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Abstract

GUI-based web agents navigate websites by analyzing
screenshots rather than HTML, offering a more intuitive
approach to web interaction. However, this reliance on vi-
sual input introduces new vulnerabilities, particularly dur-
ing the visual grounding phase, where agents locate inter-
face elements. We show that visual grounders can be reli-
ably fooled by adversarially crafted third-party ads, even on
otherwise trusted websites. Our attacks include Naive Con-
fusion, which mimics real elements to mislead the agent,
and an Invisible Attack, which hides perturbations in ads
that appear normal to human users. These attacks require
no control over the host site and minimal knowledge of the
agent’s task, making them both practical and scalable.

1. Introduction
AI agents have attracted growing interest in both re-

search and industry, particularly those designed to perform
tasks by browsing and interacting with websites. Tradition-
ally, such agents have relied on parsing the HTML source
code of web pages, which contains the complete struc-
tural and content information. However, HTML is often
verbose, cluttered, and not directly human-readable, mak-
ing it challenging to infer the intended user experience or
identify the most relevant information. In contrast, the
Graphical User Interface (GUI) of websites is explicitly
designed to highlight important content and facilitate user
interactions. Consequently, recent research has explored
agents that operate solely on GUI-level inputs—using com-
puter vision techniques to analyze webpage screenshots
and perform pixel-level actions such as clicking and hov-
ering—achieving promising results in web navigation and
task execution (e.g. [1, 2, 5, 6, 11, 12, 27]).

Using the GUI, however, can expose the AI Agent to
malicious input, even on trustworthy sites. This can happen
in the following scenarios, for example:

• Trusted web-pages often contain embedded pages (e.g.
advertisements) that are less trustworthy than the host

and may be operated by a malicious actor.

• Social media sites and forums contain user generated
photos, by potentially malicious users.

• Marketplace listings contain seller generated images,
potentially by a malicious seller.

Thus, if the use of GUI Agents becomes widespread, it
would be easy for adversarial actors to inject content that
will effect their behavior. Motivations for such attacks are
easy to imagine, from simple denial of service attacks which
cause the agent to fail at its tasks, through click-farming,
phishing users and agents to fake copies of a websites, to
complex attacks that cause the agent to expose personal
information to a malicious website instead of to the origi-
nal target. If an attack is successful with high probability
against a popular AI agent, it will naturally scale well.

In this work, we show that such attacks are feasible and
can be easily executed by an adversary that only controls an
embedded advertisement.

1.1. Attack Approach

Architectures used for GUI Agents vary, but typically
include some combination of planning, grounding, and exe-
cution phases [20,29]. For example, the planning phase can
use a reasoning techniques to devise a plan to complete the
task, and output a list of actionable steps in standardized for-
mat. Then, the model can uses a Visual Grounding step to
find where is the element that the agent should interact with
in order to follow the planning step, and the execution step
uses that information to actually complete the task. While
this is just an example of a workflow, all GUI agents have
a visual grounding or object detection step somewhere in
their workflow to to identify where elements are. We focus
on this step for our attack.

Traditionally, the visual grounding step has has a seem-
ingly simple job: in a given screenshot, find the pixel co-
ordinate of an element matching this description. In the
case of UGround [5], for example, the input to the Vi-
sual Grounder is always of the form “In the screenshot,
what are the pixel element coordinates corresponding to
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{standardized description}.”. Other designs use a more
complex prompt, such as “where do I need to click to but
this product”, putting more responsibility into the visual
grounder. Additionally, some agents use an object detec-
tion model instead to detect key webpage elements before
the planning phase. Regardless, the output is typically some
standardized description of what the agent sees and where
it needs to click next. We demonstrate success in fooling
the visual grounder into returning coordinates within a ma-
liciously generated advertisement using the following two
approaches:

• Naive Confusion: Have the advertisement includes an
object that is similar to the one the agent is looking
for. This attack idea is widely used against humans,
especially in disreputable sites (e.g. Figure 1), and di-
rectly generalized to GUI agents. While this attack is
effective, it is easily detectable by human visitors of
the page.

• Invisible Attack: This attack creates an advertisement
that looks normal to visitors of the webpage (e.g. Fig-
ure 2). However, using invisible adversarial perturba-
tions, it will cause the model to recognize it as the
button to click. Since such malicious advertisements
are visually indistinguishable from legitimate adver-
tisement, they circumnavigate defense techniques by
host sites.

Figure 1. An ad intended to trick humans, embedded in
softonic.com.

1.2. Threat Model

Our adversary is an entity with the capability to embed
visual content, such as advertisements, within otherwise
trusted webpages. Importantly, we assume that the adver-
sary has no influence over the host website (outside the ad-
vertisement) - allowing it to operate on mainstream popular

Figure 2. A normal ad found in bestbuy.com. It does not
seem malicious. To humans, the output of our invisible attack is
indistinguishable from normal ads.

sites. For our invisible attack, we also require that the ma-
licious advertisement does not look “scammy” or malicious
(unlike Figure 1), so circumnavigate defenses.

This reflects a realistic and common deployment pattern
on the modern web, where third-party ad networks and em-
bedded media platforms serve content that is not directly
controlled by the host site but are filtered for deceiving con-
tent. This threat model, where the adversary has control
over advertisements in trusted sites, has proved realistic and
was exploited at scales for malware infection, misinforma-
tion spread, scamming, click-fraud, and other attack goals.
(e.g. [9, 15, 17, 19, 24, 25]).

We do not require the adversary to know information
about the user or the mission of the agent (beyond guess-
ing which button it is looking for), allowing attacks at scale.
However, our invisible attack requires white-box access to
the visual grounder, which is realistic with open source or
leaked software. Our Naive Confusion attack works with
only black box access, as we demonstrate by attacking pro-
prietary models.

1.3. Related Work

As web agents, including GUI agents, are improving and
nearing deployment in increasingly complex and dynamic
web environments, their attack surfaces expand as well as
interest in attacks.

Recently, many concrete attacks have been proposed,
demonstrating both that attacks can achieve both denial of
service (reducing the success rate of agents on benchmarks)
and other more sophisticated goals such as stealing per-
sonal information. However, such attacks primarily rely on
a threat model with stronger adversaries that are capable
of controlling the content in the visited website (the host
website in our terminology) [10, 13, 21, 22, 28], use popups
or elements that are visibly malicious (similar to our Naive
Confusion attack) [13,26], or have control over some of the
training data [23]. There are also works that take a more
general look at the attack surface and devise frameworks
for attacks and defense techniques [14, 18, 23].
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The closest work to ours is that of Wu et al [21], which
looks at adversarial perturbation of parts of the visited web-
page, primarily in the context of malicious product photos
in online marketplaces. However, they do not consider ma-
licious advertisements, which we believe is a more immedi-
ate threat since they can easily be controlled by adversaries
with no ties to the host website. Furthermore, their attack
is limited to effecting agent’s behavior within the host site
as opposed to redirecting it to a site that is under the adver-
sary’s control, resulting in a smaller threat than that from
our attack.

2. Warm Up: Naive Confusion Attack

As a warm up, we show that GUI agents fall for tricks
that generally work against humans. A malicious ad with
fake webpage elements can easily fool state of the art mod-
els that are commonly used for visual grounding. This at-
tack works in the weak threat model where the adversary
only has black-box access to the model, and can thus be
easily executed against proprietary models.

As a proof of concept, we executed our attack against
Open AI’s ChatGPT-4o [16], Google’s Gemini 2.5 Flash
[3], and Ai2’s Molmo [4]. Based on our experiments, within
a few (< 5) queries to each model we were able to gener-
ate a malicious advertisement that fool these models con-
sistently (three out of three times). Examples of successful
advertisements are included in Figure 3. While they are
unlikely to fool a human, they are similar in spirit to adver-
tisements that attempt to do so.

3. Main Attack: Invisible Perturbations

In this attack we begin with a legitimate looking adver-
tisement, and apply invisible perturbations to it so that it
fools the model into thinking that legitimate webpage ele-
ments are in the advertisement.

3.1. How to Generate Invisible Perturbations?

First, we describe the technique we use for generating in-
visible perturbations, which is an adaptation of the iterative
gradient based algorithm of Kurakin et al. [8].

We start with a normal adA, embedded in a pageW . We
then modify A slightly so that the model thinks it contain
some important page element. At a high level, we do the
following:

1. Create a fake ground-truth label saying that the target
element is in A.

2. Run the grounding model on W . Then, Compute the
loss of the models output with respect to the fake label,
and run a backward pass to compute the gradients.

Figure 3. Naive Confusion Attack advertisements that fooled
Molmo (top), Chat-GPT 4o (middle), and Gemini 2.5 Flash (bot-
tom). All models were asked where to click in order to get a deal.

3. Adjust the pixels channel within A by a small step ϵ
opposite to the gradient direction, to make the model
more likely to believe that the element is in A.

4. Ensure no pixel in the updated A deviates from its
value in the original advertisement by more than δ,
clipping it back otherwise, to maintain imperceptibility
to humans.

5. Repeat steps 2-4 for N epochs.

We present a pseudoscope description of this process in
Algorithm 1.
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Note that this techniques is not limited to visual
grounders and object detection models, which is the focus
of this paper, but can be utilized against models designed
for almost any task.

In our setting, our experiments prove successful within
N = 50 epochs, with δ as small as 0.03 (as a fraction of
256), which results in the perturbations being invisible if
the area is textured1.

Algorithm 1 Invisible Perturbation on an Advertisement

Input: Grounding model M , webpage screenshot W , tar-
get element E, ad region A, step size ϵ, max perturba-
tion δ, number of epochs N .

1: Create a fake label ℓfake stating that E is in A
2: Let W0 ←W ▷ Store original image
3: for i = 1 to N do
4: out←M(W )
5: loss← Loss(out, ℓfake)
6: gradient← ∇W (loss)
7: for all pixel channels p in A do
8: pnew ← p− ϵ · sign(gradient at p)
9: p0 ←W0 at p

10: pnew ← clip(pnew, p0 − δ, p0 + δ)
11: Update p in W with pnew

12: return perturbed webpage W

Additional Optimizations. This algorithm can be seen as
vanilla gradient descent as used to “train the input.” Natu-
rally, it is possible to use more complex training logic. One
technique that we found to be effective is learning rate de-
cay, which decreases the value of ϵ by a factor of 0.8 every
30 epochs, starting after the 100th epoch.

3.2. Experimental Setup

Due to compute constraint, we chose to show a proof of
concept on a small model. State of the art visual grounding
models contains billions of parameters and cannot be run
without a GPU, even only for inference as we need for our
attack. We wanted to be able to run our experiments with
no monetary expanses, so we decided to scope this project
to what we can compute locally on a laptop with a CPU.
Therefore, we fine tuned the object detection model YOLO
version 8 Nano [7] to detect webpage elements, and used it
to test our attack. We believe that the attack techniques we
used would carry over to larger, state of the art grounding
models, and can easily be executed by an adversary who
has more compute. Since the attack is scalable, it is likely
an adversary would be willing to invest in compute for the
sake of mounting it.

1These are minimal numbers that we got to work, the figures in this
papers were generated with different hyper-parameters.

Our fine tuned Yolo model was tuned to detect the search
bar, Add to Cart button, Buy Now button, and Get Deal
button on three websites: Amazon, Best Buy, and Slick
Deals. We used a custom dataset that we collected for the
fine tuning, and the default training scheme provided by
Yolo (which includes data augmentation, allowing success-
ful training on approximately 60 screenshot). The fine tuned
model achieved a validation accuracy of 100% on a valida-
tion set of twenty screenshots from these websites, as well
as successfully recognizing all relevant objects (with a con-
fidence of > 0.4 and no false positives) on non-adversarial
images during our experiments.

For our experiment, we show that by controlling embed-
ded advertisements in the websites that the model is trained
to operate on, we can make it think that each one of the
categories it is trained to discover are contained within our
ad. Additionally, the ad looks non-malicious to humans in
the sense that they appear the identical to actual ads that we
queried from visiting these sites (e.g. Figure 2).

3.3. Successful Attacks

Our experiments show that the invisible attack is easy to
mount, fast, and very effective. Starting with an arbitrary
screenshot that contains a third party advertisement, we
were able to fool the model into thinking that each webpage
element that it was trained to detect is contained within the
advertisement. This was done, as mentioned, by only mod-
ifying the values of pixels within the adversary-controlled
advertisement, but not in other region on the host site.

Figure 4 shows an example of a successful attack, includ-
ing the model’s output on the page with the original adver-
tisement compared with the model output on the same web-
page, but with a perturbed advertisement. Figure 5 shows a
visualization of the malicious perturbation that we applied.
It should be noted that the perturbed advertisement does not
appear malicious to human visitors of the page, and is in
fact hard to differentiate from the original (non-malicious)
advertisement.

3.4. Practical Details and Trade-Offs

In our experiments, we were able to generate a work-
ing attack within 50 epochs (using Algorithm 1). Such an
attack took less than a minute to run on a laptop machine
using only a CPU. However, this required a large value of
δ, which denotes the maximum allowed perturbation. Such
a high value of δ (about 0.1, as a fraction of 256) made
the attack somewhat visible and the resulting advertisement
a little distorted. However, the change is still hard to no-
tice and the advertisement certainly does not look malicious
(unlike those from the naive attack, Figure 3). Using these
parameters, the model recognized the features to be within
the malicious ad with confidence of 0.7.

To generate a truly invisible patch we had to lower δ to
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Figure 4. Top: The output of the model, projected on the original
non-malicious advertisement. Bottom: The output of the model
on the same webpage, but with adversarially perturbed advertise-
ment. Note that it recognizes all of the important webpage element
to be within the ad, with a high confidence score.

around 0.02. In turn, this required a smaller step size to
work (ϵ), and slower training in general. While this still
generated a successful attack, and there was next to no ev-
idence of perturbations that were visible to human, it re-
quired more epochs to generate (about 600 to reach good
performance), and resulted in confidence scores of about
0.6 for the elements being within the ad.

For our best attack, which is portrayed in Figure 4, we
used hyper-parameters which found a balance in the model.
We set δ to be 0.05, which is perceptible on smooth sur-
faces by extremely hard to detect on textured advertisement
(requires humans to zoom in to a point where they can al-
most see individual pixels to detect the attack reliably). This

Figure 5. A visualization of the perturbation used to generate the
adversarial advertisement in Figure 4. Each pixel value is its ab-
solute change from the original to the modified photo, ×10 so it
is visible. Note that only the advertisement pixels were modified,
per our threat model.

attack provides good result within 150 epochs (of > 0.6
confidence of the elements being within the ad), but for the
sake of the figure we continue for 1500 epochs to obtain the
confidence scores in Figure 4. Generating that particular
adversarial image took about 20 minutes on a laptop with
only a CPU.

3.5. Scalability Considerations

While not strictly necessary to demonstrate a proof of
concept in our threat model, from our experiments we make
the following observations, which would effect the scalabil-
ity of the attack.

First, the attack works well even on different webpages
than the one it was designed for. That is, a maliciously gen-
erated advertisements can be embedded in many webpages
and work well in all. Similarly, the attack is robust to the
location on the page where the attack is served.

Furthermore, We can create multiple fake page elements
in a single advertisements (e.g., Figure 4). For example, we
demonstrate that it is easy to fool a model into thinking that
the search bar, add to cart button, and buy now button are all
contained within our ad. This allows for better success rate
for the attack in our threat model where we have to guess
which element the agent is looking for within the page.

3.6. Attack Limitations

The attack is very sensitive to pixel-adjustments. For
example, embedding the image in devices with different
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resolutions will make it no longer work. Similarly, minor
changes to how the model pre-processes the image would
turn the ads harmless, and require the adversary to gener-
ate new ones. This is okay within our threat model, since
we assume an adversary that targets a stable model that is
used in deployment, and who knows which device it is using
(advertisers typically know that information when deciding
whether to place a bid for an ad). However, an interesting
direction for future works would be to apply robust pertur-
bation techniques to create more robust magnetic ads.

Another limitation is that our attack requires the ability
for the adversary to compute model gradients. This is also
okay within our threat model, since many state of the art
agents currently use open source models. However, an in-
teresting future direction is to create a similar attack that
works against proprietary models that only provide black
box access. One approach to doing that would be to com-
pose our attack on top of an attack that steals the model
weights, since such attacks are getting more and more prac-
tical, or use more robust perturbation techniques that are
less reliable, but sometimes work across models.

4. Conclusion
In this work, we demonstrated that AI agents relying

on GUI-level visual inputs are susceptible to attacks orig-
inating from seemingly embedded advertisements within
trusted websites. By focusing on the visual grounding step,
a crucial component in many GUI agents, we have shown
that adversaries can craft advertisements that are either con-
fusing or imperceptibly adversarial, effectively hijacking
the agent’s interaction with the intended webpage.

These attacks are easy to implement, and are quite ef-
fective and scalable. Therefore, it is likely that we will see
them used often if and when agents become widely used.
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