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Abstract

Recently there has been considerable inter-
est in learning with higher order relations
(i.e., three-way or higher) in the unsupervised
and semi-supervised settings. Hypergraphs
and tensors have been proposed as the nat-
ural way of representing these relations and
their corresponding algebra as the natural
tools for operating on them. In this paper
we argue that hypergraphs are not a natural
representation for higher order relations, in-
deed pairwise as well as higher order relations
can be handled using graphs. We show that
various formulations of the semi-supervised
and the unsupervised learning problem on hy-
pergraphs result in the same graph theoretic
problem and can be analyzed using existing
tools.

1. Introduction

Given a data set, it is common practice to represent
the similarity relation between its elements using a
weighted graph. A number of machine learning meth-
ods for unsupervised and semi-supervised learning can
then be formulated in terms of operations on this graph.
In some cases like spectral clustering, the relation be-
tween the structural and the spectral properties of the
graph can be exploited to construct matrix theoretic
methods that are also graph theoretic. The most com-
monly used matrix in these methods is the Laplacian
of the graph (Chung, 1997). In the same manner that
the Laplace-Beltrami operator is used to analyze the
geometry of continuous manifolds, the Laplacian of a
graph is used to study the structure of the graph and
functions defined on it.

A fundamental constraint in this formulation is the
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assumption that it is possible to measure similarity
between pairs of points. Consider a k-lines algorithm
which clusters points in Rd into k clusters where ele-
ments in each cluster are well-approximated by a line.
As every pair of data points trivially define a line,
there is no useful measure of similarity between pairs
of points for this problem. However, it is possible to
define measures of similarity over triplets of points that
indicate how close they are to being collinear. This
analogy can be extended to any model-based clustering
task where the fitting error of a set of points to a model
can be considered a measure of the dissimilarity among
them. We refer to similarity/dissimilarity measured
over triples or more of points as higher order relations.

A number of questions that have been addressed in do-
mains with pairwise relations can now be asked for the
case of higher order relations. How does one perform
clustering in such a domain? How can one formulate
and solve the semi-supervised and unsupervised learn-
ing problems in this setting?

Hypergraphs are a generalization of graphs in which
the edges are arbitrary non-empty subsets of the vertex
set. Instead of having edges between pairs of vertices,
hypergraphs have edges that connect sets of two or
more vertices. While our understanding of hypergraph
spectral methods relative to that of graphs is very
limited, a number of authors have considered extensions
of spectral graph theoretic methods to hypergraphs.

Another possible representation of higher order rela-
tions is a tensor. Tensors are a generalization of ma-
trices to higher dimensional arrays, and they can be
analyzed with multilinear algebra.

Recently a number of authors have considered the
problem of unsupervised and semi-supervised learning
in domains with higher order relations (Agarwal et al.,
2005; Govindu, 2005; Shashua & Hazan, 2005; Shashua
et al., 2006; Zhou et al., 2005). The success of graph
and matrix theoretic representations have prompted
researchers to extend these representations to the case
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of higher order relations.

In this paper we focus on spectral graph and hyper-
graph theoretic methods for learning with higher order
relations. We survey a number of approaches from
machine learning, VLSI CAD and graph theory that
have been proposed for analyzing the structure of hy-
pergraphs. We show that despite significant differences
in how previous authors have approached the problem,
there are two basic graph constructions that underlie
all these studies. Furthermore, we show that these
constructions are essentially the same when viewed
through the lens of the normalized Laplacian.

The paper is organized as follows. Section 2 defines our
notation. Section 3 reviews the properties of the graph
Laplacian from a machine learning perspective. Sec-
tion 4 considers the algebraic generalization of Lapla-
cian to higher order structures and shows why it is not
useful for machine learning tasks. Section 5 presents
a survey of graph constructions and linear operators
related to hypergraphs that various studies have used
for analyzing the structure of hypergraphs and for unsu-
pervised and semi-supervised learning. In Section 6 we
show how all these constructions can be reduced to two
graph constructions and their associated Laplacians.
Finally, in Section 7 we conclude with a summary and
discussion of key results.

2. Notation

Let G(V,E) denote a hypergraph with vertex set V
and edge set E. The edges are arbitrary subsets of V
with weight w(e) associated with edge e. The degree
d(v) of a vertex is d(v) =

∑
e∈E|v∈e w(e). The degree

of an edge e is denoted by δ(e) = |e|. For k-uniform
hypergraphs, the degrees of each edge are the same,
δ(e) = k. In particular, for the case of ordinary graphs
or “2-graphs,” δ(e) = 2. The vertex-edge incidence
matrix H is |V | × |E| where the entry h(v, e) is 1 if
v ∈ e and 0 otherwise. By these definitions, we have:

d(v) =
∑
e∈E

w(e)h(v, e) and δ(e) =
∑
v∈V

h(v, e) (1)

De and Dv are the diagonal matrices consisting of
edge and vertex degrees, respectively. W is the di-
agonal matrix of edge weights, w(·). A number of
different symbols have been used in the literature to
denote the Laplacian of graph. We follow the conven-
tion in (Chung, 1997) and use L for the combinatorial
Laplacian and L for the normalized Laplacian. L is
also known as the unnormalized Laplacian of a graph
and is usually written as

L = Dv − S (2)

where S is the |V | × |V | adjacency matrix with entry
(u, v) equal to the weight of the edge (u, v) if they are
connected, 0 otherwise. An important variant is the
normalized Laplacian,

L = I −D−1/2
v SD−1/2

v (3)

For future reference it is useful to rewrite the above ex-
pressions in terms of the vertex-edge incidence relation

L = 2Dv −HWH> (4)

L = I − 1
2
D−1/2

v HWH>D−1/2
v (5)

3. The Graph Laplacian

The graph Laplacian is the discrete analog of the
Laplace-Beltrami operator on compact Riemannian
manifolds (Belkin & Niyogi, 2003; Rosenberg, 1997;
Chung, 1997). It has been used extensively in machine
learning, initially for the unsupervised case and then re-
cently for semi-supervised learning (Zhu, 2005). In this
section we highlight some of the properties of the Lapla-
cian from a machine learning perspective, and motivate
the search for similar operators on hypergraphs.

Perhaps the earliest use of the graph Laplacian was the
development of spectral clustering algorithms which
considered continuous relaxations of graph partitioning
problems (Alpert et al., 1999; Shi & Malik, 2000; Ng
et al., 2002). The relaxation converted the optimiza-
tion problem into a generalized eigenvalue problems
involving the Laplacian matrix of the graph.

In (Zhou & Schölkopf, 2005), the authors develop a dis-
crete calculus on 2-graphs by treating them as discrete
analogs of compact Riemannian manifolds. As one of
the consequences of this development they argue that,
in analogy to the continuous case, the graph Laplacian
be defined as an operator L : H(V ) → H(V ),

Lf :=
1
2

div(∇f) (6)

Zhou et al. also argue that there exists a family of
regularization operators on the 2-graphs, the Laplacian
being one of them, that can be used for transduction,
i.e., given a partial labeling of the graph vertices y, use
the geometric structure of the graph to induce a labeling
f on the unlabeled vertices. The vertex label y(v)
is +1,−1 for positive and negative valued examples,
respectively, and 0 if no information is available about
the label. They consider the regularized least squares
problem

arg min
f

(
〈f, Lf〉+ µ‖f − y‖2

2

)
(7)
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While the discrete version of the problem where f(v) ∈
{+1,−1} is a hard combinatorial problem, relaxing the
range of f to the real line R results in a simple linear
least squares problem, solved as f = µ(µI + ∆)−1y. A
similar formulation is considered by (Belkin & Niyogi,
2003). In the absence of any labels, the problem re-
duces to that of clustering, and the eigenmodes of the
Laplacian are used to label the vertices (Shi & Malik,
2000; Ng et al., 2002).

More generally, in (Smola & Kondor, 2003), the au-
thors prove that just as the continuous Laplacian is
the unique linear second order self adjoint operator
invariant under the action of rotation operators, the
same is true for the Laplacian and the unnormalized
Laplacian with the group of rotations replaced by group
of permutations.

A number of successful regularizers in the continuous
domain can be written as 〈f, r(L)f〉 where L is the
continuous Laplacian, f is the model and r is non-
decreasing scalar function that operates on the spec-
trum of ∆. Smola and Kondor show that the same can
be shown for a variety of regularization operators on
graphs.

4. Higher Order Laplacians

In light of the previous section, it is interesting to
consider generalizations of the Laplacian to higher or-
der structures. We now present a brief look at the
algebro-geometric view of the Laplacian, and how it
leads to the generalization of the combinatorial Lapla-
cian for hypergraphs. For simplicity of exposition, we
will consider the unweighted case. For a more formal
presentation of the material in this section, we refer
the reader to (Munkres, 1984; Chung, 1993; Chung,
1997; Forman, 2003).

Let us assume that a graph represents points in some
abstract space with the edges representing lines con-
necting these points and the weights on the edge having
an inverse relation to the length of the line. The Lapla-
cian then measures how smoothly a function defined
on these points (vertices) changes with respect to their
relative arrangement. As we saw earlier, the quadratic
form f>Lf does this for the vertex function f . This
view of a graph and its Laplacian can be generalized to
hypergraphs. A hypergraph represents points in some
abstract space where each hyperedge corresponds to a
simplex in that space with the vertices of the hyperedge
as its corners. The weight on the hyperedge is inversely
related to the size of the simplex. Now we are not
restricted to define functions on just vertices, we can
define functions on sets of vertices, corresponding to

lines, triangles, etc. Algebraic topologists refer to these
functions as p-chains, where p is size of the simplices
on which they are defined. Thus vertex functions are
0-chains, edge functions are 1-chains, and so on. In
each case one can ask the question, how does one mea-
sure the variation in these functions with respect to
the geometry of the hypergraph or its corresponding
simplex?

Let us take a second look at the graph Laplacian. As
the graph Laplacian is a positive semidefinite operator,
it can be written as

L = BB> (8)

Here, B is a |V |× |E| matrix such that (u, v)th column
contains +1 and −1 in rows u and v, respectively.
The exact ordering does not matter. B is called the
boundary operator ∂1 that maps on 1-chains (edges)
to 0-chains and B> is the co-boundary operator that
maps 0-chains to 1-chains. Note that B is different
from H; although H is also a vertex-edge incidence
matrix, all of its entries are non-negative. We can
rewrite

f>Lf = f>BB>f = ‖B>f‖2
2. (9)

Thus f>Lf is the squared norm of a vector of size |E|,
whose entries are the change in the vertex function or
the 0-chain along an edge. This is a particular case of
the general definition of the pth Laplacian operator on
p-chains, given by

Lp = ∂p+1∂
>
p+1 + ∂>p ∂p (10)

Symbolically, this is exactly the same as the Laplace
operator on p-forms on a Riemannian manifold (Rosen-
berg, 1997). For the case of hypergraphs or simplicial
complexes, we interpret this as the operator that mea-
sures variations on functions defined on p-sized subsets
of the vertex set (p-chains). It does so by considering
the change in the chain with respect to simplices of
size p+1 and p−1. For the case of the ordinary graph,
we only consider the first term in the above expression
since vertex functions are 0-chains, and there are no
−1 sized simplices. It is however possible to consider
1-chains or functions defined on edges of the graphs and
measure their variation using the edge Laplacian, given
by L1 = B>B. In light of this, the usual Laplacian on
the graph is the L0 or vertex Laplacian. In (Chung,
1993) the Laplacian for the particular case of the k-
uniform hypergraph is presented. A more elaborate
discussion of the construction of various kinds of Lapla-
cians on simplicial complexes and their uses is described
in (Forman, 2003).

Unfortunately, while geometrically and algebraically
these constructions extend the graph Laplacian to hy-
pergraphs, it is not clear how one can use them in
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machine learning. The fundamental object we are in-
terested in is a vertex function or 0-chain, thus the
linear operator we are looking for should operate on
0-chains. Notice, however, that a pth order Laplacian
only considers p-chains, and the structure of the Lapla-
cian depends on the incidence relations between p− 1,
p and p + 1 simplices. To operate on vertex functions,
one needs a vertex Laplacian, which unfortunately only
considers the incidence of 0-chains with 1-chains. Thus
the vertex Laplacian for a k-uniform hypergraph will
not consider any hyperedges, rendering it useless for
the purposes of studying vertex functions. Indeed the
Laplacian on a 3-uniform graph operates on 2-chains,
functions defined on all pairs of vertices (Chung, 1993).

5. Hypergraph Learning Algorithms

A number of existing methods for learning from a
hypergraph representation of data first construct a
graph representation using the structure of the initial
hypergraph. Then, they project the data onto the
eigenvectors of the combinatorial or normalized graph
Laplacian. Other methods define a hypergraph “Lapla-
cian” using analogies from the graph Laplacian. These
methods show that the eigenvectors of their Laplacians
are useful for learning, and that there is a relationship
between their hypergraph Laplacians and the struc-
ture of the hypergraph. In this section, we review
these methods. In the next section, we compare these
methods analytically.

5.1. Clique Expansion

The clique expansion algorithm constructs a graph
Gx(V,Ex ⊆ V 2) from the original hypergraph G(V,E)
by replacing each hyperedge e = (u1, ..., uδ(e)) ∈ E with
an edge for each pair of vertices in the hyperedge (Zien
et al., 1999): Ex = {(u, v) : u, v ∈ e, e ∈ E}.

Note that the vertices in hyperedge e form a clique in
the graph Gx. The edge weight wx(u, v) minimizes the
difference between the weight of the graph edge and
the weight of each hyperedge e that contains both u
and v:

wx(u, v) = argmin
wx(u,v)

∑
e∈E:u,v∈e

(wx(u, v)− w(e))2 (11)

Thus, clique expansion uses the discriminative model
that every edge in the clique of Gx associated with
hyperedge e has weight w(e). The minimizer of this
criterion is simply

wx(u, v) = µ
∑

e∈E:u,v∈e

w(e) = µ
∑

e

h(u, e)h(v, e)w(e).

(12)

Here µ is a fixed scalar. The combinatorial or nor-
malized Laplacian of the constructed graph Gx is then
used to partition the vertices.

5.2. Star Expansion

The star expansion algorithm constructs a graph
G∗(V ∗, E∗) from hypergraph G(V,E) by introduc-
ing a new vertex for every hyperedge e ∈ E, thus
V ∗ = V ∪ E (Zien et al., 1999). It connects the new
graph vertex e to each vertex in the hyperedge to it,
i.e. E∗ = {(u, e) : u ∈ e, e ∈ E}.

Note that each hyperedge in E corresponds to a star in
the graph G∗ and that G∗ is a bi-partite graph. Star
expansion assigns the scaled hyperedge weight to each
corresponding graph edge:

w∗(u, e) = w(e)/δ(e) (13)

The combinatorial or normalized Laplacian of the con-
structed graph Gx is then used to partition the vertices.

5.3. Bolla’s Laplacian

Bolla (Bolla, 1993) defines a Laplacian for an un-
weighted hypergraph in terms of the diagonal vertex
degree matrix Dv, the diagonal edge degree matrix De,
and the incidence matrix H, defined in Section 2.

Lo := Dv −HD−1
e H>. (14)

The eigenvectors of Bolla’s Laplacian Lo define the
“best” Euclidean embedding of the hypergraph. Here,
the cost for embedding φ : V → Rk of the hypergraph
is the total squared distance between pairs of embedded
vertices in the same hyperedge∑

u,v∈V

∑
e∈E:u,v∈e

‖φ(u)− φ(v)‖2 (15)

Bolla shows a relationship between the spectral prop-
erties of Lo and the minimum cut of the hypergraph.

5.4. Rodriguez’s Laplacian

Rodŕıguez (Rodŕıguez, 2003; Rodŕıguez, 2002) con-
structs a weighted graph Gr(V,Er = Ex) from an
unweighted hypergraph G(V,E). Like clique expan-
sion, each hyperedge is replaced by a clique in the
graph Gr. The weight wr(u, v) of an edge is set to the
number of edges containing both u and v:

wr(u, v) = |{e ∈ E : u, v ∈ e}| (16)

Rodŕıguez expresses the graph Laplacian applied to Gr

in terms of the hypergraph structure:

Lr(Gr) = Dr
v −HH> (17)
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where Dr
v is the vertex degree matrix of the graph Gr.

Like Bolla, Rodriguez shows a relationship between
the spectral properties of Lr and the cost of minimum
partitions of the hypergraph.

5.5. Zhou’s Normalized Laplacian

Zhou et al. (Zhou et al., 2005) generalize their earlier
work on regularization on graphs and consider the
following regularization on a vertex function f .

〈f, Lzf〉 =
1
2

∑
e∈E

1
δ(e)

∑
{u,v}⊆e

w(e)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

Note that this regularization term is small if vertices
with high affinities have the same label. They show
that the operator Lz can then be written as

Lz = I −D−1/2
v HWD−1

e H>D−1/2
v (18)

In addition, Zhou et al. define a hypergraph normalized
cut criterion for a k-partition of the vertices Pk =
{V1, ..., Vk}:

NCut(Pk) :=
k∑

i=1

∑
e∈E w(e)|e ∩ Vi||e ∩ V c

i |
δ(e)

∑
v∈Vi

d(v)
. (19)

This criterion is analogous to the normalized cut crite-
rion for graphs. They then show that if minimizing the
normalized cut is relaxed to a real-vealed optimization
problem, the second smallest eigenvector of Lz is the
optimal classification function f . Finally, they also
draw a parallel between their hypergraph normalized
cut criterion and random walks over the hypergraph.

5.6. Gibson’s Dynamical System

In (Gibson et al., 1998) the authors have proposed a
dynamical system to cluster categorical data that can
be represented using a hypergraph. They consider the
following iterative process.

1. sn+1
ij =

∑
e:i∈e

∑
k 6=i∈e wes

n
kj

2. Orthonormalize the vectors sn
j .

They prove that the above iteration is convergent. We
observe that

sn+1
ij =

∑
e

h(i, e)

(∑
k

h(k, e)wes
n
kj − wes

n
ij

)
sn+1

j = (HWH> −Dv)sn
j (20)

Thus, the iterative procedure described above is the
power method for calculating the eigenvectors of the
adjacency matrix S = Dv −HWH>.

5.7. Li’s Adjacency Matrix

Li et al. (Li & Solé, 1996) formally define properties of a
regular, unweighted hypergraph G(V,E) in terms of the
star expansion of the hypergraph. In particular, they
define the |V |×|V | adjacency matrix of the hypergraph,
HH>. They show a relationship between the spectral
properties of the adjacency matrix of the hypergraph
HH> and the structure of the hypergraph.

6. Comparing Hypergraph Learning
Algorithms

In this section, we compare the algorithms for learning
from a hypergraph representation of data described in
Section 5. In Section 6.1, we compute the normalized
Laplacian for the star expansion graph. In Section
6.2, we compute the combinatorial and normalized
Laplacian of the clique expansion graph. In Section 6.3,
we show that these Laplacians are nearly equivalent to
each other. Finally, in Section 6.4, we show that the
various hypergraph Laplacians can be written as the
graph Laplacian of the clique expansion graph.

We begin by stating a simple lemma. The proof is
trivial.

Lemma 1. Let,

B =
[

I −A
−A> I

]
be a block matrix with A rectangular. Consider the
eigenvalue problem[

I −A
−A> I

] [
x
y

]
= λ

[
x
y

]
then the following relation holds

AA>x = (1− λ)2x

6.1. Star Graph Laplacian

Given a hypergraph G(V,E), consider the star graph
G∗(V ∗, E∗), i.e. V ∗ = V ∪ E, E∗ = {(u, e) : u ∈
e, e ∈ E}. Notice that this is a bipartite graph, with
vertices corresponding to E on one side and vertices
corresponding to V on the other, since there are no
edges from V to V or from E to E. Let us also assume
that the vertex set V ∗ has been ordered such that all
elements of V come before elements of E.

Let w∗ : V × E → R+ be the (as yet unspecified)
graph edge weight function. In addition, let S∗ be the
(|V |+ |E|)× (|V |+ |E|) affinity matrix. We can write
the affinity matrix in terms of the hypergraph structure
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and the weight function w∗ as

S∗ =
[

0|V | HW ∗

W ∗H> 0|E|

]
(21)

The degrees of vertices in G∗ are then

d∗(u) =
∑
e∈E

h(u, e)w∗(u, e) u ∈ V (22)

d∗(e) =
∑
u∈V

h(u, e)w∗(u, e) e ∈ E (23)

The normalized Laplacian of this graph can now be
written in the form

L∗ =
[

I −A
−A> I

]
. (24)

Here, A is the |V | × |E| matrix

A = D∗−1/2
v HWD∗−1/2

v

with entry (u, e)

Aue =
h(u, e)w∗(u, e)√

d∗(u)
√

d∗(e)
. (25)

Any |V |+ |E| eigenvector x> = [x>v , x>e ] of L∗ satisfies
L∗x = λx. Then by Lemma 1, we know that

AA>xv = (λ− 1)2xv. (26)

Thus, the |V | elements of the eigenvectors of the normal-
ized Laplacian L∗ corresponding to vertices V ⊆ V ∗ are
the eigenvectors of the |V |× |V | matrix AA>. Element
(u, v) of AA> is

[AA>]uv =
∑
e∈E

h(u, e)h(v, e)w∗(u, e)w∗(v, e)√
d∗(u)d∗(e)

√
d∗(v)

. (27)

For the standard star expansion weighting function,
w∗(u, e) = w(e)/δ(e), so the vertex degrees are

d∗(u) =
∑
e∈E

h(u, e)w(e)/δ(e) u ∈ V (28)

d∗(e) =
∑
u∈e

w(e)/δ(e) = w(e) e ∈ E (29)

Thus, we can write

[AA>]∗uv = =
∑
e∈E

h(u, e)h(v, e)w(e)/δ(e)2√
d∗(u)

√
d∗(v)

(30)

6.2. Clique Graph Laplacian

Given a hypergraph G(V,E), consider the graph
Gc(V,Ec = Ex) with the same structure as the clique
expansion graph, i.e. Ec = {(u, v) : u, v ∈ e, e ∈ E.

Let wc : V × E → R+ be the (as yet unspecified)
hypergraph edge weight. We can write the normalized
Laplacian of Gc in terms of the hypergraph structure
and the weight function wc as Lc := I − C. If there is
no hyperedge e ∈ E such that u, v ∈ E then Cuv = 0.
Otherwise,

[C]uv =
wc(u, v)√

dc(u)
√

dc(v)
(31)

where

dc(u) =
∑
e∈E

h(u, e)
∑

v∈e\{u}

wc(u, v) (32)

is the vertex degree. For the standard clique expansion
construction,

wc(u, v) = wx(u, v) =
∑

e∈E:u,v∈e

w(e). (33)

so the vertex degrees are

dc(u) = dx(u) =
∑
e∈E

h(u, e)(δ(e)− 1)w(e) (34)

6.3. Unifying Star and Clique Expansion

To show the relationship between star and clique ex-
pansion, consider the star expansion graph G∗

c(V
∗, E∗)

with weighting function

w∗
c (u, e) := w(e)(δ(e)− 1) (35)

Note that this is (δ(e) − 1)δ(e) times the standard
star expansion weighting function w∗(u, e) (Eq. (13)).
Plugging this value into Equations (22) and (23), we
get that the degrees of vertices in G∗ are

d∗c(u) =
∑
e∈E

h(u, e)w(e)(δ(e)− 1) = dx(u) (36)

d∗c(e) = w(e)δ(e)(δ(e)− 1) (37)

where dx(u) is the vertex degree for the standard clique
expansion graph G∗

x. Thus,

[A∗
cA

∗>
c ]uv =

∑
e∈E

[
δ(e)− 1

δ(e)

]
h(u, e)h(v, e)w(e)√

dx(u)
√

dx(v)
(38)

Similarly, suppose we choose the clique expansion
weighting function

wc
∗(u, v) :=

∑
e∈E h(u, e)h(v, e)w(e)

δ(e)(1− δ(e))
(39)
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Then we can show that the vertex degree is

dc
∗(u) =

∑
e∈E

h(u, e)w(e)/δ(e) = d∗(u) (40)

where d∗(u) is the vertex degree function for standard
star expansion. We can then write

[C∗]uv =
∑
e∈E

1
δ(e)δ(e− 1)

h(u, e)h(v, e)w(e)√
d∗(u)

√
d∗(v)

(41)

A commonly occuring case is the k-uniform hyper-
graph. In this case, each hyperedge has exactly the
same number of vertices, i.e. δ(e) = k. Then it is
easy to see that the bipartite graph matrix A∗

cA
∗>
c is

a constant scalar times the clique expansion matrix
C. Thus, the eigenvectors of the normalized Laplacian
for the bipartite graph G∗

c are exactly the eigenvectors
of the normalized Laplacian for the standard clique
expansion graph Gx. Similarly, the clique matrix C∗ is
a constant scalars times the standard star expansion
matrix [AA>]∗. Thus, the eigenvectors of the normal-
ized Laplacian for the clique graph Gc

∗ are exactly the
eigenvectors of the normalized Laplacian for standard
star expansion. This is a surprising result, since the
two graphs are completely different in the number of
vertices and the connectivity between these vertices.

For non-uniform hypergraphs (i.e. the hyperedge cardi-
nality varies), the bipartite graph matrix A∗

cA
∗>
c while

not the same is close to the clique expansion matrix
Cc
∗. Each term in the sum in Equation (38) has an

additional factor (δ(e)− 1)/δ(e), giving slightly higher
weight to hyperedges with a higher degree. This dif-
ference however is not large, especially with higher
cardinalities. As the bipartite graph matrix AcA

>
c is

approximately the clique expansion matrix, we con-
clude that their eigenvectors are similar. A similar
relation holds for the clique graph Gc

∗ and the stan-
dard star expansion where the clique graph gives lower
weight to larger edges. These observations can be re-
versed to characterize the behavior of the standard
clique expansion and star expansion construction, and
we conclude that the clique expansion gives more weight
to evidence from larger edges than star expansion.

There is no clear reason why one should give more
weight to smaller hyperedges versus larger edges or vice
versa. The exact choice will depend on the properties
of the affinity function used.

6.4. Unifying Hypergraph Laplacians

In this section we take a second look at the various
constructions in Section 5 and show that they all corre-
spond to either clique or star expansion of the original
hypergraph with the appropriate weighting function.

For an unweighted hypergraph, Bolla’s Laplacian Lo

corresponds to the unnormalized Laplacian of the asso-
ciated clique expansion with the weight matrix of the
hypergraph the inverse of the degree matrix De:

W o = HD−1
e H> (42)

The row sums of this matrix are given by

do(u) =
∑

v

∑
e∈E

h(u, e)
1

δ(e)
h(v, e) =

∑
e∈E

h(u, e) (43)

which as a diagonal matrix is exactly the vertex degree
matrix Dv for an unweighted hypergraph, giving us
the unnormalized Laplacian

Lo = Dv −HD−1
e H> (44)

The Rodŕıguez Laplacian can similarly be shown to
be the unnormalized Laplacian of the clique expansion
of an unweighted graph with every hyperedge weight
set to 1. Similarly, Gibson’s algorithm calculates the
eigenvectors of the adjacency matrix for the clique
expansion graph.

We now turn our attention to the normalized Laplacian
of Zhou et al. Consider the star expansion of the
hypergraph with the weight function wz(u, e) = w(e).
Then the adjacency matrix for the resulting bi-partite
graph can be written as

Sz =
[

0 HW
WH> 0

]
(45)

It is easy to show that the degree matrix for this graph
is the diagonal matrix

Dz =
[

Dv 0
0 WDe

]
(46)

Thus the normalized Laplacian for this bi-partite graph
is given by the matrix[

I −D
−1/2
v HW−1/2D

−1/2
e

−D
−1/2
e W−1/2H>WD

−1/2
v I

]
Now if we consider the eigenvalue problem for this
matrix, with eigenvectors x> = [ xv xe ] then by
Lemma 1, we can show that xv is given by the following
eigenvalue problem.

D−1/2
v HWD−1

e H>D−1/2
v xv = (1− λ)2xv (47)

(I −D−1/2
v HWD−1

e H>D−1/2
v )xv = (1− (1− λ)2)xv

This is exactly the same eigenvalue problem that Zhou
et al. propose for the solution of the clustering prob-
lem. Thus Zhou et al.’s Laplacian is equivalent to
constructing a star expansion and using the normalized
Laplacian defined on it. The following table summa-
rizes this discussion.
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Algorithm Graph Matrix

Bolla Clique Combinatorial Laplacian
Rodŕıguez Clique Combinatorial Laplacian

Zhou Star Normalized Laplacian
Gibson Clique Adjacency

Li Star Adjacency

Table 1. This table summarizes the various hypergraph
learning algorithms, their underlying graph construction
and the associated matrix used for the spectral analysis.

7. Discussion

In this paper we have examined the use of hypergraphs
in learning with higher order relations. We surveyed
the various Laplace like operators that have been con-
structed to analyze the structure of hypergraphs. We
showed that all of these methods, despite their very
different formulations, can be reduced to two graph
constructions – the star expansion and the clique ex-
pansion – and the study of their associated Laplacians.
We have also shown that for the commonly occurring
case of k-uniform graphs these two constructions are
identical. This is a surprising and unexpected result
as the two graph constructions are completely differ-
ent in structure. In the case of non-uniform graphs,
we showed that the essential difference between the
two constructions is how they weigh the evidence from
hyperedges of differing sizes.

In summary, while hypergraphs may be an intuitive
representation of higher order similarities, it seems
(anecdotally at least) that graphs lie at the heart of
this problem.
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