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1. INTRODUCTION

The past two decades have seen a rapid increase in the use of com-
puter generated imagery. With increased use has come the demand
for increased physical realism in these images. One of the key fac-
tors that affects the photorealism of computer generated imagery
besides the scene geometry and illumination is how the objects in
the scene reflect light. Depending upon its material reflectance prop-
erties, a sphere under constant illumination can appear to be painted
with glossy red paint, made out of polished steel, or cut out from a
piece of blue sapphire.

A local model of material reflectance is the bidirectional re-
flectance distribution function (BRDF) [Nicodemus et al. 1977].
The BRDF is a four dimensional function that describes how light
is scattered from a surface as a function of the incoming and outgoing
directions. Given their central role in the process of image formation,
BRDFs have been the subject of extensive study in both computer
graphics and computer vision communities. This has included work

This work was partially supported by an NSF IGERT Grant (Vision and Learning in Humans and Machines #DGE-0333451), NSF CAREER #0448615 and
the Alfred P. Sloan Research Fellowship and NSF Research Infrastructure Grant number NSF EIA-0303622.
Part of this work was done when Josh Wills and Sameer Agarwal were students at University of California, San Diego.
Authors’ address: J. Wills, Sony Pictures Imageworks, 9050 Washington Blvd., Culver City, CA 90232; email: joshjwills@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2009 ACM 0730-0301/2009/08-ART103 $10.00

DOI 10.1145/1559755.1559760 http://doi.acm.org/10.1145/1559755.1559760

on creating physics based analytic BRDF models [Torrance and
Sparrow 1967; Cook and Torrance 1981; He et al. 1991; Ward 1992;
Ashikhmin et al. 2000], empirical measurement of real world ma-
terial reflectance [Marschner et al. 2000; Matusik et al. 2003a] and
more recently measurement driven models [Matusik et al. 2003b].
However, the move towards more sophisticated reflectance mod-
els, both theoretical and measurement based, is not without its
problems.

As it stands today, a digital artist has to develop a feel for the pa-
rameters of the various analytical reflectance models before he can
use them to produce the desired effect. This is due to the complex
relationship between model parameters and the resulting percep-
tual sensation. Learning this relationship is a complicated and error
prone process based on repeated trial and error. The challenge is
even more acute for data-driven BRDF models where the parameter
space is particularly large and unintuitive. Imagine trying to select a
desired color by specifying parameters that define a spectral density
function. This has motivated the development of tools that allow
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Table I. Types of Gloss
Type of Gloss Incident Angle Reflected Angle Description
Specular Gloss 1 (ASTM D523) 20◦ 20◦ Perceived brightness associated with the specular reflection from a surface
Specular Gloss 2 (ASTM C346) 45◦ 45◦
Specular Gloss 3 (ASTM D523) 60◦ 60◦

Sheen (ASTM D523) 85◦ 85◦ Perceived shininess at grazing angles in otherwise matte surfaces
Distinctness of Image (DOI) (ASTM E430) 30◦ 30.3◦ Perceived sharpness of images reflected in a surface
Bloom (2◦ Haze)(ASTM E430) 30◦ 32◦ Perceived cloudiness in reflections near the specular direction
Haze (ASTM E430) 30◦ 35◦

Diffuseness (Hunter and Harold 1987 pg. 88) 30◦ 45◦ Perceived brightness for diffusely reflecting areas
Contrast Gloss (Hunter and Harold 1987 pg. 285) 45◦ 0◦ and 45◦ Perceived relative brightness of specularly and diffusely reflecting areas

the user to navigate the space of BRDFs and to work with BRDFs
in a manner similar to how they work with various color spaces
[Ben-Artzi et al. 2006; Ngan et al. 2006].

Further, the continuing success of relatively simple phenomeno-
logical models of reflectance, for example, Ward’s model, Torrance
& Sparrow, and so on, indicates that the human visual system is not
sensitive to every single variation in the BRDF. This observation
lies at the heart of the recent focus on perceptually driven rendering
[Ramanarayanan et al. 2007; Myszkowski 2002; Dumont et al. 2003;
Gibson and Hubbold 1997; Luebke and Hallen 2001]. Knowing
when and where in the scene certain variations in the BRDF can be
ignored or simplified can lead to significant computational savings.
Similarly, when approximating a complicated measured BRDF with
an analytical model, instead of focusing on an algebraic measure of
goodness of fit, we can instead build and use an error measure that
only focuses on what is perceptually important [Ngan et al. 2005].

Thus, as we make progress in mathematically characterizing re-
flectance and come up with new and improved ways of measuring
it, it is also important that we develop a better understanding of how
the human visual system perceives the reflection of light. Such a de-
velopment not only has implications for efficient image synthesis,
but also for computer vision, where an understanding of reflectance
perception will give us insight into the priors and constraints used
by humans to solve various shading related problems, for exam-
ple, shape from shading and object recognition with variable and
unknown lighting.

In this article, we present a new study of the perception of the
achromatic component of reflectance, also known as gloss. In a
BRDF, gloss is responsible for changes in the magnitude and spread
of the specular highlight as well as the change in reflectance that
occurs as light moves away from the normal toward grazing angles.
Gloss was first studied in the paper industry [Hunter and Harold
1987]. Since then there has been significant interest and work in
various industries, including textiles and paint. The modern notion
of gloss has been formalized by the American Society for Testing
and Materials (ASTM). The ASTM defines gloss as “the angular
selectivity of reflectance, involving surface-reflected light, respon-
sible for the degree to which reflected highlights or images of ob-
jects may be seen as superimposed on a surface” [ASTM 2005a].
As no single quantitative measure captures the perception of gloss
across different materials, a number of different gloss dimensions
have been defined over the years [ASTM 1999, 2004, 2005b; Hunter
and Harold 1987]. Table I describes a selection of nine Gloss di-
mensions. For each dimension we list the source of its definition,
the incident and reflected directions at which the measurements are
made, and the particular aspect of reflection that is captured.

We chose to consider only gloss because the largest publicly
available database of reflectance measurements (the MIT-MERL
database [Matusik et al. 2003b]) consists of only 55 usable isotropic

BRDFs. This is a very small subset of the vast variety of reflectance
functions. Color is such a strong perceptual cue that given the sparse-
ness of our BRDF database, differences in color between two BRDFs
will completely overwhelm differences due to Gloss. Thus, in the
following, the term BRDF will refer to the achromatic aspects of
reflectance; when we refer to the chromatic aspects, we will make
specific note of it. The methods developed in this article, however,
are not limited to the study of gloss and can be used to study the
perception of chromatic as well as achromatic aspects of reflectance.

We contribute to the state of the art in perception research in
computer graphics in three ways.

(1) We design and implement a comprehensive study of the percep-
tion of measured reflectance. We argue that our methodology
is better suited for capturing the human perception of gloss and
is less susceptible to experimental errors than previously used
methods. This is the largest study of its kind to date, and the
first to use real material measurements.

(2) Motivated by the design of our psychophysics study, we de-
velop a novel Multi-Dimensional Scaling (MDS) algorithm
for analyzing pairwise comparisons. This algorithm is a more
general and efficient replacement for the widely used weighted
non-metric MDS algorithm [Borg and Groenen 2005].

(3) We use the data from our psychophysics study to analyze the
perception of gloss. As part of this analysis we estimate the
dimensionality of the space of gloss perception and construct
a perceptually meaningful embedding of these BRDFs. We
perform an extensive validation of our results by comparing
our embedding with ASTM gloss dimensions [ASTM 2005a],
the parameters of seven analytical BRDF models fitting the
MIT/MERL database [Ngan et al. 2005], and a perceptual pa-
rameterization of Ward’s model [Pellacini et al. 2000]. We also
introduce a novel perceptual interpolation scheme that uses the
embedding obtained from human subject responses and the
geometry of the space of BRDFs to provide the user with an
intuitive interface for navigating the space of reflectances and
constructing new ones.

The structure of the article, is as follows. We begin with a survey
of related works in Section 2. In Section 3 we present our experi-
mental framework for measuring the perception of gloss. Our new
method for analyzing perception of gloss is described in Section 4.
An analysis of the resulting embedding is presented in Section 5.
Our method for perceptual interpolation is described in Section 6.
We conclude with a discussion in Section 7.

2. RELATED WORK

With the increasing emphasis on photorealism, perception has be-
come an active subject of research in a number of areas of computer
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graphics including ray distribution for global illumination [Stokes
et al. 2004], tone mapping [Tumblin and Rushmeier 1993; Ledda
et al. 2005], evaluation of translucency [Fleming et al. 2004a],
and perception of reflectance [Pellacini et al. 2000; Westlund and
Meyer 2001]. In this section, we survey some of the recent work
in computer graphics and vision science on the perception of re-
flectance. We refer the interested reader to Pellacini et al. [2000] and
Westlund and Meyer [2001] for a more complete survey of the his-
torical developments in this area.

In computer graphics the study of the perception of reflectance
was pioneered by Pellacini et al. [2000], in which they present a
perceptually meaningful reparameterization of the Ward reflectance
model. The authors collected perceptual data by asking subjects to
rate the similarity between images generated with varying model pa-
rameters. Multidimensional scaling was then used on these ratings
to obtain a perceptual model with two parameters. The parameters
roughly correspond to Hunter’s contrast gloss and DOI gloss. The
original Ward parameters for roughness and contrast gloss are inde-
pendent, while contrast gloss depends on both specular and diffuse
reflectance—most likely because the human visual system is sensi-
tive to relative luminance. The study was entirely based on a single
empirical BRDF model. Our work, while similar in spirit, is based
entirely on measured reflectances and a much larger set of subjects.
We will also argue in the next section that our psychometric study
based on paired comparisons is a significant improvement over the
ratings system employed by Pellacini et al.

Westlund and Meyer [2001] used appearance standards to build
a new method for representing BRDFs. Each BRDF is represented
by a set of two types of measurements: measurements for specular
gloss and haze (ratio of the specular peak to the light a few de-
grees off specular), and measurements for flop (chromatic effects as
seen in pearlescent and metallic paints). Color was measured both at
specular peak and off specular followed by interpolation in CIELAB
space. The model allows for simple representation and much sim-
pler measurement of materials and inherits the psychophysics based
qualities of the individual components (e.g., each step in the inter-
val from 0 to 100 in the gloss dimension equals a uniform step in
gloss space), though there is no attempt to capture the perceptual
effects of different combinations of the dimensions. In more recent
work Shimizu et al. [2003] have developed an interactive system for
navigating the appearance space of metallic paints using face, flop,
and travel as controls.

Obein et al. [2004] estimated the perceptual scaling of gloss us-
ing a series of 10 black plates1 arranged into pairs of pairs, and
users decided which of the two pairs were more similar. Since they
were only interested in specular gloss, they assumed that the data is
one-dimensional and used maximum likelihood difference scaling
(MLDS) [Maloney and Yang 2003] to get an appropriate scaling
of the data that obeyed the similarities observed by the subjects.
They found that people are far more sensitive to small changes in
low gloss samples and less sensitive in intermediate and high gloss
samples.

A significant milestone in the availability of measured reflectance
data was the work of Matusik et al. [2003a] who followed up on the
work of Marschner et al. [2000]. The authors developed a gantry
and used it to measure a number of isotropic materials. A part of
this data set is now publicly available. Our work is based on this
database of measurements. As part of the same work, the authors
also developed a new data driven reflectance model. They explored

1Black was chosen so the specular highlight dominates the diffuse compo-
nent.

both linear as well as nonlinear representations. Their model had
45 dimensions in the linear case and 14 dimensions in the nonlinear
case. A user test was employed to classify the BRDFs into a number
categories, for example, blueness, goldness, metalness; these were
used to define trait vectors that were in turn used to navigate the
space of BRDFs and assist a user in moving from one BRDF to
another.

In terms of methodology, the work that is closest to ours is that
of Ledda et al. [2005]. The authors examined the perceptual perfor-
mance of various tone mapping operators by doing paired compar-
isons on pairs of tone mapped images displayed on two low dynamic
range displays and a high dynamic range display showing the origi-
nal high dynamic range image. While similar in the methodology of
collecting the data, our analysis methods are significantly different,
as they were only interested in questions of consistency and overall
preferences.

The analysis of paired comparisons, the experimental paradigm
used here, has a long history in statistics, psychometrics, and bio-
metrics. This includes work on producing rankings, measuring con-
sistency within and across subjects and MDS methods for ordinal
data [David 1988; Kendall and Gibbons 1990; Borg and Groenen
2005]. In this study we are particularly interested in constructing
an embedding from paired comparisons. The weighted non-metric
MDS algorithm addresses this problem, however it has a number
of shortcomings, the most significant of which is that it is based on
an iterative majorization procedure that can only find a locally opti-
mal solution to the stress minimization problem it solves. Our work
addresses this problem by formulating the ordinal MDS problem
as a semidefinite programming problem, which can be solved opti-
mally in polynomial time. This approach has its roots in the work
on semidefinite embeddings [Weinberger et al. 2004] and distance
function learning from relative comparisons [Schultz and Joachims
2003].

3. EXPERIMENTAL FRAMEWORK

In this section we describe the design of our psychophysics study.
Each participant in the study was shown a series of triplets of

rendered images with constant geometry and illumination, but with
varying BRDFs, and was asked to indicate whether the center image
was more similar to the image on the left or to the image on the
right (Figure 1 shows a screenshot from one such test). We chose
this method, known as paired comparison, over the rating method
based on a continuous slider in Pellacini et al. [2000].

Rating methods using continuous intervals have been shown to
have problems with validity and reliability, and subjects usually
require a fair amount of training before the experiment [Kendall and
Gibbons 1990]. In particular, each subject it seems has his or her
own internal continuous scaling function that confounds the process
of integrating responses across subjects; despite its precision, its
accuracy is questionable. Paired comparisons on the other hand offer
a much simpler task and enjoy far more intra- and inter-subject
consistency.

The images used in the experiment all consist of the Stanford
bunny [Turk and Levoy 1994] rendered under constant illumina-
tion and viewing direction with 55 BRDFs from the MIT/MERL
BRDF database [Matusik et al. 2003b]. The database contains a
large representative set of materials including metals, paints, fab-
rics, minerals, synthetics, and organic materials. Examples of some
of these BRDFs appear in Figure 2.

We used natural illumination since it has been shown that sub-
jects have more discriminative power under this type of illumi-
nation than under simple and/or synthetic lighting [Fleming et al.
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Fig. 1. Screen capture from the distance comparison test. The subject is
asked to click on the appropriate button to indicate which pair appears more
similar, Left: Left + Middle, or Right: Middle + Right. This mode of input
has a number of advantages over the conventional approach of asking the
subject to provide a continuous measure of similarity using a slider: (1) the
paired comparison is a subjectively easier task, (2) the additional informa-
tion content in a human specified continuous dissimilarity measure is of
questionable value, (3) the mapping between different subjects’ similarity
scales is unknown a priori.

2003]. We used the illumination conditions that worked best in their
experiment. We chose the bunny model because while it is simple,
it provides a more varied distribution of surface normal/incident di-
rection combinations than a sphere. Each image was rendered under
the same high dynamic range illumination using structured impor-
tance sampling [Agarwal et al. 2003]. As in previous work [Fleming
et al. 2003; Pellacini et al. 2000], we used Tumblin’s rational sig-
moid [Tumblin et al. 1999] to map the rendered high dynamic range
images to our low dynamic range displays. The images were ren-
dered in color and then converted to grayscale for our experiment.
Our displays have a maximum brightness of 180 cd/m2.

As there are over 78,000 possible triplets only a randomly sam-
pled subset of comparisons could be performed. Our study has 75
subjects performing 200 comparisons for a total of 15,000 compar-
isons (there were a small number of repeated comparisons). None
of the authors were subjects. All subjects were unaware of the aim
of the experiment and all had normal or corrected to normal vision.
The triplets were chosen at random for each subject. All the images
and the subject response data will be made available online upon
publication of this article.

4. ANALYZING PAIRED COMPARISONS

One of the aims of this study is to construct a Euclidean space in
which the Euclidean distance between a pair of BRDFs corresponds
to the perceptual distance between them. This is not to say that such a
space necessarily exists. Indeed there is nothing that suggests a priori
that human perception obeys the triangle law. However, the analyt-
ical, representational, and computational simplicity of a Euclidean
space is attractive enough to warrant an attempt at discovering one
that best fits the observations. This is an instance of the problem of
multidimensional scaling.

4.1 Multidimensional Scaling

Multidimensional scaling (MDS) refers to the general task of as-
signing Euclidean coordinates to a set of objects such that, given
a set of dissimilarity, similarity, or ordinal relations between the
objects, the relations are obeyed as closely as possible by the em-
bedded points. This assignment of coordinates is also known as
Euclidean embedding. The most well known of the various MDS
algorithms is classical multidimensional scaling, where the dissimi-

Fig. 2. Example BRDFs. Six of the 55 images used in our psychophysics
study. While monochromatic, they have widely varying gloss properties.
The BRDFs used include metals, paints, fabrics, minerals, synthetics, and
organic materials.

larities between points are assumed to be actual Euclidean distances.
Appendix A gives a short introduction.

Multidimensional scaling algorithms fall into two broad classes:
metric algorithms, which seek an embedding with interpoint dis-
tances closely matching the input dissimilarities; and non-metric
algorithms, which find an embedding respecting only the relative
ordering of the input dissimilarities.

Non-metric MDS (NMDS) has been used extensively in the psy-
chometrics and psychophysics communities to embed similarity and
dissimilarity ratings derived from a variety of sources. Metric MDS
is not appropriate in many of these applications since the magni-
tude of the input dissimilarities is unreliable, too difficult to mea-
sure, or simply unavailable. The problem of non-metric multidimen-
sional scaling was first considered by Shepard [1962a, 1962b], but
it was Kruskal who posed the problem as an optimization problem
and introduced an alternating minimization procedure for solving
it [Kruskal 1964a, 1964b; Cox and Cox 2000; Borg and Groenen
2005].

A curiosity of the the Shepard-Kruskal formulation of non-metric
MDS is that it actually requires magnitudes of the dissimilarities
as input, even though NMDS concerns only ordinal information.
Indeed, one of the motivations for NMDS is to avoid the difficulties
associated with collecting accurate magnitude information. Another
quirk of the Shepard-Kruskal formulation is that it requires all order
comparisons—one cannot be agnostic about the ordering of any pair
of dissimilarities. Collecting all order comparisons may be difficult
or impossible in some experiments, as is the case in the current
study. Further, the algorithm has no stated time complexity or quality
guarantees associated with it.

In the next section we present a new NMDS algorithm that uti-
lizes modern convex optimization theory to solve for a Euclidean
embedding in polynomial time. While the tools presented in this
section were specifically developed for our study, we hope that they
will find broader use in other psychometric and statistical studies.

4.2 Multidimensional Scaling for Paired Comparisons

We are now ready to present our method for performing multidi-
mensional scaling on paired comparisons. Our presentation is brief
and specific to the case of paired comparisons with one common
object. A more general version of the algorithm, further analysis,
and examples can be found in Agarwal et al. [2007].

We begin with some notation. We use lower case italicized roman
symbols i, j, k, . . . to indicate scalars and to index into the set of
BRDFs. Lower case bold faced symbols x indicate vectors. Upper
case symbols P, Q, R, . . . are used to denote matrices. The columns
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of the matrix X are used to indicate the embedding coordinates for
the BRDFs. The matrix K denotes the Gram matrix, K = X�X. K
is a symmetric positive semi-definite matrix, denoted by K � 0.

S is the set of all collected observations consisting of 3-tuples
(i, j, k), where the subject indicated that perceptually, the image
rendered using BRDF j was more similar to the one rendered using
BRDF i than it was to the image rendered using the BRDF k. Let
Di j denote the perceptual distance between BRDFs i and j , then:

S = {(i, j, k)|Di j < D jk}. (1)

Note that while our experiments do not provide an estimate of Di j ,
they do provide the inequality relation Di j < D jk . The set S is
allowed to have repetitions and inconsistencies.

As in classical MDS we convert the problem into one that can be
stated in terms of the Gram matrix K.

D2
i j = ‖xi − x j‖2

2 = x�
i xi − 2x�

i x j + x�
j x j

= Ki i − 2Ki j + K j j ,

where, Ki j is the (i, j)-th element of K. Since distances are by
definition always non-negative, we can without loss of generality
replace the constraint Di j < D jk with D2

i j < D2
jk , which we can

then write in terms of the inner product matrix K as:

Ki i − 2Ki j + K j j < K j j − 2K jk + Kkk . (2)

Our aim now is to find a Gram matrix, K, that satisfies inequality
constraints of this form for every triplet (i, j, k) that is a member of
S. As we noted earlier, K is symmetric positive semidefinite. This is
a necessary and a sufficient condition for K to be the inner product
matrix for some set of points.

This set of inequality constraints is not sufficient to uniquely de-
termine a positive semidefinite matrix K. This is because the relative
comparison constraint has a scale, translation, and rotation ambigu-
ity. Since Gram matrices are invariant to the rotation of the underly-
ing points, the rotation ambiguity is not a problem. The Gram matrix
K however is not invariant to global translation and scaling of the
point set. This can lead to numerical instability when solving for the
embedding, so steps must be taken to better constrain the solution.

The translation ambiguity is eliminated by demanding that the
embedding be centered at the origin, ∀a = 1, . . . , n,

∑
b Xab = 0,

which can be restated as:

∑
a

(∑
b

Xab

)2

= 0,

∑
bc

∑
a

XabXac = 0,

∑
bc

Kbc = 0. (3)

This is a linear equation in the entries of matrix K.
Handling the scale ambiguity is a bit more complicated. To pre-

vent the embedding from collapsing into the origin, we constrain
the scale of the embedding from below. We will demand that for a
relative comparison to be valid the two distances should be different
by at least 1 unit distance.

Ki i − 2Ki j + K j j + 1 ≤ K j j − 2K jk + Kkk . (4)

Two things should be noted here. What was a strict inequality in
Equation (2) has now been converted into a non-strict one. Secondly,
the choice of 1 as the minimum difference between pairs of distances
is arbitrary and does not affect the quality of the embedding. The

choice of any other constant would result in a uniform scaling of
the embedding.

An important consideration when performing MDS is the issue
of dimensionality: how many dimensions should the embedding
exist in? Ideally, we want the embedding of the smallest possible
dimension. There are a number of reasons for this. An obvious
one is computational complexity. A lower dimensional embedding
is computationally easier to work with and to visualize. A more
important reason, however, is that we want our embedding to not
only explain the observed data but also to generalize well to unseen
data. Statistical learning theory [Vapnik 1998] informs us that for
the same training error a simpler model is expected to perform better
than a more complex one and should be preferred. For our analysis,
the rank of the embedding is its complexity and thus we prefer
lower rank embeddings to higher rank ones. The dimensionality of
the embedding is the same as the rank of the matrix X, which is in
turn the same as the rank of the matrix K. Thus in the ideal case,
where we have data that is completely noise free and there exists
a Euclidean space in which it can be embedded, we would like to
solve the following optimization problem:

arg min
K

rank(K)

∀(i, j, k) ∈ S Kkk − Ki i + 2Ki j − 2K jk ≥ 1∑
ab

Kab = 0, K � 0. (E1)

This formulation has two problems. First, for the optimization
problem to be feasible, there should be a positive semidefinite matrix
that satisfies every relative comparison in the collected data. This is
clearly not true in general. Second, the rank of a matrix is a non-
convex function and therefore ours is a non-convex optimization
problem. Indeed, minimizing the rank of a symmetric positive semi-
definite matrix subject to linear inequality constraints is an NP-hard
problem [Fazel et al. 2004].

To get around the first problem, we introduce slack variables
ξi jk in every inequality constraint, which allows for violations of
the inequality and augments the objective function to minimize the
total violation:

arg min
K,ξ

∑
(i jk)∈S

ξi jk + λ rank(K)

∀(i, j, k) ∈ S Kkk − Ki i + 2Ki j − 2K jk ≥ 1 − ξi jk,

ξi jk ≥ 0,
∑

ab

Kab = 0, K � 0. (E2)

λ is a positive scalar that controls the tradeoff between the vio-
lations and the rank of the matrix—the complexity of our model.
To deal with the non-convexity of the objective function, we relax
the rank function to its convex envelope, the trace. This relaxation is
standard in the convex programming literature. Using this relaxation
has the additional benefit of constraining the scale of the embedding
from above.

arg min
K,ξ

∑
(i jk)∈S

ξi jk + λ tr(K)

∀(i, j, k) ∈ S Kkk − Ki i + 2Ki j − 2K jk ≥ 1 − ξi jk,

ξi jk ≥ 0,
∑

ab

Kab = 0, K � 0. (E3)

There is an intuitive explanation for using the trace of the matrix
K as the convex regularizer. The rank of a symmetric matrix can be
restated as the number of non-zero eigenvalues, or the L0 (counting)
norm of the vector of its eigenvalues. A commonly used convex
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relaxation for problems involving finding the sparsest vector is to
replace the objective with the L1 norm of this vector. For a symmetric
positive semidefinite matrix the trace is exactly that, the L1 norm of
the vector of eigenvalues.

While solving problem (E3) is not exactly equivalent to solving
problem (E2), as the optimal solution for (E3) can trade a lower
trace value for a higher rank, practical experience indicates that this
is not a significant problem and trace of a matrix is an excellent
heuristic for reducing its rank [Fazel et al. 2004].

The optimization problem (E3) is a semidefinite program (SDP).
SDPs are convex optimization problems that are generalizations of
linear programming problems and can be solved efficiently and opti-
mally using interior-point methods similar to the ones used for solv-
ing linear programs [Nesterov and Nemirousty 1994; Vandenberghe
and Boyd 1996]. Efficient solvers exist for solving SDPs [Sturm
1999].

Once K is computed, the embedding itself can be recovered from
the eigen-decomposition of K in the same manner as in classical
multidimensional scaling, as shown in Appendix A.

5. EXPERIMENTS AND ANALYSIS

In this section we present our analysis of the human subject data.
We first describe the various sources of error that can arise in a data
set such as ours and the results of three independent experiments
that we performed to estimate these errors. Next, we describe the
perceptual space that results from performing MDS on the set of
paired comparisons and discuss its properties. Finally, we show how
the embedding correlates with standard measurements for gloss and
the parameters of BRDF models fitting to the MIT/MERL database.

5.1 Sources of Human Error

As with any study involving human responses, our data is prone to
errors and inconsistencies, both inter- and intra-subject. These errors
are a function of not only the set of subjects used for our study, but
also the particular experimental setup that we use to collect the data,
including but not limited to the choice of the BRDFs, geometry,
and illumination. In this section we describe three experiments:
one that examines inter-subject inconsistencies and two that look
at the two types of inconsistencies exhibited by a single subject.
These experiments, each carried out with 12 different subjects, were
independent of our main experiment, which used 75 subjects.

5.1.1 Inter-Subject Consistency. It is possible that not all sub-
jects will agree on the response for any given triplet of images. To
get an estimate of how often subjects came to the same conclusion
on our data set, we performed a small pilot study in which 12 sub-
jects evaluated the same set of 120 randomly chosen comparisons.
We found significant agreement across subjects. The majority vote
accounts for about 85% of our total data in this experiment.

5.1.2 Repeated-Trial Consistency. Similarly, it is possible that
a given subject will exhibit variability in his or her responses when
asked to make the same paired comparison multiple times. It is im-
portant to estimate this variability to get an idea of the repeatability
of the experiment. High variability reduces our trust in the data and
the conclusions we can draw from it.

We conducted a study in which 30 random comparisons were
chosen and presented 4 times, randomizing both the order of the
outer images as well as the order of presentation. Twelve subjects
were used for this study. On average, 87% of the time subjects gave
the same answer.

5.1.3 Circular Preferences. One of the aims of this study is
to construct a Euclidean space in which distances correspond to
perceptual dissimilarity. In a Euclidean space, every set of unique
pairwise distances between a set of points can be ordered without
ambiguity. If a subject expresses preference for three BRDFs as
Di j < D jk < Dki < Di j , they are being circular in their preferences,
and these preferences are not representable in a Euclidean space.

Since this type of violation can only be detected if a subject is
given all three distance evaluations for a given set of 3 BRDFs,
we conducted a study where for each of the 12 subjects a different
random set of 40 triplets of BRDFs was randomly selected and the
subjects evaluated each of the three distance comparisons. We found
that the violation rate was 1.5% on average with a median of 1%.

5.2 Learning the Embedding

Despite the set of 55 BRDFs of the MIT-MERL database being a
big step forward in terms of measured data availability, it is a only
fraction of the space of BRDFs. It is therefore important that care is
taken before making any inferences from it. The inferences we make
should explain both the observed data points as well as unobserved
portions of the space. Only then can we claim that our conclusions
are not merely an artifact of our particular data set.

Given a set of subject responses to paired comparisons on the
same 55 BRDFs, we measure the error of an embedding as the
average number of paired comparisons that are violated if we use
the pairwise distance between BRDFs in the embedded space as our
estimate of the distance between them.

The expected error of an estimator over an independent test set
is called the test error or generalization error [Hastie et al. 2001].
The training error is smaller than the testing error—in fact it can
be arbitrarily smaller. Thus, when reporting the performance of our
statistical estimates from the data, it is important to report an estimate
of the test error in addition to reporting the training error.

Another issue that one faces in problems like the one we are solv-
ing is that of model selection. In the last section we argued that
simpler models or lower complexity estimates are to be preferred
to higher complexity ones. However, it is also the case that higher
complexity models typically fit the training data better than lower
complexity models. In our case the regularization parameter, λ, con-
trols the complexity of our embedding. But how does one choose
the optimal value of λ? If one could estimate the test error for the
various choices of λ then one could choose that λ for which the test
error was the lowest.

The most widely used method for estimating test error is cross-
validation [Hastie et al. 2001]. In k-fold cross-validation the data
set (in our case, the set of human responses) is split into k roughly
equal parts. At the i th iteration, the model is fitted (the embedding
is learned) using k −1 parts of the data excluding the i th part, which
is then used for measuring the test error. The final test error estimate
is the mean of the k error estimates obtained in this manner. Typical
choices of k are 5 or 10.

We ran our MDS algorithm on the data for varying values of
λ between 0 and 300, and performed 10-fold cross-validation for
each value of λ. Figure 3(a) plots the training (red) and testing
errors (green) as a function of the parameter λ. Figure 3(b) plots
the average rank of the embedding as a function of λ. As ex-
pected, the rank of the embedding goes down as the regularization is
increased.

As an additional check for the fact that our data does indeed
contain structure, and that we are learning from it, we performed
the following control experiment. We generated a new data set by
taking each triplet (i, j, k) in our data set and randomly swapping i
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Fig. 3. Cross Validation and Rank. (a) Training (red) and testing (green) error curves for varying choices of the regularization parameter λ for our MDS
algorithm. Testing error (blue) for the randomized control set. (b) Average rank as a function of the regularization parameter.

and k. This is equivalent to a random observer’s response if he or she
were shown exactly the same set of comparisons. We then learned
an embedding for varying values of λ and measured the test error
using cross-validation. In Figure 3(a) the blue curve plots this error.
As can be seen, the test error never goes below 50%. The consistent
and significant gap between the blue and the green curves indicates
that our data set is far from purely random.

The choice of a non-zero λ indicates a tradeoff between the rank of
the matrix K and the total amount of violation in the paired compar-
isons. Setting λ = 0 would focus the attention of the MDS algorithm
entirely on reducing the violations. Doing so results in matrix K,
which has a training error of 17%. The resulting embedding has
53 dimensions (which is only 2 less than the maximum). The test
error for λ = 0 is 27%. This is a significant gap and indicates the
poor generalization ability of this embedding. The algorithm with-
out any regularization is allowed to come up with a complex model
that over-fits to the noise in the training data, resulting in poor perfor-
mance. As the regularization increases, the training error increases,
but the testing error decreases at first and then starts to go back up
again; as we increase the penalty for higher rank embeddings, the
algorithm trades model complexity for training error. The simpler
lower dimensional model does not over-fit to the noise, leading to
an increase in generalization performance. As the regularization pa-
rameter continues increasing, however, the algorithm is biased too
strongly towards choosing a low rank embedding, ultimately being
restricted to one dimension. One dimension is not enough to ex-
plain the set of relative comparisons, as evidenced by the high test
error.

The embedding with the best cross-validation error was obtained
for λ = 75. It has a training error of 21.9% and a test error of
21.3%. The embedding has over 95% of the variance contained in the
first two dimensions. Truncating the embedding at two dimensions
increased the test error by 0.5%. We do not consider this significant.

To put these numbers in perspective, a trivial upper bound on the
test error of an embedding is 50% since a purely random predictor—
or even one that gives the same answer every time—will on average
get half of the paired comparisons right. A better upper bound of
37.5% is obtained by using the L2 distance between sampled BRDF
vectors as the perceptual distance between them. A perceptual metric
should perform at least as well as the L2 norm. A lower bound on
the minimum possible error is the intersubject error, which is 17%.

5.3 Stability of the Embedding

To test the dependence of the embedding on individual BRDFs we
performed the following stability analysis. We constructed 55 dif-

ferent embeddings via a leave-one-out procedure, in which each
BRDF is omitted in succession, and the remaining 54 BRDFs are
used to compute an embedding. Each of the embeddings produced
in this manner was then aligned with a similarity transformation2 to
the corresponding 54 points in the final embedding, and the average
squared distortion was measured [Umeyama 1991]. To establish a
scale for these errors, the average distance between pairs of points
in the global embedding was calculated.

The root mean squared distortion was 0.027 and the average dis-
tance between points in the global embedding was 0.87. This is an
error of 3%, or an order of magnitude difference, which indicates
that the embedding is stable.

5.4 A Perceptual Space for Gloss

Figure 4 presents a visualization of the optimal 2-D embedding, with
cropped windows of the BRDF images displayed in their embedded
locations in the new space. Notice the clustering of the BRDFs into
two distinct clumps and the similarity among the corresponding
images. There are also two pronounced trends in the embedding,
a vertical trend with the darker BRDFs at the top and a gradual
transition to the brightest BRDFs at the bottom. The horizontal trend
roughly breaks the BRDFs into two clusters: the primarily diffuse
BRDFs and those that have a strong glossy or specular component.

It is also interesting that the metallic BRDFs are all in the lower
left corner and the fabrics are in the upper right corner. This em-
bedding is based entirely on the user preference data—no BRDF
or image data was used—which points to the significant descriptive
power contained in the paired comparison data.

The low rank of our embedding is interesting when compared to
the system of trait vectors used by Matusik et al. [2003b]. Since their
system classified full BRDF reflectance (as opposed to only consid-
ering gloss) it is difficult to guess how many of the 45 dimensions in
the trait vectors would be required to classify the BRDFs according
to their gloss properties, though it would likely be much more than
the two found in our embedding. We suspect this is because a hand
engineered space, while very useful, would likely contain a signif-
icant amount of redundancy when compared to an embedding that
is constructed purely from psychophysics data.

Given the low fitting error, we know that that our embedding is
consistent with the user preferences from the psychophysics exper-
iment. But this says nothing about how our embedding is related
to the actual BRDF measurements. In the next two sections, we

2Paired comparisons are invariant to similarity transformations.
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Fig. 4. Perceptual embedding. The optimal 2-D embedding with cropped windows of the BRDF images displayed in the corresponding embedded coordinates
in the new space.

consider the correlation between the coordinates of the perceptual
embedding in Section 4 and two different ways of summarizing
measured reflectance. In Section 5.4.1 we will consider the nine
gloss dimensions described in Table I, and in Section 5.4.2 we will
correlate the embedding with the parameters of seven different an-
alytical BRDF models fitted to the measured reflectance. We also
consider a perceptual parameterization of Ward’s model. In each
case we will report the coefficient of multiple correlation between
the embedding coordinates and the quantity of interest.

The coefficient of multiple correlation is the multivariate general-
ization of the coefficient of correlation that measures the strength of
the linear relationship between two scalar random variables. Given
two scalar random variables, x and y, with covariance σxy and stan-
dard deviations σx and σy , respectively, the coefficient of correlation,
r , is defined as:

r = σxy

σxσy
. (5)

When x is a vector random variable with correlation matrix Cx , and
c is the vector of correlation between the coordinates of x and y,
then the coefficient of multiple correlation R is defined as:

R = [
c�C−1

x c
]1/2

. (6)

In the interest of brevity, we will refer to R as the correlation.

5.4.1 Comparison with Gloss Standards. Starting with the
work of Hunter and Harold [1987], a number of different mea-
sures of gloss have been defined over the years [ASTM 1999, 2004,
2005b; Hunter and Harold 1987]. While we would not expect our
embedding coordinates to correspond directly to any of the gloss

measurements (especially considering the fact that our embedding
is only defined up to an arbitrary rotation), if our embedding is
capturing some of the perceptual qualities of gloss, we would ex-
pect there to be correlation between our embedding coordinates and
some of the gloss measurements.

Figure 5 plots nine of the gloss measurements in our embed-
ding space mentioned in Table I. The position of each circle cor-
responds to one of the BRDFs in the embedding space and the
diameters correspond to the gloss measurements from Table I. We
chose to plot these nine different gloss measurements as a com-
bination of the measurements corresponding to the gloss dimen-
sions of Hunter and Harold [1987] and the ASTM gloss dimensions
mentioned as significant in previous work [Pellacini et al. 2000;
Westlund and Meyer 2001]. Below each plot we also report the cor-
relation between the embedding coordinates and the correspond-
ing gloss measurement. For the the first eight gloss measurements
in Table I we observed that the log of the measurement was sig-
nificantly more correlated than the raw measurement. Therefore,
Figures 5(a)–(h) are plotted on a logarithmic scale. The correspond-
ing correlations are also calculated on the log of the measurements.
The only exception is contrast gloss (or luster), which interestingly
is the only measurement that is the ratio of reflected light along two
directions.

Figure 5(a–d) shows the measurements of each BRDF for three
types of specular gloss—the perceived brightness associated with
the specular reflection from a surface at 20◦, 45◦, and 60◦, and mea-
surements for sheen—specular gloss measured at 85◦. To calculate
these values, we measured the reflectance for light that is incident at
the appropriate angle (20◦, 45◦, 60◦, and 85◦) and viewed from the di-
rection of specular reflection (20◦, 45◦, 60◦, and 85◦, respectively).
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Fig. 5. Correlation between the embedding and formal gloss measurements. Figures (a)-(i) plot nine formal gloss measurements on the perceptual embedding.
The diameter of the circles corresponds to the value for each property. The direction of the red arrow in the top left corner of each plot shoes the direction of
maximum correlation. There are three pronounced trends that are visible in these plots: the diagonal trend in plots (a)–(d), the increasingly vertical trends in
plots (e)–(h), and the horizontal trend in plot (i). These correspond to the trends observed in Figure 4 of increasing strength of the specular highlight moving
from the upper right to the lower left, the increase in body color moving from top to bottom, and the increase in apparent shininess moving from right to left,
respectively.
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Table II. Correlation with BRDF Models
This Table Shows the Correlation Values for our Embedding with a Variety of BRDF

Models. Each BRDF has a Set of Parameters Including a Diffuse and Specular Value and
up to 3 Auxiliary Parameters (these are different for each BRDF). The BRDF-Specific

Symbols for each Parameter are Shown in the Last Column
BRDF Model Diffuse Specular p0 p1 p2 Parameter Symbols
Ashikhmin-Shirley 0.9318 0.1673 0.1639 0.2677 NA F0,n
Blinn-Phong 0.9646 0.6159 0.2575 NA NA n
Cook-Torrance 0.9539 0.0869 0.2760 0.7250 NA F0,m
He et al. 0.9558 0.0692 0.3049 0.5664 0.3442 τ ,σ ,n
LaFortune et al. 0.9556 0.3733 0.7651 0.6803 0.2933 Cxy ,Cz ,n
Ward-Duer 0.9659 0.5167 0.6112 NA NA α

Ward 0.9574 0.5111 0.7391 NA NA α

Pellacini et al. NA NA 0.7391 0.6226 NA d,c

The measurements exhibit a trend increasing from the lower left
corner to the upper right corner. This correlates with the trend we
noticed before, with the glossy materials on the left and the metal-
lic materials in the lower left corner. The correlation numbers are
strong and similar for each of these measurements, with sheen hav-
ing a lower correlation number; this may be due to the difficulty
in measuring specular reflection near grazing angles [Matusik et al.
2003b].

Figure 5(e)–(h) shows the measurements of each BRDF for DIO
gloss, bloom, haze, and diffuseness. To calculate these values, we
measured the reflectance for light that is incident at 30◦ and viewed
from a slightly off specular angle—30.3◦, 32◦, 35◦, and 45◦ for DIO
gloss, bloom, haze, and diffuseness, respectively. There is a strong
trend in each plot that roughly increases from the lower left corner
to the upper right corner. It is interesting to note that as the viewing
angle used to compute the measurement moves further from the
specular direction, the trend becomes increasingly vertical. As we
move further from the specular direction, we get closer to measuring
the diffuse reflectance, which gives rise to the perceived body color
of the object and is exhibited by the vertical trend from dark to
light. Also, since these measurements involve light that is reflected
off specular, they may be less sensitive to noise; this may explain
the smaller number of outliers as compared to the measurements
taken on specular.

Figure 5(i) shows the measurements of each BRDF for contrast
gloss—the perceived relative brightness of specularly and diffusely
reflecting areas. To calculate this value, we measured the reflection
of light that is incident at 45◦ in both the specular direction (45◦) and
off specular (0◦) and compute their ratio; we then subtract this value
from one to obtain the gloss value. Since contrast gloss is the ratio of
light reflected far from the specular direction to the light reflected
in the specular direction, it will be lower for matte materials and
higher for materials with a strong specular component. Notice that
there is a strong horizontal trend with contrast gloss increasing from
right to left. It is also worth noting that if we consider contrast gloss
and diffuseness together, we have two very strong correlations that
point in almost orthogonal directions. It seems that much of what is
captured by our embedding is described by these two measurements.

While it is interesting that we observe trends in our embed-
ding that correlate well with the major gloss measurements, we
expect that the redundancy in these trends is related to the sparsity
of our BRDF database. Since the observers were offering judge-
ments based on a limited set of materials, subtleties like the dif-
ference in specular reflection at 20◦ versus specular reflection at
85◦—a difference often resulting from Fresnel effects—are ignored
for higher level distinctions. We expect that as the size of the re-

flectance database increases, many of these subtleties would begin
to affect the shape and arrangement of the embedding, and likely
the dimensionality, as well.

5.4.2 Relation to Fitted BRDF Parameters. Ngan et al. [2005]3

have fitted seven different analytical models to the MIT/MERL
BRDF database. We compare the embedding to these seven models
as well as to the model of Pellacini et al. [2000], which is a function
of the parameters of the Ward model (one of the seven models).
While only Pellacini’s model was explicitly designed to model ma-
terial perception, we would expect that many of the parameters are
related to perceptual qualities of the materials since they were de-
signed to fit properties that the authors observed about the materials
they were trying to model.

Table II shows the correlation results between the eight BRDF
models and our embedding. Each BRDF model has up to 5 parame-
ters and the last column in the table contains the symbols commonly
associated with each parameter. We refer the reader to Ngan et al.
[2005] and Pellacini et al. [2000] for more details about each of the
parameters.

It is important to note that since correlation models linear re-
lationships, low correlation values (below 0.5) can be due to two
possible separate reasons. Low correlation can occur if two models
are not related and one does not explain the other well. In can also
occur if two models are related but that relationship is not linear.
Since it can be difficult to distinguish between these two causes, we
will focus on analyzing the parameters that have high correlation.

The first and most obvious source of correlation is the correlation
with the diffuse component. This is a very high correlation and
likely supports the presence of the approximately vertical trend we
observed in our embedding going from light to dark.

Another source of strong correlation are the “roughness” param-
eters of the Ward, Ward-Duer, and Cook-Torrance models (p0,p0,
and p1, respectively). Since these parameters approximately capture
the spread of the specular lobes in their respective models, we would
expect this to be a perceptually significant parameter. Pellacini et al.
also found this parameter to be significant. The parameter d in their
model (found in p0) is actually (1 − α), where α is the parameter
of the Ward model in p0.

The other parameter of Pellacini’s model (c, found in p1) has
only moderate correlation with our model. Since the authors classify
this parameter as approximately representing contrast gloss, this is
somewhat surprising given the strong trend seen for contrast gloss in

3Ngan et al. provide fits for only 50 of the 55 BRDFs that were used in our
study.
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Figure 5(i). The correlation between our embedding and Pellacini’s
model is interesting, but given the differences in experiments and
embedding techniques, perfect correlation between the two methods
should not be expected.

6. PERCEPTUAL INTERPOLATION

As pointed out by Matusik in his thesis, the set of BRDFs is con-
vex [Matusik 2003]: given any two BRDFs, x and y, and a scalar
0 ≤ μ ≤ 1, μx + (1 − μ)y is a mathematically valid BRDF. Thus,
given a set of BRDFs, measured or otherwise, a simple way to gen-
erate new BRDFs is to compute all convex combinations of them.
This approach, however, has two problems. First, arbitrary convex
combinations, while mathematically correct, can result in physi-
cally implausible BRDFs [Matusik et al. 2003b]. That is, while the
resulting BRDF may obey the mathematical properties of a valid
BRDF (energy conservation, reciprocity, etc.), it may represent a
material that is not likely to be found in nature. Second, one is
typically interested in producing materials with properties close to
some known collection of BRDFs; in such a case one would like the
combination of weights to correlate with perceptual distance to the
basis BRDFs, thus making the combination process intuitive and
useful in practice. However, there is nothing to suggest that a linear
algebraic combination of two BRDFs translates into a perceptual
combination of their properties. Once again it is useful to make an
analogy with color perception. There are colors that appear to be
both red and blue (purples), both blue and green (blue-greens) and
both yellow and green (yellow-greens). There is no color, however,
that is subjectively the combination of red and green [Palmer 1999].
Thus we must be careful in our use of linearity when combining per-
ceptual properties; in particular we should avoid linearly combining
objects that are perceptually far apart.

Having a low dimensional perceptual space in which known
BRDFs are embedded offers a solution to the problem of perceptual
BRDF design. An artist wanting to design a new material can now
easily move around in this space and indicate the desired perceptual
position of the BRDF by indicating how close it is to the known
BRDFs. Of course this requires the ability to generate a BRDF from
its position in the perceptual embedding. Since we are only given a
sparse sampling of the space of BRDFs, we must construct a percep-
tual interpolation scheme that uses the geometry of the embedding
to interpolate over the measured BRDF data.

Given a point in the perceptual space, one naive solution would
be to select the k-nearest neighbors of that point from among the set
of BRDFs. The distance used for determining the neighbors is the
Euclidean distance in the perceptual space. The point corresponding
to the desired BRDF may or may not lie in the convex hull of its
nearest neighbors and it is not clear what weighting scheme should
be used to interpolate between the BRDFs.

Our solution to the problem is to start by first constructing a Delau-
nay triangulation of the space [Okabe et al. 1992] using the materials
in our embedding as vertices. Delaunay triangulation constructs a
natural neighborhood structure on the embedding by maximizing
the minimum angle of all angles of the triangulation. This ensures
that long thin triangles connecting far ends of the embedding are
avoided. Now when the user specifies a point in the space, we se-
lect the Delaunay triangle containing the point and use its barycen-
tric coordinates to linearly interpolate between the vertex BRDFs.
Barycentric coordinates sum to one, thus the resulting interpolant is
a convex combination of the vertex BRDF and thereby it is a math-
ematically valid BRDF. This means for any point inside the convex
hull of the embedding, we need at most three BRDFs to generate a
perceptual interpolation for it. Figure 6 illustrates this process.

An interesting consequence of this interpolation scheme is that
even if a point in the perceptual space lies on the line joining two
BRDFs, the interpolated value of a BRDF could be the result of three
entirely different BRDFs. Figure 6(a) illustrates this phenomenon.
Thus, even though our interpolation process is locally linear, the
overall interpolation is a nonlinear process.

The validity of our interpolation procedure is a function of the
density of our data. If we had a very dense set of BRDFs, the locally
linear interpolation would give rise to very little deviation from the
underlying nonlinear space. While our data set is the largest col-
lection of measured materials, it is quite sparse in relation to the
space of gloss measurements for all materials. As a result, there are
portions of the embedding that contain gaps—linear interpolation
within these gaps will likely lead to deviation from the true under-
lying nonlinear space and possibly result in interpolation artifacts.
However, in practice we have seen that the interpolations are quite
smooth. This is seen in Figure 7, which shows a collage of im-
ages obtained by uniformly sampling within the convex hull of the
perceptual embedding. At each point we calculate the interpolated
BRDF using the previously described perceptual interpolation pro-
cedure and then use it to render the corresponding image. Notice
that overall there are smooth transitions from one portion of the
embedding to another.

Figure 8 shows a comparison between our interpolation and sim-
ple linear interpolation. Note that the primary difference in this case
is in the specular peak and the overall impression of glossy versus
matte. It is obvious that the two interpolations are different, but what
can we say about the perceptual quality of the two interpolations?
To be a perceptually linear interpolation, we would expect that since
the intermediate materials are equally spaced, the step size from one
material to another would be approximately constant. Each of the
steps in the perceptual interpolation are somewhat small and appear
to be of fairly equal magnitude. The largest step appears to be be-
tween the sixth and seventh materials where there is an increase in
the strength of the specular peak. The interpolation on the bottom,
on the other hand, appears to begin with a very large step and finish
with six very small steps. The transition from matte to specular ap-
pears to occur almost completely in the first step. This would seem
to indicate that our interpolation is more perceptually uniform than
the linear interpolation.

We note that if the computational overhead of using measured
BRDFs is too much for a particular application, it is simple to re-
place each measured BRDF with the best fitting empirical model
and return to the user the parameters of the best fitting BRDFs at the
vertices of the chosen Delaunay triangle and the three combination
weights. As our understanding of the space of perception improves
and we construct more detailed and perhaps higher dimensional
models, our perceptual interpolation scheme will extend naturally.
In the higher dimensional case, one can replace the Delaunay trian-
gulation in the plane with the n-space generalization [Okabe et al.
1992], though navigation of a space with more than three dimensions
is a tricky user interface design problem.

6.1 Integration with Color

While we are aware that the perception of gloss is affected by the
surface color, one can often decouple the chromatic and achromatic
parts of the BRDF. Following Pellacini et al. [2000], we can inte-
grate our perceptual model of surface gloss with color by assuming
that gloss and chromaticity are approximately independent [Aida
1997; ASTM 2003]. We use our method to interpolate the L chan-
nel in perceptual space and then choose two example BRDFs to use
as the endpoints for color interpolation in the a and b channels of
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Fig. 6. Perceptual interpolation. Figure (a) illustrates the underlying geometrical method used for performing the perceptual interpolation between two BRDFs.
Notice that in this case neither of the two end points (A and D) are used in the interpolation process and only one BRDF (R) is shared for the two interpolations
(B and C). This illustrates the locally linear yet highly nonlinear nature of perceptual interpolation. Figure (b) illustrates the interpolation that occurs in a single
triangle. The interpolated BRDFs (shown as red dots) are generated as linear combinations of the three end points (shown as black dots). Note that the selected
BRDFs are further from each other than the BRDFs that form a typical triangle in our space and were chosen for illustration.

the CIELAB color space. Figure 9 shows an example of this inter-
polation. Note that while the color interpolation is a simple linear
interpolation in color space based on the two endpoint BRDFs, the
interpolation for gloss is based on interpolation between five inter-
mediate BRDFs, as shown in Figure 6(b).

7. DISCUSSION

In this study we have presented the results of a psychophysical study
of the perception of achromatic isotropic reflectance. The study uses
the largest publicly available data set of measured reflectances. We
introduced a novel MDS algorithm for analyzing the data we col-
lected. This algorithm is an efficient and more general replacement
for the widely used non-metric MDS algorithm.

Analysis of our data-set using this algorithm revealed a
two-dimensional perceptual embedding. The embedding captures
a large fraction of human subject responses indicating that at least
the gross structure of the perceptual space of reflectance can be cap-
tured by approximating it with a low-dimensional Euclidean space.
We compared and correlated this embedding with existing work on
perceptual parameterization of the Ward model, the parameters of
seven analytical BRDF models fitted to the MIT/MERL database,
and nine gloss dimensions. In each case we observed a strong cor-
relation with the perceptual embedding.

We also introduced a novel perceptual interpolation scheme that
uses the geometric structure of this embedding to interpolate be-
tween BRDFs. This procedure is computationally efficient and lo-
cally linear. We showed how this scheme performs better than simple
linear interpolation from one target BRDF to another.

We are aware that the small size of the BRDF database, and the
use of a fixed geometry, illumination, and viewpoint to evaluate the
various BRDFs limits the scope of our study and the strength of the
conclusions we can draw from it. But for reasons of tractability, any
study of this kind has to hold certain variables constant.

Despite the limited scope of our experiments, it is interesting that
significant correlations with existing work can still be observed. The
design and execution of experiments that investigate how the per-
ception of a reflectance function varies as illumination, viewpoint,
and geometry are allowed to change remains a subject of continu-
ing research [Adelson 2001; Knill and Kersten 1991; Fleming et al.
2004b; Vangorp et al. 2007]. We hope that this work will set the
stage for larger and more elaborate studies of this kind in the future.

There are a number of very interesting avenues for future work;
we briefly mention some of them here. One interesting direction
to explore is the effect of motion on the perception of reflectance
[Hartung and Kersten 2002]. It is often the dynamic reflectance that
makes it easier to spot fakes in rendered scenes. It may be inter-
esting to show users rotating geometry and/or cameras to see the
effect on discrimination by the user. Further, one can ask, how does
the scale and magnification of the object affect the ability to dis-
criminate between materials? This has important implications on
level-of-detail research. Also in talking to the test subjects after the
experiment, many of them mentioned that they became quite profi-
cient at quickly examining certain portions of each of the images. It
will be interesting to monitor the eye movement of the subjects and
study how reflectance and image saliency are related.

The perceptual interpolation procedure described in this article
is a first step towards constructing an easily navigable space for re-
flectance. Part of the ease of navigation of this space is due to its two
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Fig. 7. Uniform perceptual sampling. The convex hull of the perceptual embedding was resampled, for each point a new BRDF was generated using the
perceptual interpolation procedure that was then used to render the nose of the Stanford bunny.

Fig. 8. Perceptual vs. linear Interpolation. The top row shows a perceptual interpolation (left to right) from a very matte material to one that is very specular.
The bottom row shows the linear interpolation. The primary difference in this case is in the specular peak and the overall impression of glossy vs. matte. In the
perceptual interpolation (top) the change in the specularity is more gradual whereas linear interpolation (bottom) jumps to a glossy material in just one step
from the matte material.

dimensional structure. As we model finer scale structure variations,
the dimensionality of this space will likely go up, which will neces-
sitate novel user interfaces for navigating them.

The MDS algorithm we have proposed in this work is a novel and
general tool that we expect to have applications in various fields
including psychophysics, vision, and graphics. It is simple to ex-
tend it to other experimental setups like pairs of pairs and complete
ranking [Agarwal et al. 2007]. A similar formulation can perhaps be

used to learn empirical distance functions that will allow us to mea-
sure perceptual distance between two previously unseen BRDFs
without performing an additional psychophysical study. Another
direction of work is the so called out-of-sample extension; given
an embedding with n BRDFs, and a new BRDF with some paired
comparisons relating it to these BRDFs, can we find its position
in this embedding without calculating the entire embedding from
scratch?

ACM Transactions on Graphics, Vol. 28, No. 4, Article 103, Publication date: August 2009.



103:14 • J. Wills et al.

Fig. 9. Perceptual interpolation: four Buddhas rendered in the Galileo environment. The images on the far right and left are rendered from real measured
BRDFs (aluminum bronze and teflon, repectively). The images in between are rendered using BRDFs that are constructed by perceptually interpolating the
measured BRDFs in our perceptual space.

APPENDIX

A. CLASSICAL MULTIDIMENSIONAL SCALING

Let D be an n × n matrix of pairwise distances. The matrix D is
symmetric with a zero diagonal. We are interested in finding a d ×n
matrix X where each column xi is the representation of the point i
in Rd and Di j = ‖xi − x j‖2. Denote the inner product (or Gram
matrix) for this set of points by K = X�X.

K is an n × n symmetric positive semidefinite matrix. Let us now
abuse notation and use D2 to indicate the matrix of squared pairwise
distances K = − 1

2 (I−11�)D2(I−11�). Here, I is the n ×n identity
matrix and 1 is the n-vector of all ones. In light of this, solution to
the classical multidimensional scaling problem is straightforward.
Given the eigenvalue decomposition K = U�U�, it follows that
X = U�1/2. The solution so obtained is ambiguous to a global
rotation.
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