® nodes. The local search
algorithm usually was able to find the global minimum of problems of similar
size in about one second, and should comfortably handle much larger problem
instances.

1 Introduction

The problem of mapping genetic information has been the subject of extensiveresearch
since experimenters started breeding fruit flies for physical characteristics. Due to the
small scale of chromosomes, it has been difficult to obtain accurate informationon their
structure. Many techniques relying on statistical inference of indirect data have been
applied to deduce thisinformation; see [1] for some examples.

More recently, researchers have devel oped many techniques for estimating of rela-
tive positionsvarious genetic features by more direct physical means. We are interested
inone called fluorescent in situ hybridization (FISH). In thistechnique, pairsof fluores-
cently labeled probes are hybridized (attached) to specific sites on achromosome. The
2-d projection of the distance between the probes is measured under a microscope. De-
spitethehighly folded state of DNA invivo and the resulting high variance of individual
measurements, [10] shows that the genomi c distance can be estimated if the experiment
isrepeated in many cells.

Not surprisingly, if more pairs of probes are measured, and the measurement be-
tween each pair is repeated many times, the accuracy of the answer increases. Unfortu-
nately, so does the cost. Hence, the resulting computational problemisthe following:

G. Bongiovanni, G. Gambos, R. Petreschi (Eds.): CIAC 2000, LNCS 1767, pp. 32—43, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

Algorithms for a Simple Point Placement Problem 33

Problem: Given N probesonaline, and anincompl ete set of noisy pairwise measure-
ments between probes, determine the best estimate of the ordering and position of
the probes.

If the measurements were complete and accurate, the problem would be easy—the
farthest pair obvioudly are the extreme ends, and theintervening pointscan be placed by
sorting their distances to the extremes. However, with partia, noisy data, the problem
isknown to be NP-hard. (See [6, 5] for a particularly simple proof.)

1.1 PreviousWork

Brian Pinkerton previously investigated solving this problem using the seriation a go-
rithm of [3], and a branch and bound al gorithm (personal communication, 6/96). The
seriation algorithm, which isaloca search agorithm, was only moderately effective.
The branch and bound a gorithm, using a simple bounding function, was able to solve
problemsinvolving up to about 16 probes.

There has been extensive work on other algorithms to solve DNA mapping prob-
lems, but they are based on distance estimates from techniques other than FISH, and are
tailoredto the particul ar statistical propertiesof the distance measurements. Two among
many exampl es are the distance geometry a gorithm of [7], based on recombination fre-
guency data, and [2], which investigated branch and bound, simulated annealing, and
maximum likelihood algorithms based on data from radiation hybrid mapping.

1.2 Outline

We present two algorithms for finding |east-squares solutions to the probe placement
problem. Oneisabranch and bound a gorithm that can find provably optimal solutions
to problems of moderate, but practically useful, size. The second is a heuristic search
algorithm, fundamentally a “hill-climbing” or greedy agorithm, that is orders of mag-
nitudefaster than the branch and bound a gorithm, and althoughit isincapabl e of giving
certifiably optimal solutions, it appearsto be highly effective on this data.

In the next section we sketch some of the more difficult aspects of the problem. Sec-
tion 3 develops a cost function to evaluate solutions. Section 4 describes the heuristic
search algorithm. Section 5 outlines the branch and bound al gorithm. We then present
the results of simulations of the two agorithmsin Section 6.

2 Introduction to the Solution Space

Before explaining the devel opment of thealgorithms, it ishel pful to gain someintuition
about the solution space. Given that the datais both noisy and incomplete, the problem
can be under-constrained and/or over-constrained. In thisdomain, a“constraint” refers
to ameasurement between two probes (sinceit constrains the placement of the probes).

An under-constrained problem instance is one in which a probe might not have
enough measurements to other probesto uniquely determine its position. In the exam-
pleof four probesin Figure 1, probe B has only one measurement to probe A, and so a

34 Joshua Redstone and Walter L. Ruzzo

B C—D B,@D

Fig. 1. An example of an under-constrained ordering (Probe B can be placed on either side of
probe A). A line between two probes indicates a measurement between the probes.

location on either side of probe A is consistent with the data. It isal so important to note
that in all solutions, |eft/right orientationisarbitrary as isthe absol ute probe position.

In amore extreme exampl e, aset of probes could have no measurements to another
set. In Figure 2, probes A and B have no measurements to probes C' and D, and place-
ment anywhere relative to probes C' and D is consistent with the data.

VRN VRN

A BC D« ACBD

Fig. 2. Another example of an under-constrained ordering

In the examples of Figures 1 and 2, not only are the positions not uniquely deter-
mined, but different orderings are possible. When developing search agorithms, we
haveto be careful to recognize and treat such cases correctly. It appearsthat inreal data
such as from [Trask, personal communication, 1996], there are no degrees of freedom
intherelative positioning of probes dueto the careful choice of pairs of probesto mea
sure. However, under-constrai ned instances do arise in the branch and bound a gorithm
described in Section 5 and in any agorithm that solves the problem by examining in-
stances with areduced set of constraints.

Duetothenoiseinthedata, parts of aprobleminstancewill be over-constrained. For
example, asshownin Figure 3, if we examine three probeswith pai rwise measurements
between them and there isn’t an ordering such that the sum of two pairwise measure-
ments equals the third pairwise measurement, there will be no way to place the three
probeson aline. In this case, the distances between the probesin any linear placement
will unavoidably be different from the measured distances.

12

/\
A2 B> C

Fig. 3. Thereis noway to linearly place these probeson aline and respect all the measurements.

Algorithms for a Simple Point Placement Problem 35

Given the existence of over and under-constrained problems, it is necessary to de-
velop amethod of evaluating how well a solution conformsto the data. Thisiscovered
in Section 3. Once we define how to eval uate a solution, we will develop algorithmsto
search for the best solution.

3 How to Evaluate a Probe Placement

We construct a cost function to evaluate the “goodness’ of a solution, then solve the
problem by finding the answer that has the least cost. Let NV be the number of probes,
x; be the assigned position of probe ¢, d;; be the measured distance between probe :
and probej (d;; = dj;), and let w;; = w;; beanonnegativeweight associated with the
measured distance between probesi and j. We definethe cost of thisplacement to bethe
weighted sum of sgquares of the differences between the measured di stance between two
probesand the distance between the probesin thegiven linear placement of the probes:

COSt(l‘l,...,l‘N)I Z wi]'(|l‘i—l‘]' |—di]')2. (1)
i<y
d;; measured

Many subsequent formulae will be simplified by assuming w;; = 0 if ¢ = j or if the
distance d;; has not been measured. For example, we could have omitted the qualifier
“d;; measured” from Equation 1 under this assumption.

Intuitively, the weight w;; reflects the relative confidence we have in measurement
d;;. For example, if themeasurement errorswere independent normal random variables,
then we should choose the weight w;; to be proportional to 1/ afj, where afj is the
variance of d;;. Least squares solutionsunder these assumptions have several desirable
properties, like being unbiased maximum likelihood estimators. Even though the error
distribution in our motivating problem violated these assumptions, choosing weights
inversely proportional to the variances substantially improved the solution quality (and
speed) of our algorithms; see [9].

3.1 Finding Least Squares Solutionsfor a Fixed Ordering

One standard approach to solving a least squares problem is to take the partial deriva
tives of the cost with respect to each of the «;’s, set them equal to 0, and solve. Unfortu-
nately, our cost function is not differentiable due to the absol ute value terms. However,
for agiven fixed ordering of the probeswe can bypass thisdifficulty, allowing usto find
the placement which minimizes cost for the given ordering. Without loss of generdlity,
assume

T < ro<---<<XN. (2)

36 Joshua Redstone and Walter L. Ruzzo

Then for agiven probe k:

0
67 Zwljﬂ Ty — X | —di]')z = Z 2wik(l’k — & — dik)
kG 1<i<k—1

_ Z Qwpi(z; — ok — dis). (3)

E+1<i<N

Separating the terms and setting equal to 0, we get for 52—

Ty Z (wir) + Z (—wipa;) = Z (wirdir) — Z (wridki). (4)

1<i<N 1<i<N 1<i<k—1 E+1<i<N
Equation 4 is of theform
Mx =r (5)

wherex isthe vector of z;'s, M isthe matrix defined as:

My = {_w” iz ®)

Z1§p§N(wip) i =,

andr isthe vector whose k™ component 7, isgiven by theright hand side of Equation 4.
Thus, in matrix form, Equation 4 can be written as:

wdin) Z s
—wWpy .. Mpp ... —wEpN T Z (ik Zk) (ki]“)
1<i<k—1 BH1<i<N

where My, the summation term in Equation 6, is the sum of the weights of the mea
surements from probe k to other probes.

A criticd point is that there is no guarantee that the ordering of the probesin the
solution of Mx = r will respect the ordering (2) used to construct thislinear system.
However, the solution to thislinear system provides useful informationin either case.

— If the solution does respect the ordering, then it provides the optimal (in the least-
squares sense) positioning of the probes with respect to the given ordering, and is
alocal minimum of the cost function.

— If the solution does not respect the ordering, then it gives alower bound on the cost
of the best placement withthat ordering. Thisistruesincesolutionto Mx = r gives
theminimumof 37, . wi;(x; — x; — di;)* over al x, whichis certainly no greater
than theminimum over theregion {x | 1 < 25 < --- < xy }. Furthermore, inthis
case the given ordering is not the optimal one, sincethe solutionto Mx = r gives

Algorithms for a Simple Point Placement Problem 37

an ordering having a lower cost. This holds since for each pair i < j for which
x; > xj, we have

(lwi = ;| =diy)® = (i — x5 = dij)* < (27 — 2 — dij)*.

In other words, at the point x solving Mx = r, each term in the true cost function
islessthat or equal to the corresponding term in the restricted cost function built
assuming the ordering z; < #2 < -+ < xy, and so that ordering cannot be opti-
mal.

These are the key observations on which our agorithmsare built. The problem has
been reduced from a continuous optimization problem to a discrete one—that of com-
puting the matrix solution over al probe orderings and choosing the ordering with the
lowest cost. Our branch and bound a gorithm searches over all possible probeorderings,
using an extension of the method aboveto bound the cost of 1arge sets of possible order-
ings, provably finding the one(s) of minimum cost. The branch and bound agorithmis
described morefully in Section 5. Our heuristic search algorithmiseven simpler. Start-
ing from many random orderings, it merely iterates the process described above until
it reaches a local minimum. Empirically, thisis highly effective at finding the global
minimum quickly. Thisis described more fully in the next section.

4 Heuristic Search

As outlined in the previous section, solution to the linear system constructed for any
fixed order = of the probes either givesthe optimal placement for probesin that order,
whichisaloca minimum of the cost function, or givesaplacement with another order-
ing ' at which the cost function islower than it isat any placement respecting =. Our
heuristic search algorithmissimply “iterated linear solve’:

. choose arandom ordering ;

set up the linear system corresponding to that ordering;

solveit;

. if theresulting order =’ isequal to , record that as a potential minimum;
. if 7/ # =, replace = by =’ and return to step 2.

ONhwN R

Finally, we repesat this entire process for many random initial orderings, and report the
lowest cost solution found. In different tests, we either did a fixed number of random
starts, usually 300, or repeated until the known optimal solution was found.

One nicefeature of the matrix formulationisthat M isindependent of the ordering
of the probes. When solving this system by LU decomposition (asin [8]), this means
that oncewe performaninitial O(N'?) operationon M, wecan find asolutionin O(N ?)
timeper ordering, thetimerequired to generate the (order-dependent) vector r and back-
solve.

38 Joshua Redstone and Walter L. Ruzzo

5 Branch and Bound

Our branch and bound algorithm constructs a search tree over probe orderings. The
leaveswill be complete orderingsand theinterior nodeswill be partially specified order-
ings. There are two basi ¢ approachesto structuring the search tree. In thefirst approach,
shown in Figure4, the children of anode P in the tree will be the ordering of probes at
node P augmented withanew probein al possible positionsamong the probes ordered

apP.

CAB ACB ABC CBA BCA BAC

Fig. 4. At anode, the children are orderings
in which an additional probe is placed in
all possible positionswith respect to the or-
dered probes.

e

A B C

AB AC BA BC CA CB

ABC ACB BAC BCA CAB CBA

Fig. 5. At anode, the children are orderings
in which each of the unordered probes has
been placed to the right of the rightmost or-
dered probe.

For the second approach, in Figure 5, the ordering of a child of an interior node P
will betheordering of P augmented by a probe placed adjacent to therightmost ordered
probein P.

In either approach, asistypical in branch and bound a gorithms, littleof the ordering
is specified at higher levels of the search tree, hence the bounds computed there will
be weak and pruning will be rare. Given this, the first approach has the advantage that
the branching factor is much lower near the root of the tree compared to the second
approach, e.g. 3versus N — 3 onthethird level. On the other hand, the second approach
has the advantage that moreinformationisknown about the partially specified ordering
at an interior node P, namely that al unordered probes lie to the right of the rightmost
specified probe in every node of the subtree rooted at P. We can exploit thisto give
a strengthened bound at internal nodes compared to approach one. In our experiments
[11], approach two outperformed approach one by nearly a factor of two both in run
time and in number of tree nodes visited. Throughout the remainder of this paper, we
will only consider approach two.

Our branch and bound a gorithm searches through nodes in a tree, pruning a node
if its cost is greater than the lowest cost found in aleaf node so far. At aleaf node in
thetree, we compute the cost of the ordering as described in Section 3.1. At an interior
node, the cost function must be alower bound on the cost of al nodesin the subtreeto
allow usto possibly prunethe subtree. In thissection, we describe asimple cost function
based on least squares.

Consider an interior node such asthat in Figure 6. In this picture of aninterior node,
the circles represent probes, and the edges represent the existence of a measurement
between two probes. Probes A, B, ', and D have been ordered (inthat order). Probes £

Algorithms for a Simple Point Placement Problem 39

Unordered
Ordered Probes Probes

Fig.6. An Interior Node

and I are unordered with respect to each other, but both will appear to theright of probe
D. Oneway of computing alower bound onthe cost for thisnodeisto consider only the
measurements between the ordered probes. In this case, we compute the cost function
by computing the matrix solution (as described in Section 3.1) using amatrix built from
only measurements between the ordered probes. Thisis done by simply pretending the
other measurements do not exist, i.e., thetermsin M of Equation 5 for measurements
that we are not considering are 0, and thereis no contributionfromtheminther vector.

We note that the cost function described hereisineffective at high levelsinthetree
(where nodes will reflect probe orderings with few constraints). In particular, the cost
function described evaluatesto zero for thefirst and second level inthetree (when only
one or two probes are ordered). However, consider the measurements in Figure 6 be-
tween ordered probes ', 1, and unordered probe /. Even though the position of /' is
undetermined with respect to £, we know that 7" will beto theright of D. Thisallows
usto remove the absolute value sign in the sum of sgquares terms of Equation 1 for the
measurements between F* and C', D and include these terms in the cost function com-
putation. Thus, for an interior node, as well as considering all edges between ordered
nodes, we can consider edges between ordered nodes and unordered nodes when con-
structing the cost function for the node. Thisimprovement potentially allowsusto com-
puteanon-zero cost functionfor nodes as high asthe second level inthetree (when only
two probes are ordered). With this improvement, the only constraints we are not con-
sidering at a node are those between unordered probes. The bound function described
hereisthe one we usein the simulations reported in Section 6, Results.

The cost of an interior node P computed in thisway will be alower bound on the
cost of all nodesin the subtreerootedat P, since nodesin the subtreeimpose additional
congtraints on the ordering, never remove constraints, and each additional constraint
adds additional non-negative termsto the cost function.

An additional issue which has a strong effect on the performance of our branch and
boundalgorithmisinitializationof thebound. Starting thea gorithmwith aconservative
default value for the bound (like +00) resultsin very poor pruning until a reasonably
good solutionis encountered. Instead we first run the local search algorithm from afew
random starting orderings. Empirically, thiswill quickly locate a good solution, facili-
tating good pruning from the beginning. I n our experiments, branch and bound removes
100-1000 times as many nodes as aresult [9].

Thereis one remaining detail to be specified—we need to modify the construction
of the M of Equation 5. Asit stands, thelinear system Mx = r of Section 3.1 isunder-

40 Joshua Redstone and Walter L. Ruzzo

congtrained (the rank of the null-space of M is non-zero). Because the system is con-
structed from rel ative orderings between the probes, thereis one degree of freedom: the
absol ute position of the probes. Thisisremedied by modifying the system to arbitrarily
place probe 1 at location z; = 0. There may be additional degrees of freedom in the
solutions. In particular, a high levelsin thetree the small set of ordered probes may be
partitioned into severa disconnected components whose relative positions are uncon-
strained. These situations are handled similarly; see [9] for details.

Finally, we remark that the cost computed by the techniques outlined above is a
lower bound, but not necessarily an attainable bound, onthe cost of any ordering consis-
tent with that specified at a search tree node. In particular, in the case where the solution
tothelinear system Mx = r exhibitsadifferent ordering than the one from which the
system was constructed, we know that the bound is not attainable by the desired order-
ing. It isstill valid to use thisbound to prunethe search tree, since we know the bound
isattainable by some (other) ordering. However, pruning could be improved if ahigher
lower bound coul d be computed in these cases. One possible approach to doing so would
be to use quadratic programming—minimization of the quadratic objective functionin
Equation 1 subject to the linear constraints in Equation 2 is a convex quadratic opti-
mization problem, for which polynomial time a gorithms are known; see, for example,
[4]. However, it is not clear whether the increased pruning efficiency would offset the
extracomputational cost of using themore el aborate quadratic programming a gorithm.
Preliminary experiments have been inconclusive[11]

We now present the results of experiments performed on the heuristic search and
branch and bound algorithms.

6 Reaults

We ran multiplesimulationsto assess the performance of thetwo a gorithmsand also to
gauge the sensitivity of the algorithmsto different parameters. We summarize the main
resultshere; see [9, 11] for further details.

The experiments described bel ow were al run on synthetic datagenerated in accord
with the motivating problem presented in Section 1. Probes were placed uniformly at
random, except that adjacent probes were separated by minimum distance of approxi-
mately 3% of the average spacing. Approximately 50% of the probe pairs were “mea
sured,” were measurement consisted of drawing arandom sample from a certain distri-
bution whose mean was the actua distance between the probes. Data sets having more
than one connected component or certain other anomalies werefiltered out. The results
do not seem to be overly sensitive to any of these parameters.

Asameasure of the quality of the solution found by the algorithms, we used RMS
error—the square root of the mean sgquared difference between the true and cal cul ated
positionsof the probes. Whilethisquantity varied from run to run, themedian value was
10%-15% of the average interprobedistance, which isreasonably good considering the
variance of the “measurements.”

We present thetotal time for the branch and bound a gorithm using weighted | east-
squaresin Figure 7, and thetotal timefor heuristic search in Figure 8. Each point inthe
graph is aproblem instance.

Algorithms for a Simple Point Placement Problem 41

10000 T T T T T T T T
Median Time to Perform Branch and Bound --+o-
o e
1000 o ¢
8 o o
2 100f F SR O
£ 8.7 ®
9 o o A&
S 10 | N 1
a 8/
8_ o % g o
[%2) S ¢ 1
'g 1r o @/,é °
3 5 %’5 °
0 o/
0.1} . g/§ 4
/Q/ ©
g
001 ! 8 ! ! ! ! ! !
2 4 6 8 10 12 14 16 18
Problem Size
Fig. 7. Time for Branch and Bound (Seconds).
10000 T T T T T T T
Median Time Taken ——
@
g
0
5
3 1000 E
c
<
o
o
o
™
S
Lo
c
g 100 | E
<
|_
(O]
S
|_
10 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18

Problem Size

Fig. 8. Time for Heuristic Search. Trials showing identical times spread horizontally for clarity.
(300 random starts; Milliseconds).

42 Joshua Redstone and Walter L. Ruzzo

We can see that the running time of the branch and bound al gorithmis exponential,
as is expected, with time increasing roughly as 2.8V . Note that at the far right of the
graph, the most timetaken to solve aproblem of 18 probes was about 70 minutes. Since
the number of nodesin a search tree of a problem that sizeis around 10*°, we can see
that the pruning heuristic is quite effective; in fact it visited on the order of 10° nodes.

The performance of heuristic search isin some ways more difficult to assess. For a
problem size of 18, the 300 random starts of heuristic search took about 1 second. The
surprisingly stable growth rate aso appears to be exponential, but grows much more
slowly, roughly as 1.2V At thisrate, problems of size 30 would be solvablein afew
minutesand problemsof size 50 in under an hour. However, notethat 300 random starts
isavery arbitrary choice. In most trials (> 90%), the method finds the globally optimal
solutionwithin 10 random starts. Inafew “hard core” cases, however, it can take severa
thousand startsto find the global . Unfortunately, of course, using heuristic search alone,
one cannot tell when the globally optimal solution has been reached. (We compared to
the provably optima results from branch and bound.) Neverthel ess, the method seems
to be a powerful one and worth further study.

Timing experiments where performed on a 100 MHz DEC AlphaStation 200 4/100
with 96MB of memory. The C code was not optimized beyond the optimizations de-
scribed here (and in [9, 11]). In particular, the LU decomposition routine was copied
without modification from [8]. Since the process size for these algorithmswas around 3
MB, and since the simulation codeis CPU intensive, thetime due to non-CPU activities
(such as paging) does not significantly affect the results shown.

7 Conclusions

We have presented two search algorithms, abranch and bound algorithmand aheuristic
local search agorithm, both of which attempt to minimize aweighted | east-squares cost
function to solve a one dimensional point placement problem.

Duetotheexponentia nature of the branch and bound algorithm, itisunlikely that it
will scaleto larger problem sizes. However, it does provide good performance on prob-
lems of 18-20 probes, large enough to be of practical use. Sinceit findsthe global min-
imum, it is also useful as a benchmark against which to compare other algorithms.

The local search agorithm performed surprisingly well, finding optimal solutions
in seconds and appears capable of handling much larger problem instances.

8 Acknowledgments

We would like to thank Brian Pinkerton, Barb Trask, Ger van den Engh, Harry Yeung,
and the Statistics Consulting Group for their thoughtful comments and generous assis-
tance.

References

1. Timothy Bishop. Linkage analysis: Progress and problems. Phil. Trans. R. Soc. Lond.,
344:337-343, 1994.

10.

11

Algorithms for a Simple Point Placement Problem 43

. Michael Boehnke, Kenneth Lange, and David Cox. Statistical methods for multipoint radi-

ation hybrid mapping. Am. J. Hum. Genet., 49:1174-1188, 1991.

. Kenneth H. Buetow and Aravinda Chakravarti. Multipoint gene mapping using seriation. |.

General methods. Am. J. Hum. Genet., 41:180-188, 1987.

. Donald Goldfarb and Shucheng Liu. An O(»® L) primal-dual potential reduction algorithm

for solving convex quadratic programs. Mathematical Programming, 61:161-170, 1993.

. Brendan Marshall Mumey. A fast heuristic algorithm for a probe mapping problem. In Pro-

ceedingsof the Fifth Inter national Conferenceon Intelligent Systemsfor Molecular Biology,
pages 191-197, 1997.

. Brendan Marshall Mumey. Some Computational Problems from Genomic Mapping. PhD

thesis, Department of Computer Science and Engineering, University of Washington, 1997.

. William R. Newell, Richard Mott, S. Beck, and Hans L ehrach. Construction of genetic maps

using distance geometry. Genomics, 30:59-70, 1995.

. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian Flannery. Numerical

Recipesin C. Cambridge University Press, 1992.

. Joshua Redstone and Walter L. Ruzzo. Algorithms for ordering DNA probes on chromo-

somes. Technical Report UW-CSE-98-12-04, Department of Computer Science and Engi-
neering, University of Washington, December 1998.

Ger van den Engh, Ranier Sachs, and Barbara J. Trask. Estimating genomic distance from
DNA sequencelocation in cell nuclei by arandom walk model. Science, 257:1410-1412, 4
September 1992.

Harry Yeung and Walter L. Ruzzo. Algorithms for determining DNA sequence on chromo-
somes. Unpublished, March 1997.

