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Abstract

Motivation: Clustering is a useful exploratory technique for
the analysis of gene expression data. Many different heuris-
tic clustering algorithms have been proposed in this context.
Clustering algorithms based on probability models offer a
principled alternative to heuristic algorithms. In particular,
model-based clustering assumes that the data is generated by
a finite mixture of underlying probability distributions such
as multivariate normal distributions. The issues of selecting
a “good” clustering method and determining the “correct”
number of clusters are reduced to model selection problems
in the probability framework. Gaussian mixture models have
been shown to be a powerful tool for clustering in many ap-
plications.
Results: We benchmarked the performance of model-based
clustering on several synthetic and real gene expression data
sets for which external evaluation criteria were available. The
model-based approach has superior performance on our syn-
thetic data sets, consistently selecting the correct model and
the number of clusters. On real expression data, the model-
based approach produced clusters of quality comparable to a
leading heuristic clustering algorithm, but with the key advan-
tage of suggesting the number of clusters and an appropriate
model. We also explored the validity of the Gaussian mixture
assumption on different transformations of real data.
Availability: MCLUST is available at
http://www.stat.washington.edu/fraley/mclust. The soft-
ware for the diagonal model is under development.
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1 Introduction and Motivation

DNA microarrays offer the promise of studying the variation
of many genes simultaneously. Researchers have generated
large amounts of gene expression data, but there is a great need
to develop analytical methodology to analyze and to exploit
this information (Lander, 1999). Because of the large number
of genes and the complexity of biological networks, cluster-
ing is a useful exploratory technique for the analysis of gene
expression data.

A wide range of clustering algorithms have been proposed
to analyze gene expression data, including hierarchical clus-
tering (Eisen et al., 1998), self-organizing maps (Tamayo
et al., 1999), k-means (Tavazoie et al., 1999), graph-theoretic
approaches (for example, (Ben-Dor and Yakhini, 1999) and
(Hartuv et al., 1999)), and support vector machines (Brown
et al., 2000). Success in applications has been reported for
many clustering approaches, but so far no single method has
emerged as the method of choice in the gene expression anal-
ysis community. Most of the proposed clustering algorithms
are largely heuristically motivated, and the issues of determin-
ing the “correct” number of clusters and choosing a “good”
clustering algorithm are not yet rigorously solved. (Eisen
et al., 1998) and (Tamayo et al., 1999) used visual display to
determine the number of clusters. (Yeung et al., 2001b) sug-
gested clustering the data set leaving out one experiment at a
time and then comparing the performance of different cluster-
ing algorithms using the left-out experiment. The gap statistic
(Tibshirani et al., 2000) estimates the number of clusters by
comparing within-cluster dispersion to that of a reference null
distribution. However, in the absence of a well-grounded sta-
tistical model, it seems difficult to define what is meant by a
“good” clustering algorithm or the “right” number of clusters.

Clustering algorithms based on probability models offer a
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principled alternative to heuristic-based algorithms. In partic-
ular, the model-based approach assumes that the data is gener-
ated by a finite mixture of underlying probabilitydistributions
such as multivariate normal distributions. The Gaussian mix-
ture model has been shown to be a powerful tool for many ap-
plications (for example, (Banfield and Raftery, 1993), (Celeux
and Govaert, 1993), (McLachlan and Basford, 1988)). With
the underlying probability model, the problems of determin-
ing the number of clusters and of choosing an appropriate
clustering method become statistical model choice problems
((Dasgupta and Raftery, 1998), (Fraley and Raftery, 1998)).
This provides a great advantage over heuristic clustering algo-
rithms, for which there is no established method to determine
the number of clusters or the best clustering method. Details
of the model-based approach and the model selection method-
ologies are discussed in Section 2.

Since the model-based approach is based on the assumption
that the data are distributed according to a mixture of Gaus-
sian distributions, we explored the extent to which different
transformations of gene expression data sets satisfy the nor-
mality assumption. Due to space limitations, data transforma-
tions and normality tests are summarized in Section 5.2, and
described in (Yeung et al., 2001a) and our supplementary web
site.

In Section 5, we show that the existing model-based cluster-
ing implementations produce higher quality clustering results
than a leading heuristic approach when the data is appropri-
ately transformed. The existing model-based clustering meth-
ods were designed for applications other than gene expression,
and yet they perform well in this context. We therefore feel
that, with further refinements specifically for the gene expres-
sion problem, the model-based approach has the potential to
become the approach of choice for clustering gene expression
data.

Our contributions include demonstrations of the potential
usefulness of the model-based approach by testing the Gaus-
sian mixture assumption for different transformations of ex-
pression data, applying existing model-based clustering im-
plementations to both real expression data and synthetic data
sets, and comparing the performance of different models of
model-based approach to a leading heuristic-based algorithm.

2 Model-based clustering approach

2.1 The model-based framework

The mixture model assumes that each component (group) of
the data is generated by an underlyingprobabilitydistribution.
Suppose the data y consist of independent multivariate obser-
vations y1;y2; : : : ;yn. Let G be the number of components
in the data. The likelihood for the mixture model is

LMIX(�1; : : : ; �Gjy) =
nY
i=1

GX
k=1

�kfk(yij�k); (1)

where fk and �k are the density and parameters of the kth
component in the mixture, and �k is the probability that an
observation belongs to the kth component (�k � 0 andPG

k=1 �k = 1).
In the Gaussian mixture model, each component k is mod-

eled by the multivariate normal distribution with parameters
�k (mean vector) and �k (covariance matrix):

fk(yij�k;�k) =
expf�1

2
(yi � �k)T�

�1

k
(yi � �k)gp

det(2��k)
: (2)

Geometric features (shape, volume, orientation) of each
component k are determined by the covariance matrix �k.
(Banfield and Raftery, 1993) proposed a general framework
for exploiting the representation of the covariance matrix in
terms of its eigenvalue decomposition

�k = �kDkAkD
T
k ; (3)

whereDk is the orthogonal matrix of eigenvectors,Ak is a di-
agonal matrix whose elements are proportional to the eigen-
values of�k, and �k is a scalar. The matrixDk determines the
orientation of the component,Ak determines its shape, and �k
determines its volume.

Allowing some but not all of the parameters in Equation (3)
to vary results in a set of models within this general frame-
work that is sufficiently flexible to accommodate data with
widely varying characteristics. In this paper, we consider
five such models, outlined below. Constraining DkAkD

T
k to

be the identity matrix I corresponds to Gaussian mixtures in
which each component is spherically symmetric. The equal
volume spherical model (denoted EI), which is parameterized
by �k = �I, represents the most constrained model under
this framework, with the smallest number of parameters. The
unequal volume spherical model (VI), �k = �kI, allows
the spherical components to have different volumes, deter-
mined by a different �k for each component k. The uncon-
strained model (VVV) allows all of Dk, Ak and �k to vary
between components. The unconstrained model has the ad-
vantage that it is the most general model, but has the disad-
vantage that the maximum number of parameters need to be
estimated, requiring relatively more data points in each com-
ponent. There are a range of elliptical models with other con-
straints and fewer parameters. For example, with the param-
eterization �k = �DADT , each component is elliptical, but
all have equal volume, shape and orientation (denoted EEE).
All of these models are implemented in MCLUST (Fraley and
Raftery, 1998). (Celeux and Govaert, 1995) also considered
the model in which �k = �kBk, where Bk is a diagonal ma-
trix with jBkj = 1. Geometrically, the diagonal model cor-
responds to axis-aligned elliptical components. In the ex-
periments reported in this paper, we considered the equal vol-
ume spherical (EI), unequal volume spherical (VI), EEE and
unconstrained (VVV) models as implemented in MCLUST

(Fraley and Raftery, 1999), and the diagonal model as imple-
mented by (Murua et al., 2001).
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In both the MCLUST implementation and the diagonal
model implementation, the desired number of clusters G is
specified, and then the model parameters (�k; �k and �k ap-
propriately constrained, for 1 � k � G) are estimated by
the EM algorithm. In the EM algorithm, the expectation (E)
steps and maximization (M) steps alternate. In the E-step, the
probabilityof each observation belonging to each cluster is es-
timated conditionally on the current parameter estimates. In
the M-step, the model parameters are estimated given the cur-
rent group membership probabilities. When the EM algorithm
converges, each observation is assigned to the group with the
maximum conditional probability. (The conditional probabil-
ities from EM provide a “soft clustering,” since a data point
may have nonzero probability of belonging to several clusters
at once, but we do not pursue any analysis that uses this infor-
mation here.) In the clustering context, the EM algorithm for
mixture models is usually initialized with a model-based hier-
archical clustering step (Dasgupta and Raftery, 1998), (Fraley
and Raftery, 1998).

The classical iterative k-means clustering algorithm, first
proposed as a heuristic clustering algorithm, has been shown
to be very closely related to model-based clustering using the
equal volume spherical model (EI), as computed by the EM al-
gorithm (Celeux and Govaert, 1992). K-means has been suc-
cessfully used for a wide variety of clustering tasks, includ-
ing clustering of gene expression data. This is not surprising,
given k-means’ interpretationas a parsimonious model of sim-
ple independent Gaussians, which is adequate to describe data
arising in many contexts. However, there are circumstances
in which the model underlying k-means may not be appropri-
ate. For example, the unequal volume spherical model (VI)
would make more sense if some groups of genes are much
more tightly co-regulated than others. Similarly, the diagonal
model also assumes that experiments are uncorrelated, but al-
lows for unequal variances in different experiments, as might
be the case in a stress-response experiment or a tumor/normal
comparison. We have also observed considerable correlation
between samples in time-series experiments, coupled with un-
equal variances. One of the more general elliptical models
may better fit the data in these cases. One of the key advan-
tages of the model-based approach is the availability of a va-
riety of models that distinguish between these scenarios (and
others). However, there is a tradeoff in that the more general
models require more parameters to be estimated. In the worst
case — that of allowing the orientation to vary between clus-
ters — there are O(p2) parameters to be estimated per cluster,
where p is the number of experiments in the data. Another key
advantage of model-based clustering is that there is a princi-
pled, data-driven way to approach the latter problem. This is
the topic of the next subsection.

2.2 Model selection

Each combination of a different specification of the covari-
ance matrices and a different number of clusters corresponds
to a separate probability model. Hence, the probabilistic
framework of model-based clustering allows the issues of
choosing the best clustering algorithm and the correct number
of clusters to be reduced simultaneously to a model selection
problem. This is important because there is a tradeoff between
probability model (and the corresponding clustering method),
and number of clusters. For example, if one uses a complex
model, a small number of clusters may suffice, whereas if one
uses a simple model, one may need a larger number of clusters
to fit the data adequately.

Let D be the observed data, and M1 and M2 be
two different models with parameters �1 and �2 re-
spectively. The integrated likelihood is defined as
p(DjMk) =

R
p(Dj�k;Mk)p(�kjMk)d�k where k = 1; 2

and p(�kjMk) is the prior distribution of �k. The inte-
grated likelihood represents the probability that data D
is observed given that the underlying model is Mk. The
Bayes factor (Kass and Raftery, 1995) is defined as the
ratio of the integrated likelihoods of the two models, i.e.,
B12 = p(DjM1)=p(DjM2). In other words, the Bayes factor
B12 represents the posterior odds that the data were dis-
tributed according to model M1 against model M2 assuming
that neither model is favored a priori. If B12 > 1, model M1

is favored over M2. The method can be generalized to more
than two models. The main difficulty in using the Bayes
factor is the evaluation of the integrated likelihood. We used
an approximation called the Bayesian Information Criterion
(BIC) (Schwarz, 1978):

2 logp(DjMk) � 2 logp(Dj b�k;Mk)� �k log(n) = BICk
(4)

where �k is the number of parameters to be estimated in model
Mk, and b�k is the maximum likelihood estimate for parameter
�k. Intuitively, the first term in Equation 4, which is the maxi-
mized mixture likelihood for the model, rewards a model that
fits the data well, and the second term discourages overfitting
by penalizing models with more free parameters. (The formal
derivation of the BIC approximation does not rely on this in-
tuition.) A large BIC score indicates strong evidence for the
corresponding model. Hence, the BIC score can be used to
compare models with different covariance matrix parameteri-
zations and different numbers of clusters. Usually, BIC score
differences greater than 10 are considered as strong evidence
favoring one model over another (Kass and Raftery, 1995).

2.3 Prior Work

We are aware of only two published papers attempting model-
based formulations of gene expression clustering. (Holmes
and Bruno, 2000) formulate a model that appears to be equiv-
alent to the unconstrained model defined above. (Barash and
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Friedman, 2001) define a model similar to the diagonal model
above. The main focus of both papers is incorporation of ad-
ditional knowledge, specifically transcription factor binding
motifs in upstream regions, into the clustering model, and so
do not consider model-based clustering of expression profiles
per se in the depth or generality that we do. Our results are
complementary to those efforts.

3 Data sets

We used two gene expression data sets for which external
evaluation criteria were available, and three sets of synthetic
data to compare the performance of different clustering algo-
rithms. We used the term class or component to refer to a
group in the external criterion. The word cluster refers to clus-
ters obtained by a clustering algorithm.

3.1 Gene expression data sets

Ovary data: We used a subset of the ovary data obtained
by (Schummer et al., 1999), (Schummer, 2000). The ovary
data set was generated by hybridization to a randomly selected
cDNA (clone) library arrayed on nylon membranes. The sub-
set of the ovary data we used contains 235 clones and 24 tissue
samples (experiments), some of which are derived from nor-
mal tissues, and some from ovarian cancers in various stages
of malignancy. The 235 clones were sequenced, and discov-
ered to correspond to 4 different genes. These 4 genes were
represented 58, 88, 57, and 32 times on the membrane ar-
rays, respectively. Ideally, clustering algorithms should sep-
arate the clones corresponding to these four different genes.
Hence, the four genes form the four classes in this data.
Yeast cell cycle data: The yeast cell cycle data (Cho et al.,
1998) showed the fluctuation of expression levels of approxi-
mately 6000 genes over two cell cycles (17 time points). We
used two different subsets of this data with independent ex-
ternal criteria. The first subset (the 5-phase criterion) con-
sists of 384 genes whose expression levels peak at different
time points corresponding to the five phases of cell cycle (Cho
et al., 1998). We expect clustering results to approximate this
five class partition. Hence, we used the 384 genes with the 5-
phase criterion as one of our data sets. The second subset (the
MIPS criterion) consists of 237 genes corresponding to four
categories in the MIPS database (Mewes et al., 1999). The
four categories (DNA synthesis and replication, organization
of centrosome, nitrogen and sulphur metabolism, and riboso-
mal proteins) were shown to be reflected in clusters from the
yeast cell cycle data (Tavazoie et al., 1999).

3.2 Synthetic data sets

Since real expression data sets are expected to be noisy and
their clusters may not fully reflect the class information, we
complemented our study with synthetic data, for which the

classes are known. Modeling gene expression data sets is
an ongoing effort by many researchers, and there is no well-
established model yet. We used the three synthetic data sets
proposed in (Yeung and Ruzzo, 2001). Each of the three syn-
thetic data sets has different properties. By using all three
sets of synthetic data, we hope to evaluate the performance
of the model-based approach in different scenarios. The first
two synthetic data sets replicate different aspects the original
ovary data set. The last synthetic data set models expression
data with cyclic behavior.

Mixture of normal distributions based on the ovary data:
Each class in this synthetic data was generated according to
a multivariate normal distribution with the sample covariance
matrix and the mean vector of the corresponding class in the
standardized ovary data (each gene in a standardized data set
has mean 0 and standard deviation 1, see Section 5.2 for more
details). A total of 2350 observations were generated for each
data replicate. The size of each class in the synthetic data is ten
times that of the corresponding class in the ovary data. This
synthetic data set preserves the mean vector and the covari-
ance matrix between the experiments in each class, but it as-
sumes that the underlying distribution of expression levels in
each class is multivariate normal.

Randomly resampled ovary data: In contrast to the pre-
vious synthetic data set, this one preserves the marginal em-
pirical distributions of the real ovary data, but not its covari-
ance structure. Specifically, the value for an observation in
class c (where c = 1; : : : ; 4) under experiment j (where
j = 1; : : : ; 24) was generated by randomly sampling (with re-
placement) the expression levels under the same experiment
j in the same class c from the standardized ovary data. The
size of each class in this synthetic data set is the same as in the
real ovary data. Due to the independent random sampling of
the expression levels from each experiment, any possible cor-
relation between experiments (for example, the normal tissue
samples may be correlated) is lost. Hence, the resulting sam-
ple covariance matrix of each class from this synthetic data set
is close to diagonal.

Cyclic data: This synthetic data set models sinusoidal
cyclic behavior of genes over time. Classes are modeled as
genes that have similar peak times (phase shifts) over the time
course. Let xij be the simulated expression level of gene i
under experiment j, where i = 1 : : :235 and j = 1 : : :24.
Let xij = �j + �j � (�i + �i�(i; j)), where �(i; j) =
sin(2�j

8
� wk + �) (Zhao, 2000). �i represents the average

expression level of gene i, which is chosen according to the
standard normal distribution. �i is the amplitude control for
gene i, which is chosen according to a normal distributionwith
mean 3 and standard deviation 0.5. �(i; j) models the cyclic
behavior. Each cycle is assumed to span 8 time points (exper-
iments). There are a total of 10 classes, and k is the class num-
ber. The sizes of the different classes are generated according
to Zipf’s Law (Zipf, 1949). Different classes are represented
by different phase shiftswk, which are chosen according to the
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uniform distribution in the interval [0; 2�]. The random vari-
able �, which represents the noise of gene synchronization, is
generated according to the standard normal distribution. The
parameter �j is the amplitude control of condition j, and is
simulated according to the normal distribution with mean 3
and standard deviation 0.5. The quantity �j , which represents
an additive experimental error, is generated from the standard
normal distribution. Each observation (row) is standardized to
have mean 0 and variance 1.

4 Independent Assessment of Clusters

The major contribution of this paper is the demonstration of
the potential usefulness of the model-based approach, both
in terms of the quality of the clustering results and the qual-
ity of models selected using the BIC criterion. We compare
the performance of the model-based approach to CAST (Ben-
Dor and Yakhini, 1999), a leading heuristic-based clustering
algorithm. (Yeung et al., 2001b) compared the performance
of many heuristic-based clustering approaches, including sev-
eral hierarchical clustering algorithms, k-means, and CAST,
and concluded that CAST and k-means tend to produce rela-
tively high quality clusters. Since k-means is closely related to
the EM algorithm for the equal volume spherical model (EI),
we compared the quality of clusters obtained from the model-
based approach to that of CAST using correlation as the sim-
ilarity metric. A summary of CAST can be found in (Yeung
et al., 2001a). In order to assess the clustering results and the
number of clusters inferred by the BIC scores independently,
we used synthetic data sets in which the classes are known
as well as real gene expression sets with external criteria de-
scribed in Section 3.
Measure of agreement: A clustering result can be consid-
ered as a partition of objects into groups. Thus, comparing a
clustering result to the external criterion is equivalent to as-
sessing the agreement of two partitions. The adjusted Rand
index (Hubert and Arabie, 1985) assesses the degree of agree-
ment between two partitions. Based on an extensive empiri-
cal study, (Milligan and Cooper, 1986) recommended the ad-
justed Rand index as the measure of agreement even when
comparing partitions with different numbers of clusters. In
this paper, we used the adjusted Rand index to assess the clus-
tering results by comparing to the corresponding external cri-
terion.

The Rand index (Rand, 1971) is defined as the fraction of
agreement, i.e., the number of pairs of objects that are either
in the same groups in both partitions or in different groups in
both partitions, divided by the total number of pairs of objects.
The Rand index lies between 0 and 1. When the two parti-
tions agree perfectly, the Rand index is 1. The adjusted Rand
index (Hubert and Arabie, 1985) adjusts the score so that its
expected value in the case of random partitions is 0. A high
adjusted Rand index indicates a high level of agreement be-
tween the two partitions. Please refer to (Yeung et al., 2001a)

for a detailed description of the adjusted Rand index.

5 Results and Discussion

In this section, we show how model-based clustering per-
formed when applied to both synthetic and real gene expres-
sion data. Due to space limitations, only selected results are
shown. Please refer to our supplementary web site or (Yeung
et al., 2001a) for more results. In the model-based approach,
parameter estimation becomes difficult when there are too few
data points in each cluster. As a result, the BIC scores of some
of the models are not available when the number of clusters
is large. For example, with the unconstrained model (VVV),
there are p+p(p+1)=2 parameters to be estimated per cluster,
where p is the dimension of the data. With the ovary data, we
have p = 24, so that the number of parameters to be estimated
for the unconstrained model (VVV) is 324, which is greater
than the number of observations (235) in the data set. Even
for the mixture of normal distributionsbased on the ovary data
with 2350 observations, when the number of clusters is greater
than 7, the number of parameters to be estimated for the un-
constrained model (VVV) would exceed the number of data
points (2350). Since CAST is an iterative algorithm with a
parameter that indirectly controls the number of clusters pro-
duced, the algorithm may not produce a result for every num-
ber of clusters. So, in the following result graphs, not all data
points are available for CAST.

5.1 Synthetic data sets

In this subsection, we present results from our synthetic data
sets. In each case, the results presented are the average values
over 10 replicates.
Mixture of normal distributions based on the ovary data:

Figure 1 (top) shows the average adjusted Rand indices of
CAST and four different models using the model-based ap-
proach over a range of different numbers of clusters. The av-
erage adjusted Rand indices reach the maximum at 4 clusters,
with the unconstrained model (VVV), the diagonal model and
CAST having comparable average adjusted Rand indices. The
spherical models (EI and VI) achieve lower quality clustering
results than the elliptical models. Inspection of the covariance
matrices of the four classes shows that the covariance matri-
ces are elliptical, and the unconstrained model (VVV) fits the
data the best.

Figure 1 (bottom) shows the average BIC scores of four dif-
ferent models using the model-based approach over a range
of different numbers of clusters. The maximum average BIC
score is achieved by the unconstrained model (VVV) at 4 clus-
ters, which is the number of classes in this data set. More-
over, the diagonal model produces higher BIC scores than the
spherical models, which is in line with the results from the
adjusted Rand index. Therefore, the BIC analysis selects the
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Figure 1: Average adjusted Rand indices (top) and average
BIC scores (bottom) for the mixture of normal synthetic data.

right model and the correct number of clusters on this syn-
thetic data set.

Randomly resampled ovary data:
Figure 2 (top) shows the average adjusted Rand indices

for the randomly resampled ovary data. The diagonal model
achieves clearly superior clustering results compared to other
models and CAST. Figure 2 (bottom)shows that the BIC anal-
ysis selects the diagonal model at the correct number of clus-
ters (4). Due to the independent sampling of expression lev-
els between experiments, the covariance matrix of each class
in this synthetic data set is very close to diagonal. Our results
show that the BIC analysis not only selects the right model,
but also determines the correct number of clusters.
Cyclic data:

Figure 3 (top) shows that the average adjusted Rand indices
of CAST and several of the models from the model-based ap-
proach are comparable. This synthetic data set contains ten
classes. The adjusted Rand indices from CAST are higher
than any of the model-based approaches at 10 clusters. In
practice, however, one would not know the correct number of
clusters, so its performance at the number of clusters that one
would select is the most relevant. Furthermore, all of the al-
gorithms show average adjusted Rand indices peaking around
6 or 7 clusters. This set of synthetic data consists of classes
with varying sizes, with some very small classes, which can be
problematic for most clustering methods including the model-
based approach (small clusters make estimation of parameters
difficult). In Figure 3 (bottom), the BIC scores of the models
also peak around 6 to 7 clusters, with the EEE model showing
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Figure 2: Average adjusted Rand indices (top) and average
BIC scores (bottom) for the randomly resampled ovary data.

higher BIC scores (there are too few data points to compute
BIC scores for the unconstrained model). Our results show
that the BIC scores select the number of clusters that maxi-
mizes the adjusted Rand indices, and the qualityof clusters are
comparable to CAST at 6 or 7 clusters.

5.2 Data transformations and the Gaussian
mixture assumption

The model-based clustering methods we have tried all assume
that the data come from a Gaussian mixture. In practice, the
methods are reasonably robust to deviations from this model
(see the results above, for example) but work best when the
data are, or can be transformed to be, nearly Gaussian. Con-
sequently, we tested the validity of the Gaussian mixture as-
sumption for both the ovary data (radiolabeled cDNAs on ny-
lon membranes) and the yeast data (Affymetrix oligo arrays).
We considered both the raw expression values and the data
values after applying each of three commonly used transfor-
mations: logarithm, square root, and standardization (wherein
the raw expression levels for each gene are transformed by
subtracting their mean and dividing by their standard devia-
tion).

We used a variety of tests suggested by (Aitchison, 1986)
to assess multivariate normality in each class. As the sim-
plest example, we tested whether the marginal distributions
for any of the experiments deviated from (univariate) normal-
ity. More elaborate tests looked at the angular distribution of
points in each pair of experiments and the radial distribution
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Figure 3: Average adjusted Rand indices (top) and average
BIC scores (bottom) for the cyclic data.

of points from all experiments. We also applied the skew-
ness and kurtosis tests (Jobson, 1991) in which the symme-
try and flatness of the distribution are compared to the normal
distribution. From our results, the square root transformed
ovary data showed relatively less deviation from the Gaussian
mixture assumption. For example, although one of the four
classes failed to satisfy the skewness and kurtosis tests (un-
der all of the transformations, in fact), and a few of the exper-
iments failed the marginal tests for each class, the square root
transformed data satisfied all the remaining tests at the 1% sig-
nificance level. For the yeast cell cycle data with both crite-
ria, the log transform satisfied the Gaussian mixture assump-
tion relatively well. For all three data sets, the raw values fit
the Gaussian model poorly, hence suitable data transformation
is an important step in analysis of such data. In the interest
of space, detailed results are omitted; please refer to (Yeung
et al., 2001a) or our supplementary web site.

5.3 Gene expression data sets

Ovary data:
Figure 4 (top) shows that the spherical models (EI and

VI) and the EEE model produce higher quality clusters than
CAST and the diagonal and unconstrained models at 4 clus-
ters (which is the correct number of classes) on the square
root transformed ovary data. However, the rate of decline of
the adjusted Rand index from CAST is less steep than that
from the model-based approach so that the adjusted Rand in-
dex from CAST is higher than that from the model-based ap-
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Figure 4: Adjusted Rand indices (top) and BIC scores (bot-
tom) for the square root transformed ovary data.

proach when the number of clusters is large. In Figure 4 (bot-
tom), the EEE model has its first local maximum BIC score at
4 clusters (the correct number of classes), the diagonal model
has its global maximum BIC score at 4 clusters, and the BIC
curves of the spherical models (EI and VI) show a bend at 4
clusters. However, the spherical models (EI and VI) at 8 clus-
ters achieve the highest BIC scores. Even though real expres-
sion data may not fully reflect the class structure due to noise,
the BIC analysis favors the spherical (EI and VI) and the EEE
models over the diagonal models, which is in line with the
adjusted Rand indices. Furthermore, closer inspection of the
data reveals that the 8 cluster solutionselected by BIC analysis
is still a meaningful clustering — it differs from the external
criterion mainly in that the larger classes have been split into 2
or 3 clusters (which may reflect differences in the constituent
cDNAs, for example).

The results on the log transformed ovary data show that the
elliptical models produce clusters with higher adjusted Rand
indices than CAST. The BIC curves on the log transformed
ovary data also show a bend at 4 clusters (figures not shown).
On the standardized ovary data, the adjusted Rand indices of
clusters produced by EEE and EI are comparable to that from
CAST. The BIC curves start to flatten at around 4 clusters
on the standardized ovary data, but the maximum occurs at
around 7 clusters.

Yeast cell cycle data with the 5-phase criterion:
With the exception of the EEE model, all the other mod-

els show considerably lower adjusted Rand indices than those
from CAST (Figure 5 top) on the log transformed yeast cell
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Figure 5: Adjusted Rand indices (top) and BIC scores (bot-
tom) for the log transformed yeast cell cycle data with the 5-
phase criterion.

cycle data with the 5-phase criterion. Figure 5 (bottom) shows
that the BIC analysis selects the EEE model at 5 clusters,
which is the number of classes in this data. Although the
model-based approach on this data set produces lower ad-
justed Rand indices than CAST, the BIC analysis selects the
correct number of clusters and a model with relatively high
quality clusters.

The standardized yeast cell cycle data set (Figure 6) shows a
very different picture from the log transformed data: the equal
volume spherical model (EI) achieves comparable adjusted
Rand indices to CAST at 5 clusters. A careful study of the na-
ture of the data shows that this is no surprise. The yeast cell
cycle data set consists of time course data, and so all 17 experi-
ments are highly correlated (unlike the ovary data). Visualiza-
tion of the log transformed data shows that the five classes are
not well-separated, and the data points are scattered along a
line. Hence, the model-based approach cannot easily recover
the class structure. The classes in this data set are based on
peak times of the five phases of cell cycle, and so the classes
capture the “general patterns” across the experiments and not
the absolute expression levels of the genes. Standardization
captures this information better than log transformation. In
contrast, CAST uses correlation coefficients as the similar-
ity measure, and correlation captures the “general patterns”
across experiments even when the data set is log-transformed
(without standardization). Visualization of the standardized
data shows that the data points of each of the five classes are
more spread out and are spherical in shape. Hence, the spheri-
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Figure 6: Adjusted Rand indices for the standardized yeast
cell cycle data with the 5-phase criterion.

cal model (EI) captures the class information on the standard-
ized data. The BIC analysis (figure not shown) selects model
EEE at 5 clusters.

In addition, we experimented with another data transfor-
mation that captures the “general patterns” across the exper-
iments. Specifically, we took the logarithm of the ratio of
the expression level of a gene to the total expression level
of the gene over all experiments, i.e., log(xij=

P
17

k=1 xik),
where xij is the expression level of gene i under experiment
j. The results of this transformation are similar to those from
standardization (figure not shown): the model-based approach
achieves comparable adjusted Rand indices to CAST. Hence,
if the goal of clustering is to capture the “general patterns”
across experiments and not the absolute expression levels, the
data set should be appropriately transformed to reflect this ob-
jective before applying model-based clustering.

Yeast cell cycle data with the MIPS criterion:

For the yeast cell cycle data with the MIPS criterion, the re-
sults are very similar to that with the 5-phase criterion: CAST
produces much higher quality clusters than the model-based
approach for log-transformed data (figure not shown). How-
ever, the model-based approach works well on standardized
data—standardization again captures the class structure, and
hence enables the model-based approach to recover the class
structure. As with the yeast cell cycle data with the 5-phase
criterion, the equal volume spherical (EI) model produces
comparable adjusted Rand indices to CAST (Figure 7 top) on
the standardized data. The BIC curve of model EI shows a
bend at 4 clusters, which is the number of classes in this data
(Figure 7 bottom). However, the BIC analysis selects the EEE
model at 4 clusters. Note that although the BIC analysis does
not select the best model, it does select the second-best model
and the correct number of clusters in this data set. Further-
more, careful inspection shows that the clustering result se-
lected by the BIC analysis still captures most of the class in-
formation.
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Figure 7: Adjusted Rand indices (top) and BIC scores (bot-
tom) for the standardized yeast cell cycle data with the MIPS
criterion.

6 Conclusions

Summary: With our synthetic data sets, the model-based ap-
proach not only showed superior performance, but also se-
lected the correct model and the right number of clusters using
the BIC analysis. On the mixture of normal distribution syn-
thetic data sets, the unconstrained model (VVV) produced the
highest quality clusters and the BIC analysis chose the right
model and the number of clusters. On the randomly resam-
pled synthetic data sets with close to diagonal covariance ma-
trices, the diagonal model produced much higher quality clus-
ters, and the BIC analysis again selected the right model and
the correct number of clusters even though the synthetic data
sets showed considerable deviation from the Gaussian mixture
assumption. On the cyclic data sets (which showed significant
deviations from the Gaussian mixture assumption and con-
tained very small classes), we showed that the model-based
approach and CAST (a leading heuristic-based approach) pro-
duced comparable quality clusters, and the BIC analysis se-
lected the number of clusters that maximized the average ad-
justed Rand index.

We also showed the practicality of the model-based ap-
proach on real gene expression data sets. On the ovary data,
the model-based approach achieved slightlybetter results than
CAST, and the BIC analysis gave a reasonable indication of
the number of clusters in the transformed data. On two dif-
ferent subsets of the yeast cell cycle data with different exter-
nal criteria, the equal volume spherical model (EI) and EEE

model produced comparable results to CAST on the standard-
ized data. The BIC scores from the EEE model were maxi-
mized at the correct number of clusters. The results are sum-
marized in Table 1.
Conclusions: We showed that data transformations can
greatly enhance normality in expression data sets, and mod-
els have varying performance on data sets that are transformed
differently. Although real expression data sets do not per-
fectly satisfy the Gaussian mixture assumption even after vari-
ous data transformations, the model-based approach neverthe-
less produces slightly higher quality clusters, and suggests the
numbers of clusters. It is interesting to note that simple mod-
els, like the equal volume spherical model (EI) and the ellip-
tical EEE model, produced relatively high quality clusters on
all of our transformed data sets. The EEE model even deter-
mined the right number of clusters on two different subsets
from the yeast cell cycle data set with different external cri-
teria. On the ovary data set, the BIC scores overestimated the
number of clusters and did not select the model with the high-
est adjusted Rand indices. However, inspection of the clusters
showed that the clustering result selected by the BIC analysis
is nevertheless meaningful.

In our study, we showed that data sets should be appropri-
ately transformed to reflect the goal of clustering. In particu-
lar, if the goal is to capture the general patterns across experi-
ments without considering the absolute expression levels, data
transformations such as standardization are helpful.
Future work: Our results suggest the potential usefulness of
model-based clustering even with existing implementations,
which are not tailored for gene expression data sets. We be-
lieve that custom refinements to the model-based approach
would be of great value for gene expression analysis. There
are many directions for such refinements. One direction is
to design models that incorporate specific information about
the experiments. For example, for expression data sets with
different tissue types (like the ovary data), the covariances
among tissue samples of the same type are expected to be
higher than those between tissue samples of different types.
Hence, a block matrix parameterization of the covariance ma-
trix would be a reasonable assumption. Another advantage
of customized parameterizations of the covariance matrices is
that the number of parameters to be estimated could be greatly
reduced. Another crucial direction of future research is to in-
corporate missing data and outliers in the model. We believe
that the overestimation of the number of clusters on the ovary
data may be due to noise or outliers. In this paper, we used
subsets of data without any missing values. With the underly-
ing probability framework, we expect the ability to model out-
liers and missing values explicitly to be another potential ad-
vantage of the model-based approach over the heuristic clus-
tering methods.
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data # classes transformation max adj Rand BIC analysis
at # classes model selected notes

ovary 4 log EEE VI at 9 clusters EI,VI,diagonal: bend at 4 clusters
ovary 4 sqrt EEE VI at 8 clusters EEE: local max at 4 clusters
ovary 4 standardized EI EEE at 7 clusters EI,VI, EEE: bend at 4 clusters
5-phase cell cycle 5 log EEE, CAST EEE at 5 clusters
5-phase cell cycle 5 standardized EI EEE at 5 clusters
MIPS cell cycle 4 log CAST EEE at 4 clusters
MIPS cell cycle 4 standardized CAST, EI EEE at 4 clusters

Table 1: Summary of results on real expression data. The method giving the highest adjusted Rand index at the number of classes
is shown in the fourth column. When the adjusted Rand indices from two methods are approximately the same, two methods
are shown.
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