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Abstract. We consideralgorithms for a simple one-dimensionalpoint placement
problem: givenN points on a line, and noisy measurements of the distances be-
tween many pairs of them, estimate the relative positions of the points. Problems
of this flavor arise in a variety of contexts. The particular motivating example that
inspired this work comes from molecular biology; the points are markers on a
chromosomeand the goal is to map their positions. The problem is NP-hard under
reasonable assumptions. We present two algorithms for computing least squares
estimates of the ordering and positions of the markers: a branch and bound al-
gorithm and a highly effective heuristic search algorithm. The branch and bound
algorithm is able to solve to optimality problems of 18 markers in about an hour,
visiting about 106 nodes out of a search space of 1016 nodes. The local search
algorithm usually was able to find the global minimum of problems of similar
size in about one second, and should comfortably handle much larger problem
instances.

1 Introduction

The problem of mapping genetic information has been the subject of extensive research
since experimenters started breeding fruit flies for physical characteristics. Due to the
small scale of chromosomes, it has been difficult to obtain accurate information on their
structure. Many techniques relying on statistical inference of indirect data have been
applied to deduce this information; see [1] for some examples.

More recently, researchers have developed many techniques for estimating of rela-
tive positions various genetic features by more direct physical means. We are interested
in one called fluorescent in situ hybridization (FISH). In this technique, pairs of fluores-
cently labeled probes are hybridized (attached) to specific sites on a chromosome. The
2-d projection of the distance between the probes is measured under a microscope. De-
spite the highly folded state of DNA in vivo and the resulting high variance of individual
measurements, [10] shows that the genomic distance can be estimated if the experiment
is repeated in many cells.

Not surprisingly, if more pairs of probes are measured, and the measurement be-
tween each pair is repeated many times, the accuracy of the answer increases. Unfortu-
nately, so does the cost. Hence, the resulting computational problem is the following:
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Problem: GivenN probes on a line, and an incomplete set of noisy pairwise measure-
ments between probes, determine the best estimate of the ordering and position of
the probes.

If the measurements were complete and accurate, the problem would be easy—the
farthest pair obviously are the extreme ends, and the intervening points can be placed by
sorting their distances to the extremes. However, with partial, noisy data, the problem
is known to be NP-hard. (See [6, 5] for a particularly simple proof.)

1.1 Previous Work

Brian Pinkerton previously investigated solving this problem using the seriation algo-
rithm of [3], and a branch and bound algorithm (personal communication, 6/96). The
seriation algorithm, which is a local search algorithm, was only moderately effective.
The branch and bound algorithm, using a simple bounding function, was able to solve
problems involving up to about 16 probes.

There has been extensive work on other algorithms to solve DNA mapping prob-
lems, but they are based on distance estimates from techniques other than FISH, and are
tailored to the particular statistical properties of the distance measurements. Two among
many examples are the distance geometry algorithm of [7], based on recombination fre-
quency data, and [2], which investigated branch and bound, simulated annealing, and
maximum likelihood algorithms based on data from radiation hybrid mapping.

1.2 Outline

We present two algorithms for finding least-squares solutions to the probe placement
problem. One is a branch and bound algorithm that can find provably optimal solutions
to problems of moderate, but practically useful, size. The second is a heuristic search
algorithm, fundamentally a “hill-climbing” or greedy algorithm, that is orders of mag-
nitude faster than the branch and bound algorithm, and although it is incapable of giving
certifiably optimal solutions, it appears to be highly effective on this data.

In the next section we sketch some of the more difficult aspects of the problem. Sec-
tion 3 develops a cost function to evaluate solutions. Section 4 describes the heuristic
search algorithm. Section 5 outlines the branch and bound algorithm. We then present
the results of simulations of the two algorithms in Section 6.

2 Introduction to the Solution Space

Before explaining the development of the algorithms, it is helpful to gain some intuition
about the solution space. Given that the data is both noisy and incomplete, the problem
can be under-constrained and/or over-constrained. In this domain, a “constraint” refers
to a measurement between two probes (since it constrains the placement of the probes).

An under-constrained problem instance is one in which a probe might not have
enough measurements to other probes to uniquely determine its position. In the exam-
ple of four probes in Figure 1, probeB has only one measurement to probeA, and so a
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A B C D A C DB

Fig. 1. An example of an under-constrained ordering (Probe B can be placed on either side of
probeA). A line between two probes indicates a measurement between the probes.

location on either side of probeA is consistent with the data. It is also important to note
that in all solutions, left/right orientation is arbitrary as is the absolute probe position.

In a more extreme example, a set of probes could have no measurements to another
set. In Figure 2, probes A and B have no measurements to probesC and D, and place-
ment anywhere relative to probes C and D is consistent with the data.

A B C D A BC Dor

Fig. 2. Another example of an under-constrained ordering

In the examples of Figures 1 and 2, not only are the positions not uniquely deter-
mined, but different orderings are possible. When developing search algorithms, we
have to be careful to recognize and treat such cases correctly. It appears that in real data
such as from [Trask, personal communication, 1996], there are no degrees of freedom
in the relative positioning of probes due to the careful choice of pairs of probes to mea-
sure. However, under-constrained instances do arise in the branch and bound algorithm
described in Section 5 and in any algorithm that solves the problem by examining in-
stances with a reduced set of constraints.

Due to the noise in the data, parts of a problem instance will be over-constrained. For
example, as shown in Figure 3, if we examine three probes with pairwise measurements
between them and there isn’t an ordering such that the sum of two pairwise measure-
ments equals the third pairwise measurement, there will be no way to place the three
probes on a line. In this case, the distances between the probes in any linear placement
will unavoidably be different from the measured distances.

BA C5 5

12

Fig. 3. There is no way to linearly place these probes on a line and respect all the measurements.
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Given the existence of over and under-constrained problems, it is necessary to de-
velop a method of evaluating how well a solution conforms to the data. This is covered
in Section 3. Once we define how to evaluate a solution, we will develop algorithms to
search for the best solution.

3 How to Evaluate a Probe Placement

We construct a cost function to evaluate the “goodness” of a solution, then solve the
problem by finding the answer that has the least cost. Let N be the number of probes,
xi be the assigned position of probe i, dij be the measured distance between probe i
and probe j (dij = dji), and letwij = wji be a nonnegative weight associated with the
measured distance between probes i and j. We define the cost of this placement to be the
weighted sum of squares of the differences between the measured distance between two
probes and the distance between the probes in the given linear placement of the probes:

Cost(x1; : : : ; xN) =
X
i<j

dij measured

wij(j xi � xj j �dij)
2: (1)

Many subsequent formulae will be simplified by assuming wij = 0 if i = j or if the
distance dij has not been measured. For example, we could have omitted the qualifier
“dij measured” from Equation 1 under this assumption.

Intuitively, the weight wij reflects the relative confidence we have in measurement
dij. For example, if the measurement errors were independent normal random variables,
then we should choose the weight wij to be proportional to 1=�2ij, where �2ij is the
variance of dij. Least squares solutions under these assumptions have several desirable
properties, like being unbiased maximum likelihood estimators. Even though the error
distribution in our motivating problem violated these assumptions, choosing weights
inversely proportional to the variances substantially improved the solution quality (and
speed) of our algorithms; see [9].

3.1 Finding Least Squares Solutions for a Fixed Ordering

One standard approach to solving a least squares problem is to take the partial deriva-
tives of the cost with respect to each of the xi’s, set them equal to 0, and solve. Unfortu-
nately, our cost function is not differentiable due to the absolute value terms. However,
for a given fixed ordering of the probes we can bypass this difficulty, allowing us to find
the placement which minimizes cost for the given ordering. Without loss of generality,
assume

x1 < x2 < � � � < xN : (2)



36 Joshua Redstone and Walter L. Ruzzo

Then for a given probe k:
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2
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X
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Separating the terms and setting equal to 0, we get for @

@xk
:
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X
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(wik) +
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Equation 4 is of the form

Mx = r (5)

where x is the vector of xi’s,M is the matrix defined as:

Mij =

(
�wij i 6= j;P

1�p�N
(wip) i = j;

(6)

and r is the vector whose kth component rk is given by the right hand side of Equation 4.
Thus, in matrix form, Equation 4 can be written as:

0
BBBB@

: : :

�wk1 : : :Mkk : : : �wkN

: : :

: : :

: : :

1
CCCCA

0
BBBB@
: : :

xk
: : :

: : :

: : :

1
CCCCA =

0
BBBBBB@

: : :X
1�i�k�1

(wikdik) �
X

k+1�i�N

(wkidki)

: : :

: : :

: : :

1
CCCCCCA

where Mkk, the summation term in Equation 6, is the sum of the weights of the mea-
surements from probe k to other probes.

A critical point is that there is no guarantee that the ordering of the probes in the
solution of Mx = r will respect the ordering (2) used to construct this linear system.
However, the solution to this linear system provides useful information in either case.

– If the solution does respect the ordering, then it provides the optimal (in the least-
squares sense) positioning of the probes with respect to the given ordering, and is
a local minimum of the cost function.

– If the solution does not respect the ordering, then it gives a lower bound on the cost
of the best placement with that ordering. This is true since solution toMx = r gives
the minimum of

P
i<j

wij(xj�xi�dij)2 over all x, which is certainly no greater
than the minimum over the region fx j x1 < x2 < � � � < xNg. Furthermore, in this
case the given ordering is not the optimal one, since the solution to Mx = r gives
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an ordering having a lower cost. This holds since for each pair i < j for which
xi > xj, we have

(j xi � xj j �dij)
2 = (xi � xj � dij)

2 < (xj � xi � dij)
2:

In other words, at the point x solvingMx = r, each term in the true cost function
is less that or equal to the corresponding term in the restricted cost function built
assuming the ordering x1 < x2 < � � � < xN , and so that ordering cannot be opti-
mal.

These are the key observations on which our algorithms are built. The problem has
been reduced from a continuous optimization problem to a discrete one—that of com-
puting the matrix solution over all probe orderings and choosing the ordering with the
lowest cost. Our branch and bound algorithm searches over all possible probe orderings,
using an extension of the method above to bound the cost of large sets of possible order-
ings, provably finding the one(s) of minimum cost. The branch and bound algorithm is
described more fully in Section 5. Our heuristic search algorithm is even simpler. Start-
ing from many random orderings, it merely iterates the process described above until
it reaches a local minimum. Empirically, this is highly effective at finding the global
minimum quickly. This is described more fully in the next section.

4 Heuristic Search

As outlined in the previous section, solution to the linear system constructed for any
fixed order � of the probes either gives the optimal placement for probes in that order,
which is a local minimum of the cost function, or gives a placement with another order-
ing �0 at which the cost function is lower than it is at any placement respecting �. Our
heuristic search algorithm is simply “iterated linear solve”:

1. choose a random ordering �;
2. set up the linear system corresponding to that ordering;
3. solve it;
4. if the resulting order �0 is equal to �, record that as a potential minimum;
5. if �0 6= �, replace � by �0 and return to step 2.

Finally, we repeat this entire process for many random initial orderings, and report the
lowest cost solution found. In different tests, we either did a fixed number of random
starts, usually 300, or repeated until the known optimal solution was found.

One nice feature of the matrix formulation is thatM is independent of the ordering
of the probes. When solving this system by LU decomposition (as in [8]), this means
that once we perform an initialO(N3) operation onM, we can find a solution inO(N2)
time per ordering, the time required to generate the (order-dependent) vector r and back-
solve.
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5 Branch and Bound

Our branch and bound algorithm constructs a search tree over probe orderings. The
leaves will be complete orderings and the interior nodes will be partially specified order-
ings. There are two basic approaches to structuring the search tree. In the first approach,
shown in Figure 4, the children of a node P in the tree will be the ordering of probes at
nodeP augmented with a new probe in all possible positions among the probes ordered
at P .

CAB ACB ABC CBA BCA BAC

AB BA

A

Fig. 4. At a node, the children are orderings
in which an additional probe is placed in
all possible positions with respect to the or-
dered probes.

ABC ACB BAC BCA CAB CBA

AB AC BA BC CA CB

A B C

Fig. 5. At a node, the children are orderings
in which each of the unordered probes has
been placed to the right of the rightmost or-
dered probe.

For the second approach, in Figure 5, the ordering of a child of an interior node P
will be the ordering of P augmented by a probe placed adjacent to the rightmost ordered
probe in P .

In either approach, as is typical in branch and bound algorithms, littleof the ordering
is specified at higher levels of the search tree, hence the bounds computed there will
be weak and pruning will be rare. Given this, the first approach has the advantage that
the branching factor is much lower near the root of the tree compared to the second
approach, e.g. 3 versusN�3 on the third level. On the other hand, the second approach
has the advantage that more information is known about the partially specified ordering
at an interior node P , namely that all unordered probes lie to the right of the rightmost
specified probe in every node of the subtree rooted at P . We can exploit this to give
a strengthened bound at internal nodes compared to approach one. In our experiments
[11], approach two outperformed approach one by nearly a factor of two both in run
time and in number of tree nodes visited. Throughout the remainder of this paper, we
will only consider approach two.

Our branch and bound algorithm searches through nodes in a tree, pruning a node
if its cost is greater than the lowest cost found in a leaf node so far. At a leaf node in
the tree, we compute the cost of the ordering as described in Section 3.1. At an interior
node, the cost function must be a lower bound on the cost of all nodes in the subtree to
allow us to possibly prune the subtree. In this section, we describe a simple cost function
based on least squares.

Consider an interior node such as that in Figure 6. In this picture of an interior node,
the circles represent probes, and the edges represent the existence of a measurement
between two probes. ProbesA,B,C, andD have been ordered (in that order). ProbesE
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Unordered
Ordered Probes Probes

CBA D

E

F

Fig. 6. An Interior Node

andF are unordered with respect to each other, but both will appear to the right of probe
D. One way of computing a lower bound on the cost for this node is to consider only the
measurements between the ordered probes. In this case, we compute the cost function
by computing the matrix solution (as described in Section 3.1) using a matrix built from
only measurements between the ordered probes. This is done by simply pretending the
other measurements do not exist, i.e., the terms inM of Equation 5 for measurements
that we are not considering are 0, and there is no contribution from them in the r vector.

We note that the cost function described here is ineffective at high levels in the tree
(where nodes will reflect probe orderings with few constraints). In particular, the cost
function described evaluates to zero for the first and second level in the tree (when only
one or two probes are ordered). However, consider the measurements in Figure 6 be-
tween ordered probes C;D, and unordered probe F . Even though the position of F is
undetermined with respect to E, we know that F will be to the right of D. This allows
us to remove the absolute value sign in the sum of squares terms of Equation 1 for the
measurements between F and C;D and include these terms in the cost function com-
putation. Thus, for an interior node, as well as considering all edges between ordered
nodes, we can consider edges between ordered nodes and unordered nodes when con-
structing the cost function for the node. This improvement potentially allows us to com-
pute a non-zero cost function for nodes as high as the second level in the tree (when only
two probes are ordered). With this improvement, the only constraints we are not con-
sidering at a node are those between unordered probes. The bound function described
here is the one we use in the simulations reported in Section 6, Results.

The cost of an interior node P computed in this way will be a lower bound on the
cost of all nodes in the subtree rooted at P , since nodes in the subtree impose additional
constraints on the ordering, never remove constraints, and each additional constraint
adds additional non-negative terms to the cost function.

An additional issue which has a strong effect on the performance of our branch and
boundalgorithm is initializationof the bound. Starting the algorithmwith a conservative
default value for the bound (like +1) results in very poor pruning until a reasonably
good solution is encountered. Instead we first run the local search algorithm from a few
random starting orderings. Empirically, this will quickly locate a good solution, facili-
tating good pruning from the beginning. In our experiments, branch and bound removes
100-1000 times as many nodes as a result [9].

There is one remaining detail to be specified—we need to modify the construction
of theM of Equation 5. As it stands, the linear systemMx = r of Section 3.1 is under-
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constrained (the rank of the null-space of M is non-zero). Because the system is con-
structed from relative orderings between the probes, there is one degree of freedom: the
absolute position of the probes. This is remedied by modifying the system to arbitrarily
place probe 1 at location x1 = 0. There may be additional degrees of freedom in the
solutions. In particular, at high levels in the tree the small set of ordered probes may be
partitioned into several disconnected components whose relative positions are uncon-
strained. These situations are handled similarly; see [9] for details.

Finally, we remark that the cost computed by the techniques outlined above is a
lower bound, but not necessarily an attainable bound, on the cost of any ordering consis-
tent with that specified at a search tree node. In particular, in the case where the solution
to the linear system Mx = r exhibits a different ordering than the one from which the
system was constructed, we know that the bound is not attainable by the desired order-
ing. It is still valid to use this bound to prune the search tree, since we know the bound
is attainable by some (other) ordering. However, pruning could be improved if a higher
lower bound could be computed in these cases. One possible approach to doingso would
be to use quadratic programming—minimization of the quadratic objective function in
Equation 1 subject to the linear constraints in Equation 2 is a convex quadratic opti-
mization problem, for which polynomial time algorithms are known; see, for example,
[4]. However, it is not clear whether the increased pruning efficiency would offset the
extra computational cost of using the more elaborate quadratic programming algorithm.
Preliminary experiments have been inconclusive [11]

We now present the results of experiments performed on the heuristic search and
branch and bound algorithms.

6 Results

We ran multiple simulations to assess the performance of the two algorithms and also to
gauge the sensitivity of the algorithms to different parameters. We summarize the main
results here; see [9, 11] for further details.

The experiments described below were all run on synthetic data generated in accord
with the motivating problem presented in Section 1. Probes were placed uniformly at
random, except that adjacent probes were separated by minimum distance of approxi-
mately 3% of the average spacing. Approximately 50% of the probe pairs were “mea-
sured,” were measurement consisted of drawing a random sample from a certain distri-
bution whose mean was the actual distance between the probes. Data sets having more
than one connected component or certain other anomalies were filtered out. The results
do not seem to be overly sensitive to any of these parameters.

As a measure of the quality of the solution found by the algorithms, we used RMS
error—the square root of the mean squared difference between the true and calculated
positionsof the probes. While this quantityvaried from run to run, the median value was
10%–15% of the average interprobe distance, which is reasonably good considering the
variance of the “measurements.”

We present the total time for the branch and bound algorithm using weighted least-
squares in Figure 7, and the total time for heuristic search in Figure 8. Each point in the
graph is a problem instance.
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Fig. 7. Time for Branch and Bound (Seconds).
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We can see that the running time of the branch and bound algorithm is exponential,
as is expected, with time increasing roughly as 2:8N . Note that at the far right of the
graph, the most time taken to solve a problem of 18 probes was about 70 minutes. Since
the number of nodes in a search tree of a problem that size is around 1016, we can see
that the pruning heuristic is quite effective; in fact it visited on the order of 106 nodes.

The performance of heuristic search is in some ways more difficult to assess. For a
problem size of 18, the 300 random starts of heuristic search took about 1 second. The
surprisingly stable growth rate also appears to be exponential, but grows much more
slowly, roughly as 1:2N . At this rate, problems of size 30 would be solvable in a few
minutes and problems of size 50 in under an hour. However, note that 300 random starts
is a very arbitrary choice. In most trials (> 90%), the method finds the globally optimal
solutionwithin10 random starts. In a few “hard core” cases, however, it can take several
thousand starts to find the global. Unfortunately, of course, using heuristic search alone,
one cannot tell when the globally optimal solution has been reached. (We compared to
the provably optimal results from branch and bound.) Nevertheless, the method seems
to be a powerful one and worth further study.

Timing experiments where performed on a 100 MHz DEC AlphaStation 200 4/100
with 96MB of memory. The C code was not optimized beyond the optimizations de-
scribed here (and in [9, 11]). In particular, the LU decomposition routine was copied
without modification from [8]. Since the process size for these algorithms was around 3
MB, and since the simulation code is CPU intensive, the time due to non-CPU activities
(such as paging) does not significantly affect the results shown.

7 Conclusions

We have presented two search algorithms, a branch and bound algorithm and a heuristic
local search algorithm, both of which attempt to minimize a weighted least-squares cost
function to solve a one dimensional point placement problem.

Due to the exponential nature of the branch and bound algorithm, it is unlikely that it
will scale to larger problem sizes. However, it does provide good performance on prob-
lems of 18-20 probes, large enough to be of practical use. Since it finds the global min-
imum, it is also useful as a benchmark against which to compare other algorithms.

The local search algorithm performed surprisingly well, finding optimal solutions
in seconds and appears capable of handling much larger problem instances.
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