
On the Existential and Strong Unforgeability of Multi-Signatures in the
Discrete Log Setting

Sela Navot

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science

University of Washington

2025

Faculty Supervisor:

Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering

University of Washington

Abstract

On the Existential and Strong Unforgeability of Multi-Signatures in the Discrete Log Setting

Sela Navot

Faculty Supervisor:
Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering

Digital signatures are typically required to be existentially unforgeable (EUF), ensuring that no ad-

versary can produce a valid signature on a new message that has not been signed before. A stronger

notion, strong unforgeability (SUF), also ensures that adversaries cannot forge new signatures on

messages that have already been signed. These notions are well understood for plain signatures,

but defining them for distributed multi-signature protocols, where multiple signers jointly produce

a signature via an interactive protocol, is more challenging. While EUF has been studied for

multi-signatures (using multiple competing definitions), there is no general definition for SUF, even

though multi-signature protocols are often used to produce strongly unforgeable plain signatures.

This thesis introduces one-more unforgeability (OMUF) as a convenient way to model SUF in

distributed signing protocols, and arrives at the following conclusions:

• MuSig and Bellare-Neven multi-signatures satisfy OMUF, even when the first signing round

is pre-processed before the message to sign is known, but become completely insecure if the

second signing round is also pre-processed.

• MuSig2 satisfies OMUF, which is important due to its widespread use in Bitcoin.

• The HBMS and mBCJ schemes do not satisfy OMUF, despite the fact that both schemes dis-

tributively generate strongly unforgeable plain signatures. Additionally, our analysis reveals

an issue with the existential unforgeability of mBCJ, which does not contradict its original

security proof.

TABLE OF CONTENTS

Page

Section 1: Introduction . 1

Section 2: Preliminaries . 6

Section 3: Security Definitions for Multi-Signatures . 12

3.1 Specifications and Usage . 12

3.2 Existential and Strong Unforgeability . 14

Section 4: Analysis of MuSig . 19

4.1 Scheme Description and Prior Security Proofs. 19

4.2 One-More Unforgeability . 21

4.3 Insecurity with Delayed Message Selection . 28

Section 5: Analysis of Bellare-Neven Multi-Signatures 34

5.1 Scheme Description . 34

5.2 One-More Unforgeability . 35

5.3 Insecurity with Delayed Message Selection . 41

Section 6: Analysis of MuSig2 . 46

6.1 Scheme Description. 46

6.2 One-More Unforgeability. 48

Section 7: Analysis of HBMS . 53

7.1 Scheme Description . 54

7.2 Attack Against One-More Unforgeability . 54

7.3 SUF of Underlying Plain Signature Scheme . 57

Section 8: Analysis of mBCJ . 63

8.1 Scheme Description and Security Model . 64

8.2 One-More Unforgeability Attack. 65

i

8.3 Forging a Signature with Arbitrary Signing Groups 68

8.4 SUF of Underlying Plain Signature Scheme . 69

Bibliography . 75

ii

ACKNOWLEDGMENTS

I would like to thank Professor Stefano Tessaro for his encouragement to pursue research in

cryptography, and for his continuous guidance and support. His mentorship has been invaluable. I

have been fortunate to work with and learn from many incredible researchers, including Professor

Nirvan Tyagi, Hanjun Li, and many others inside and outside of the cryptography lab. Thank you

all for the inspiration!

iii

PREFACE

This thesis is primarily based on materials from the following works, which have been integrated

and revised to form a coherent narrative.

[27] Sela Navot and Stefano Tessaro. “One-More Unforgeability for Multi- and Threshold Signa-

tures,” published in the proceedings of Asiacrypt 2024.

[26] Sela Navot. “Insecurity of MuSig and Bellare-Neven Multi-Signatures with Delayed Message

Selection,” Cryptology ePrint Archive, Report 2024/437.

The technical contributions presented here are drawn from these papers, except for Section 5.2,

which is published here for the first time. Portions of the introduction have also been adapted from

these works, but it has been expanded to align with the structure of the thesis and to incorporate

new developments.

iv

1

Section 1

INTRODUCTION

There has been growing interest in protocols for the distributed generation of digital signatures,

in the form of threshold signatures [14, 15] and multi-signatures [20]. While distributed signing

protocols have been studied for decades, their recent widespread use has been driven by applications

in blockchain ecosystems, such as digital wallets [18], and to enforce the need for multiple signatures

to authorize a transaction. Threshold signatures and multi-signatures are also at the center of

standardization efforts by NIST [25]. In this work, we focus on the formal security definitions of

multi-signatures, and analyzing the security of practical schemes.

What are multi-signatures. Multi-signature schemes are a specific type of distributed signing

protocol, which allows a group of signers to provide a succinct joint signature for an agreed upon

message. Each signer generates their own keys, independently. Then, any group of signers can

come together to generate signature shares and aggregate them into a multi-signature, which can

be verified using a verification key obtained by aggregating the verification keys of all involved

signers. Multi-signature schemes are useful if the size of the multi-signature remains constant

regardless of the number of signers, allowing efficient verification and storage (or broadcasting) of

signatures in settings with many signers.

Signature security: existential and strong unforgeability. Plain (non-distributed) dig-

ital signatures are typically required to be unforgeable under a chosen message attack. Existential

unforgeability (EUF) requires that no efficient adversary can forge a valid signature on any new

message (not previously signed) under the target verification key, even after seeing signatures for

messages of its choice. Strong unforgeability (SUF) is a stronger notion, which also forbids the

adversary from producing a different valid signature on a message for which it has already seen

a signature. Since distributed signing protocols aim to replicate the security guarantees of their

underlying signature schemes, these distinctions become important when analyzing the security of

multi-signatures.

2

Security definitions for multi-signature. Security definitions for distributed signing are far

more challenging than definitions for signatures in isolation. A key point is that issuance of signa-

tures generally involves an interactive protocol (this is the case for all pairing-free schemes, which

are the focus of this paper), and executions are subject to adversarial corruptions. Often, the

adversary can not only corrupt a subset of the signers but also control communication between

them—this is the case for a common model where inter-signer communication is mediated by a

proxy. An additional source of complexity is that some schemes allow some of their signing rounds

to be pre-processed, which means being completed before the message to be signed or the identity of

all the signers have been determined. In other schemes, as we show, pre-processing of some rounds

is possible but compromises the security of the scheme.

This makes it hard to define when a signature on a message has been issued, and, in turn,

to formalize a notion of existential unforgeability. A number of works sidestep this question by

considering a message signed as long as a signing session started on it, including, for example, all

existing security proofs for Bellare-Neven multi-signatures and MuSig [7, 24, 12, 5, 36]. However, a

security proof that uses such a definition does not rule out adversaries who forge a multi-signature

for a message after seeing the output of some, but not all, of the signing rounds for that message.

Such a definition also does not work for analyzing schemes that support pre-processing, since the

message to sign is not yet determined when the signing session begins. In other works, the definition

is tailored to the specific structure of the scheme (for example, in the analysis of MuSig2 [30]) or a

very limited class of schemes, as in [4, 10], where Bellare et al. put forward a hierarchy of security

notions for partially non-interactive threshold signatures.

Strong unforgeability for multi-signatures. This work considers a further challenge in the

study of security definitions for multi-signatures, namely the definition of strong unforgeability.

This standard notion of security for plain signatures ensures that, in addition to achieving regular

unforgeability, an adversary cannot come up with a different signature for a message for which it

has already seen valid signatures. It is natural to expect that a distributed signing protocol for a

strongly unforgeable signature scheme, like Schnorr signatures [34, 32], should also ensure strong

unforgeability. However, somewhat jumping ahead, we will show that in general this is not true:

there are strongly unforgeable signature schemes with distributed signing protocols that are not

3

strongly unforgeable.

Strong unforgeability is particularly relevant in the context of blockchain ecosystems. In Bit-

coin, multi-signatures are routinely used to generate Schnorr signatures [29, 41]. This usage was

made official earlier this year when the standard cryptography library maintained by the Bitcoin

Core Project, secp256k1,1 added an implementation of MuSig2 [30]. However, lack of strong un-

forgeability of plain signatures has been associated with costly transaction malleability attacks

[13, 1] and was a major motivation for Bitcoin’s adoption of the strongly unforgeable Schnorr Sig-

natures [40, 22, 41]. Thus, it is prudent not to break the strong unforgeability guarantee when the

signatures are issued in a distributed setting, further motivating our work. Jumping ahead again,

we show that MuSig2 is indeed strongly unforgeable, and thus does not break that guarantee.

It turns out that a rigorous definition of strong unforgeability for distributed signing is challeng-

ing, as the winning condition requires defining which signatures have been generated by interactive

signing protocols subject to adversarial behavior, and it is not always clear how to do this. In

the setting of threshold signatures, for example, Bellare et al. [4, 10] give definitions of strong un-

forgeability for a limited class of semi non-interactive threshold signatures where the signature is

uniquely defined by the input to the second signing rounds, but this is not a property we expect a

protocol to have, and no general definition is known nor is it known how to extend this definition

to multi-signatures.

This work: one-more unforgeability. In order to give a generic definition of strong unforge-

ability, this paper proposes the notion of one-more unforgeability (OMUF) as the better approach

to model strong unforgeability. OMUF requires that after a certain number ℓ of executions of the

signing protocol for a message m, the adversary can generate no more than ℓ signatures for that

message. A similar notion is widely used for blind signatures and was introduced by Poitncheval

and Stern [31, 33], and we argue that it is natural for distributed signing. In particular, for non-

distributed plain digital signatures, OMUF and the classical definition of strong unforgeability are

in fact equivalent.

Our contributions. Concretely, we make the following contributions.

• New Definition. We formalize the notion of one-more unforgeability for multi-signature

1https://github.com/bitcoin-core/secp256k1

https://github.com/bitcoin-core/secp256k1

4

schemes, and argue that it is a useful way to model strong unforgeability. Our definition

is modular and can be used for schemes with different structures, including those that sup-

port pre-processing. Additionally, our definition considers a message signed only when all

interactive signing rounds have been completed, and thus it implies unforgeability against

adversaries who forge a multi-signature after completing some, but not all, of the interactive

signing rounds for the corresponding message.

• Proofs and Attacks for MuSig and Bellare-Neven Multi-Signatures. Both MuSig [24]

and its predecessor Bellare-Neven multi-signatures [7] employ a three-round signing process

in which the message to be signed is only used in the final round. We first prove that these

protocols satisfy One-More Unforgeability, even when the first signing round is pre-processed

before the message to be signed is determined. In addition to establishing strong unforgeabil-

ity, this is the first proof that rules out forgeries of signatures on messages that were used for

some, but not all, of the signing rounds. Additionally, ours is the first security proof for the

case when the first signing round is pre-processed.

However, even though the signing protocol of these schemes seemingly allows pre-processing

of the second rounds, our analysis demonstrates that this approach compromises security. In

that setting, we present a practical polynomial-time attack that fully breaks both existential

and strong unforgeability in less than a second on a laptop.

• One-More Unforgeability of MuSig2. We prove that MuSig2 [30] satisfies One-More

Unforgeability. As we mentioned, this positive result is of practical interest due to widespread

use of MuSig2 in Bitcoin applications, and in light of a long history of attacks resulting from

lack of strong unforgeability.

• Attacks for HBMS and mBCJ. We show that the HBMS [5] and mBCJ [16] multi-

signature schemes do not satisfy One-More Unforgeability using a polynomial time attack

based on the algorithm of Benhamouda et al. [11] to solve the ROS problem [35]. This is

despite the fact that both scheme generate strongly unforgeable plain signatures, which we

prove.

5

Our analysis also reveals a subtle issue with the existential unforgeability of mBCJ: an ad-

versary can use signatures for a message m and a signing set S to forge a signature for the

same message that is valid for a different arbitrary signing set. While this attack does not

contradict the original security proof of [16], since their security definition does not cover such

forgeries, it renders the scheme not existentially unforgeable according to our and other well

accepted definitions.

A summary of our analysis of existing schemes is presented in Table 1.1.

Scheme Existential
Unforgeability (EUF)

One-More
Unforgeability

(OMUF)

Bellare-Neven [7] ✓ ✓

(with delayed message selection) (✗) (✗)

MuSig [24] ✓ ✓

(with delayed message selection) (✗) (✗)

MuSig2 [30] ✓ ✓

HBMS [5] ✓ ✗

mBCJ [16] ✗ ✗

Table 1.1: Summary of unforgeability properties of existing schemes.

6

Section 2

PRELIMINARIES

Notation. We use multiplicative notation for all groups except for Zp, which denotes the integers

modulus p. Addition and multiplication operations of Zp elements are modular. Logarithms use

base 2.

In pseudocode, we use ← for assignment and ←$ for randomized assignment. In particular,

x←$ S denotes sampling an element uniformly at random from a finite set S and x←$A(x1, . . .)

denotes assigning the output of a randomized algorithm A with uniformly random random tape

and input x1, . . . to x. We use ⊥ to denote an error value, and use subscripts for array indexing. All

variables are assumed to be uninitialized until assigned a value. Arrays and lists are one-indexed.

Games framework. We use the game playing framework of Bellare and Rogaway [9] for all

security definitions and hardness assumptions, with minor simplifications.

A game consists of an initialization algorithm (Init), finalization algorithm (Fin), and any

number of algorithms that can be queried as oracles. When a randomized algorithm A (usually

called an adversary) plays a game Gm, which we denote by Gm(A), A is executed with the output

of Init as its input. A may query the oracles repeatedly at the cost of a single time unit per query.

When A terminates, Fin is executed with the output of A and outputs true or false, which is the

output of the game. We use Pr[Gm(A)] as a shorthand for Pr[Gm(A) = true] where the probability

is taken over the randomness of A and Gm. A game may have parameters params, such as a group

used by the game or the number of permitted queries to some oracle.

All schemes and hardness assumptions in this paper are parameterized by an underlying group

G of publicly known prime order p, and their security parameter is log(p).

Definition 1. We define the advantage of an adversary A against an assumption ASMP defined

by the game Gmasmp
params as

Advasmp
params(A) := Pr[Gmasmp

params(A)].

7

The assumption ASMP holds if Advasmp
params(A) is negligible for all polynomial time adversaries A,

where polynomial and negligible are in terms of the security parameter defined by params.

Definition 2. Let S be a cryptographic scheme with scheme parameters params and suppose DEFN

is a security definition defined by the game Gdefn[S]. We define the advantage of an adversary A

against S as

Advdefn
S (A) := Pr[Gdefn[S](A)].

The scheme S is DEFN-secure if Advdefn
S (A) is negligible for all polynomial time adversaries A,

where polynomial and negligible are in terms of the security parameter defined by params.

Definitions 1 and 2 convert a game definition to a concrete assumption or security definition.

Thus, in the rest of the paper, we only write the game definitions.

Hardness assumptions. This work focuses on schemes that their security relying on the discrete

log assumption. That is, schemes that are secure when instantiated over prime ordered groups G

satisfying the following assumption: is hard to find x given gx, where g is a fixed generator of the

group. We define the discrete logarithm assumption formally in Figure 2.1.

Historically, to prove the security of Schnorr-like schemes from the discrete log assumption,

reductions made use of rewinding techniques to reduce breaking the scheme to the discrete log

assumption, and then forking lemmas to analyze its success probability. Such a reduction is inher-

ently non-tight, in the sense that given an adversary that breaks a scheme with probability p after

making h hash function queries, the probability of a reduction winning the discrete log assump-

tion is of the order of pk

hℓ for some positive integers k and ℓ that are sometimes as big as 4 and 2

in the context of multi-signatures. Such reductions provide little guarantee when considering the

parameters used in practice (e.g. when using 256-bit groups), and are complex and error prone.

Consequently, Bellare and Dai introduce the IDL and the XIDL assumptions (Figure 2.1) that

simplify the analysis of multi-signature schemes [5]. These assumption are proven to hold when the

discrete log assumption holds but are simpler to use.

Proving the security of IDL and XIDL from the hardness of the discrete log assumption requires

the use of rewinding and a non-tight reduction, but once the security of the IDL and XIDL games

are established then the security proofs for concrete multi-signature schemes are simpler, tighter,

8

Game Gmdl
G,g

Init():

1 x←$ Zp; X ← gx

2 Return X

Fin(x′):

3 Return [x = x′]

Game Gmidl
G,g,q

Init():

1 x←$ Zp; X ← gx; i← 0

2 Return X

Challenge(R): // at most q queries
3 i← i+ 1; Ri ← R

4 ci←$ Zp

5 Return ci

Fin(I, z):

6 Return [gz = RI ·XcI]

Game Gmxidl
G,g,q1,q2

Init():

1 x←$ Zp; X ← gx

2 j ← 0; i← 0

3 Return X

NewTarget(S): // at most q1 queries.
4 j = j + 1; Sj ← S

5 ej ←$ Zp; Tj ← Sj ·Xej

6 Return ej

Challenge(jsel, R): // at most q2 queries
7 i← i+ 1; Ri ← R

8 Yi ← Tjsel ; ci←$ Zp

9 Return ci

Fin(I, z):

10 Return [gz = RI · Y cI
I]

Figure 2.1: The Discrete Log (DL), Identification Discrete Log (IDL), and the Random Target
Identification Logarithm (XIDL) games in a group G with a generator g of prime order p.

and more modular. Lemmas 2.0.1 and 2.0.2 show the concrete security of the IDL and the XIDL

assumption. We do remark that Bellare and Dai provide a tight reduction of IDL and XIDL to

the DL assumption which avoids rewinding in the idealized Algebraic Group Model [17], which

suggests that they are hard to break in groups that are used for multi-signatures in practice, but

these results are somewhat orthogonal to our work.

The only other hardness assumption we use, apart from DL or its equivalent IDL and XIDL

assumptions, is in the proof of the strong unforgeability of MuSig2. Our proof, like the original

existential unforgeability proof of MuSig2 [30], relies on the stronger Algebraic One-More Discrete

Log assumption. We present that assumption in Section 6, and note that it is not known to be

equivalent to the discrete log assumption.

Lemma 2.0.1 (DL→ IDL; Theorem 3.2 of [5]). Let G be a group of prime order p with a generator

g, and let q be a positive integer. Let Aidl be an adversary against Gmidl
G,g,q. Then, an adversary

9

Adl can be constructed so that

Advidl
G,g,q(Aidl) ≤

√
q ·Advdl

G,g(Adl) +
q

p
.

Furthermore, the running time of Adl is approximately twice the running time of Axidl.

Lemma 2.0.2 (DL → XIDL; a combination of Theorems 3.2 and 3.4 of [5]). Let G be a group

of order p with generator g. Let q1, q2 be positive integers. Let Axidl be an adversary against

Gmxidl
G,g,q1,q2

. Then, an adversary Adl can be constructed so that

Advxidl
G,g,q1,q2(Axidl) ≤

√
q2(

√
q1 ·Advdl

G,g(Adl) +
q1
p

) +
q2
p

and the running time of Adl is approximately four times the running time of Axidl.

We omit the proofs of Lemmas 2.0.1 and 2.0.2 since they are non-trivial and can be found in

the referenced paper.

The random oracle model. Our security proofs operate in the random oracle model [8], where

hash functions are modeled as idealized random functions that can be queried by all parties. Al-

though the random oracle model is an unrealistic assumption regarding the security of hash func-

tions, it remains the only known way to prove security of Schnorr-like signatures (and all of the

multi-signature schemes analyzed in this paper), and is widely accepted as a useful abstraction. A

scheme that is secure in the random oracle model can be seen as secure against adversaries that do

not utilize any potential weakness of the hash functions used by the scheme.

Definitions and security for plain digital signatures. A digital signature scheme Σ is a

collection of algorithms Σ.KeyGen, Σ.Sign, and Σ.Verify with the following intent:

Key generation: The randomized algorithm Σ.KeyGen is used for key generation. It takes no

input apart from the scheme parameters and outputs a secret-public key pair.

Signing: The algorithm Σ.Sign specifies the signing procedure. It takes a secret signing key and

a message as input and outputs a digital signature. In some schemes this algorithms is

randomized.

10

Verification: The algorithm Σ.Verify takes a public key, a signature, and a message as input and

returns a boolean value signifying whether the signature is valid.

Correctness of a digital signature scheme requires that running the verification algorithm on

a validly generated signature returns true. More formally, if (vk, sk)←$ Σ.KeyGen then for every

message m that is supported by the scheme it holds with probability 1 that

Σ.Verify(vk,m,Σ.Sign(sk,m)) = true.

The standard security notion that plain (single signer) digital signatures are expected to satisfy

is existential unforgeability, and often the stronger strong unforgeability. Figure 2.2 presents the

game definition of these security properties.

In both security games, the adversary is given an input public key vk and attempts to forge a

signature σ for a message m of their choice that is valid for the said key. The adversary also has

access to a signing oracle that they can query for signatures on adaptively chosen messages. To win,

the adversary needs to output a non-trivial forgery. For existential unforgeability, a forgery (m,σ)

is non-trivial if m was not a signing oracle query. For strong unforgeability (m,σ) is non-trivial if σ

was not a signing oracle response on query m. Thus, a strongly unforgeable scheme guarantees that

every signature that an adversary possesses was obtained from the signing oracle, or equivalently

that the adversary cannot obtain more signatures for a message than the number of such signature

produced by the signing oracle.

11

Games Gsuf-cma[Σ] , Geuf-cma[Σ]

Init():

1 (vk, sk)←$ Σ.Kg()

2 Q← ∅ // message-signature pairs obtained le-
gitimately

3 Return vk

SignO(m):

4 σ ← Σ.sign(m)

5 Q← Q ∪ {(m,σ)}
6 Return σ

Fin(m,σ):

7 If Σ.Verify(vk,m, σ):

8 If (m,σ) ̸∈ Q:

9 If {(m′, σ′) ∈ Q : m′ = m} = ∅:
10 Return true

11 Return false

Figure 2.2: Games used to define the existential and strong unforgeability of a single signer digital
signature scheme Σ. The definition for strong unforgeability, Gsuf-cma, contains all but the dashed
box. The definition for existential unforgeability, Geuf-cma, contains all but the solid box.

12

Section 3

SECURITY DEFINITIONS FOR MULTI-SIGNATURES

3.1 Specifications and Usage

A multi-signature scheme allows a group of signers to provide a succinct joint signature for an

agreed upon message. More specifically, a valid multi-signature by a group of n signers intends to

convince verifiers that each of the n signers have participated in the signing protocol in order to

sign this message with this group of signers.

In this paper, we primarily consider multi-signature in the plain public key model [7], the

setting where each signer has their own long-standing public key that they generate independently

(as opposed to using a distributed key generation protocol). This allows signers to use the same

public key with multiple signing groups.

Key aggregation. A multi-signature scheme supports key aggregation if a signature can be

verified using a single short key, called the aggregate key of the group, as opposed to the public keys

of all the signers. In particular, MuSig [24] and MuSig2 [30] produce ordinary Schnorr signatures

that can be verified with respect to the aggregate key.

Broadcasting versus an aggregator node. In our syntax, the signers sends the output of

each signing round to every other signer. It is sometimes more efficient to use an aggregator node

(may be one of the signers) whose role is to aggregate the output of each signing round and forward

it to the signers, as well as output the final multi-signature. Some authors describe schemes this

way (for example [19, 30]) and every scheme can be described in this manner. Since the aggregator

is not trusted and all the information available to the aggregator is also available to the adversary

in our security model, using an aggregator node does not affect the unforgeability of schemes.

Formal syntax and correctness. A multi-signature scheme MS is a collection of algorithms

MS.Kg, (MS.Signr)
MS.nr
r=1 , and MS.Verify, where nr is the number of signing rounds specified by

the scheme. A scheme also specifies the last interactive round MS.lir, after which it is possible

to construct a multi-signature without knowledge of the signers secret information. If a scheme

13

supports key aggregation, it also has an MS.KeyAgg algorithm accompanied by MS.AggVer for key

aggregation and for verification using the aggregated key. The intent of the algorithms is as follows:

Key generation: The randomized algorithm MS.Kg is used for key generation by each signing

party individually. It takes no input apart from the scheme parameters and outputs a secret-

public key pair.

Signing: The collection of algorithms (MS.Signr)
MS.nr
r=1 specifies the signing procedures to be run

by each signing party, where MS.nr (the number of rounds) is specified by the scheme. Each

round takes a subset of the following as input: a message, a vector of public keys along

with the signer’s index in the vector, the output of previous signing rounds, and some other

information saved in the state of at most one signer (including the secret key). The algorithm

produces an output and updates the state of the signing party, and the multi-signature is the

output of the last round SignMS.nr. These algorithms may be randomized.

Key aggregation: If the scheme supports key aggregation, the algorithm MS.KeyAgg takes a list

of n public keys (vki)
n
i=1 as input and outputs a single aggregated verification key.

Verification: If MS does not support key aggregation, then it has an algorithm MS.Verify that

takes a list of public keys, a signature, and a message as input and returns a boolean value

signifying whether the signature is valid. If MS supports key aggregation, it has the algorithm

MS.AggVer with the same functionality that takes an aggregated public key as input instead

of a list of public keys. In this case, a standard Verify algorithm can be obtained by setting

MS.Verify((vki)
n
i=1,m, σ) = MS.AggVer(MS.KeyAgg((vki)

n
i=1),m, σ). Hence, without loss of

generality, we will only consider MS.Verify in the correctness and security definitions.

The signers maintain a state st which may change throughout the protocol. In particular, using

the convention from [5], each signer i has a long-standing secret key i.st.sk and public key i.st.vk

as well as information associated with each signing session s that they participate in, denoted by

i.sts. The session state includes sts.n, (sts.vkj)
sts.n
j=1 , sts.m, sts.rnd, and sts.me which refers to the

number of parties, the public keys of those signers, the message being signed, the last completed

signing round, and the index of the party within the signers. It is required that signers refuse

14

Algorithm ExecMS((vki)
n
i=1, (ski)

n
i=1,m):

1 For i = 1, . . . , n do:

2 i.st.sk ← ski, i.st.vk ← vki

3 out← (0)ni=1 // output of current round

4 For r = 1, . . . ,MS.nr do:

5 For i = 1, . . . , n do:

6 (σi, i.st)←$ MS.Signr(i.st, (vkj)
n
j=1,m, out)

7 out← (σi)
n
i=1

8 Return σ1

Game Gms-cor
n,m [MS]

Fin:

1 For i = 1, . . . , n do:

2 (vki, ski)←$ MS.Kg()

3 σ←$ ExecMS((vki)
n
i=1, (ski)

n
i=1,m)

4 Return MS.Verify((vki)
n
i=1,m, σ)

Figure 3.1: Left: an honest execution of the signing protocol of a multi-signature scheme MS.
Note that signing rounds may only use a subset of the provided input. Right: a game defining
the correctness of a scheme. A scheme satisfies perfect correctness for a natural number n if
Pr[Gms-cor

n,m [MS]] = 1 for each supported message m.

requests to run the algorithm Signr for a session s if r ̸= sts.rnd + 1. The state may also include

other information such as the output of previous signing rounds or the discrete log of a nonce.

Figure 3.1 describes an honest execution of a multi-signature scheme and provides a correctness

definition.

3.2 Existential and Strong Unforgeability

Existential unforgeability of multi-signature in the plain public key model is an extension of the

existential unforgeability definition for plain signatures. In the standard definition, the adversary

is given a public key vk of an “honest signer” as input, and is able to query a signing oracle in

which the honest signer completes the signing algorithms for messages and signing groups chosen

by the adversary. If the scheme contains multiple signing rounds, then the adversary may also

adaptively choose the input to each signing round as well as interweave the rounds of different

signing sessions. The adversary wins if they output a non-trivial valid signature for a message m

and a group of public keys (vki)
n
i=1 that contains vk, where non-trivial means that the signing

oracle did not complete a signing session to sign m with this group of signers.

Extending strong unforgeability to multi-signature schemes is more challenging. The natural

security goal is the guarantee that every valid signature was legitimately obtained, but it is unclear

how to formalize this goal into a precise definition. First, an interaction with the signing oracle

15

does not output a multi-signature but a signature share, whereas the winning condition for the

adversary includes producing a valid multi-signature. Furthermore, the single signature share may

not uniquely define the aggregate signature, which also depends on input from signers that are

controlled by the adversary. Therefore, simply tracking the outputs of the signing oracle does not

allow us to distinguish between trivial and non-trivial forgeries.

Thus, we turn to a different approach to defining strong unforgeability. For plain signatures,

strong unforgeability is equivalent to the guarantee that an adversary cannot obtain more valid sig-

natures for each message than the number of signatures obtained legitimately via the signing oracle.

This notion does apply to multi-signatures, and can be formalized using one-more unforgeability.

In our strong unforgeability definition, we count how many signature shares the adversary obtains

from the signing oracles for each message and signing group, and require that the adversary cannot

compute more valid signatures. Thus, a secure scheme guarantees that the adversary cannot obtain

more signatures than those that can be computed trivially from the shares it obtained from the

signing oracles.

We put this notion into a game definition in Figure 3.2, which compares it with the definition

of existential unforgeability. Note that the only difference between the existential and strong

unforgeability games is the winning condition, and whenever an adversary wins the existential

unforgeability game it also wins the strong unforgeability game. Hence, strong unforgeability

implies existential unforgeability, as expected.

At which round is a message signed. Some authors (for example [7, 24, 12, 5]) consider a

forgery for a message and a group of signers trivial if the adversary initiated a signing session with

those parameters. However, for multi-round schemes, an adversary should not be able to obtain a

signature unless all interactive signing rounds have been completed.

Thus, in our syntax a scheme specifies its last interactive signing round, MS.lir. It is expected

that after querying the signing oracle for the last interactive round the adversary can produce

a multi-signature, but not before, for both existential and strong unforgeability. Therefore, our

security game registers that a legitimate multi-signature has been provided only on calls to the

signing oracle for the last interactive round.

Which signing rounds are message and group dependent. In some multi-signature

16

schemes, some signing rounds can be completed before the message to sign or the identities of the

signers in the group are determined (for example, [30, 37]). Our definitions support such schemes

by allowing each scheme to define the input for each signing round in our syntax and security

definitions.

Toy strongly unforgeable scheme. We present a toy multi-signature scheme to help demon-

strates the difference and separation between existential and strong unforgeability. In the toy

scheme, the size of the signatures is proportional to the number of signers, defying the point of

using a multi-signature scheme in the first place. It is only included to help illustrate the difference

of strong unforgeability from existential unforgeability.

Suppose Σ is a deterministic (single signer) digital signature scheme such that each message m

and public key vk have a unique valid signature. We define a multi-signature scheme Toy[Σ] with

a single interactive signing round as follows:

Key generation: Each party runs (vk, sk)←$ Σ.Kg, saves the result, and outputs vk.

Signing: On input (k,m, (vki)
n
i=1), each party verifies that vkk = vk (and aborts otherwise).

Then, it runs σk ← Σ.Sign(sk, vk1∥ . . . ∥vkn∥m), where ∥ denotes string concatenation. The

final multi-signature is a list of all partial signatures (σ1, . . . , σn).

Verification: On input σ = (σ1, . . . , σn), m, and vk1, . . . , vkn, the verification algorithm returns

true if and only if Σ.Verify(vki, vk1∥ . . . ∥vkn∥m,σi) = true for all i ∈ {1, . . . , n}.

It is easy to verify that Toy[Σ] satisfies perfect correctness, and we claim that Toy[Σ] is strongly

unforgeable. First, note that for every list of public keys and a message, there exists exactly one

valid multi-signature. Hence, for the adversary to win the Gsuf-ms game or the Geuf-ms game, the

input to the verification oracle must only contain one signature. However, when the input to the

verification algorithm only contains one signature, the winning condition for existential and strong

unforgeability is the same. Hence, Toy[Σ] is existentially unforgeable if and only if it is strongly

unforgeable.

To break the existential unforgeability of Toy[Σ] the adversary is given access to a signing

oracle to obtain Σ signatures from the honest signer, and to win the adversary must come up

17

with a signature σ for some string of the form (vk1∥ . . . ∥vkn∥m) for which it did not receive a Σ

signature from the signing oracle. Consequently, if the adversary is successful it must have also

broken the existential unforgeability of Σ. This shows that Toy[Σ] is as existentially unforgeable

(and consequently as strongly unforgeable) as Σ is existentially unforgeable.

Note that it is necessary that Σ satisfies the deterministic property described above, or at

least the weaker property that it is computationally infeasible to find two valid signatures for the

same message and public key (even with access to the secret key). Otherwise, the adversary can

trivially break the strong unforgeability of Toy[Σ] by producing two different valid Σ signatures

as partial signatures for some corrupt signer. In this case, however, Toy[Σ] remains existentially

unforgeable, showing a separation between existential unforgeability and strong unforgeability of

multi-signatures.

Comparison to OMUF of blind signatures. While we refer to our security notion as one-

more unforgeability, it is more similar to the so called strong one-more unforgeability of blind

signatures. Whereas existential one-more unforgeability of blind signatures typically means that

an adversary cannot come up with ℓ+ 1 signatures for distinct messages after completing ℓ signing

sessions, strong OMUF does not require the messages to be distinct.

Our approach to defining OMUF and strong OMUF of blind signatures are similar. On one

hand, if the number of message-signature pairs exceeds the number of signing sessions, there must

be one message that has been signed fewer times than the number of signatures the adversary

produced for that message, breaking our definition of OMUF. Conversely, if for some message the

adversary can produce more signatures than the number of sessions that signed it, we can extend

this to an attack producing more message-signature pairs than the number of signing executions.

18

Games Gsuf-ms[MS] , Geuf-ms[MS]

Init():

1 (vk, sk)←$ MS.Kg() // generates keys and initializes state

2 Q← Empty Dictionary

3 Return vk

SignOj(s, some subset of {m, k, (vki)
n
i=1, out}):

4 // An oracle for each j ∈ {1, . . . ,MS.nr}
5 σ←$ MS.Signj(input of SignOj)

6 If σ = ⊥: return ⊥
7 If j = MS.lir: // on last interactive signing round

8 If Q[((sts.vki)
n
i=1, sts.m)] uninitialized:

9 Q[((sts.vki)
n
i=1, sts.m)]← 1

10 Else:

11 Q[((sts.vki)
n
i=1, sts.m)]← Q[((sts.vki)

n
i=1, sts.m)] + 1

12 Return σ

Fin(k, (vki)
n
i=1,m, (σj)

ℓ
j=1):

13 If vkk ̸= vk: return false

14 If σi = σj for some i ̸= j: return false

15 For j = 1, . . . , ℓ do:

16 If not MS.Verify((vki)
n
i=1,m, σj):

17 Return false

18 If Q[(vki)
n
i=1,m] initialized and Q[(vki)

n
i=1,m] ≥ ℓ:

19 If Q[(vki)
n
i=1,m] initialized:

20 Return false

21 Return true

Figure 3.2: Games used to define the existential and strong unforgeability of a multi-signature
scheme MS. The definition for strong unforgeability, Gsuf-ms, contains all but the dashed box. The
definition for existential unforgeability, Geuf-ms, contains all but the solid box.

19

Section 4

ANALYSIS OF MUSIG

In this chapter we thoroughly analyze the unforgeability of the multi-signature scheme MuSig

which consists of three interactive signing rounds and supports key aggregation, presented in [24].

First, we show that MuSig satisfies our definition of One-More Unforgeability. Then, we show that

the seemingly benign shortcut of pre-processing the first two signing rounds before the message to

sign has been selected renders the scheme completely insecure and not existentially unforgeable.

We emphasize that we only consider the 3-round version of MuSig, whereas the prior two-round

version [23] is insecure [16, 11].

4.1 Scheme Description and Prior Security Proofs.

We now describe the scheme informally. A formal description of the scheme using our syntax for

multi-signatures can be found in Figure 4.1.

The scheme involves a group G of prime order p with a generator g and the hash functions Hcom,

Hsign, and Hagg with codomain Zp that are used for commitments, signing, and key aggregation

respectively. In key generation, each signing party generates a private key sk←$ Zp and a public

key vk ← gsk . The aggregate public key for a group of n signers with public keys vk1, . . . , vkn is

computed by

ṽk ←
n∏

i=1

vk
Hagg(i,vk1,...,vkn)
i .

In the first signing rounds, each signer k chooses rk←$ Zp, computes Rk ← grk , and sends a

commitment tk ← Hcom(Rk) to all the other signers. In the second round, each signer k receives

the commitments t1, . . . , tn from all other signers, and sends Rk to all other signers. In the third

round, the signer receives nonces R1, . . . , Rn from all the signers and verifies the commitments by

checking that ti = Hcom(Ri) for each i. Then, they compute R ←
∏n

i=1Ri, the aggregate public

key ṽk as described above, and a challenge c ← Hsign(ṽk, R,m). Then, they output a signature

share zk ← rk +skk ·c ·Hagg(k, vk1, . . . , vkn). Now, any of the signer can output the multi-signature

20

Scheme MuSigG,g,Hagg,Hcom,Hsign
:

MuSig.nr = 4

MuSig.lir = 3

KeyGen():

1 x←$ Zp; X ← gx

2 st.sk ← x; st.vk ← X

3 Return (sk = x, vk = X)

KeyAgg(vk1, . . . , vkn):

4 Return
∏n

i=1 vk
Hagg(i,vk1,...,vkn)
i

AggVer(m,σ, ṽk):

5 (R, z)← σ

6 Return [gz = R · ṽkHsign(ṽk,R,m)
]

Sign1():

7 st.j ← st.j + 1; j ← stj

8 stj .r←$ Zp; stj .R← gstj .r

9 stj .t← Hcom(stj .R)

10 stj .rnd← 1

11 Return stj .t

Sign2(j, k, (ti, vki)
n
i=1,m):

12 If stj .rnd ̸= 1, vkk ̸= st.vk, or stj .t ̸= tk:

13 Return ⊥
14 stj .m← m; stj .n← n; stj .k ← k

15 For i from 1 to n:

16 stj .ti ← ti; stj .vki ← vki

17 st.rnd← 2

18 Return stj .R

Sign3(j, R1, . . . , Rn):

19 If stj .rnd ̸= 2 or Rstj .k ̸= stj .R:

20 Return ⊥
21 If ∃i such that stj .ti ̸= Hcom(Ri):

22 Return ⊥
23 ṽk ← KeyAgg(stj .vk1, . . . , stj .vkn)

24 R←
∏n

i=1 Ri

25 c← Hsign(R, ṽk, stj .m)

26 a← Hagg(stj .k, stj .vk1, . . . , stj .vkn)

27 z ← stj .r + x · c · a
28 stj .rnd← 3

29 Return (R, z)

Sign4(R, z1, . . . , zn):

30 Return (R,
∑n

i=1 zi)

Figure 4.1: A description of the secure version of MuSig scheme over a group G of order p and
generator g. The fourth round is often omitted since it can be performed by any observer of the
protocol.

(R, z) where z ←
∑n

i=1 zi.

A signature (R, z) is valid with respect to an aggregated verification key ṽk and a message m if

and only if

gz = R · ṽkHsign(ṽk,R,m)
.

MuSig satisfies perfect correctness, and the verification of a MuSig multi-signature with respect to

an aggregated key ṽk is identical to the verification of a standard Schnorr signature.

Which signing rounds are message dependent. The signers in MuSig do not use the message

in the first two signing rounds. Thus, it is natural to ask whether it is possible to pre-execute the

first two signing rounds before the message to sign arrives. If so, the scheme would involve a single

21

interactive signing round when the message arrives, resulting in an almost non-interactive signature

scheme (this property is claimed by MuSig2 [30], for example). The original MuSig paper [24] does

not provide an explicit answer to this question.

The answer, however, is no. Such a shortcut leads to the scheme no longer being existentially

unforgeable, as we show in section 4.3. For security, the signers must associate each signing exe-

cution with a message and a signing group when executing the second signing round (the “reveal”

round of the nonce shares). However, as our proof shows, the scheme is still secure if the first

signing round is pre-processed before the message to sign has been determined.

Prior security proofs for MuSig. The existential unforgeability of MuSig is proved in [24,

12, 5]. These proofs, however, use a security definition that considers a forgery trivial whenever

the adversary opened a signing oracle signing session with the corresponding message and group of

signers, regardless of whether the signing session was completed. Consequently, these proofs do not

rule out adversaries who complete the first two signing rounds for some message and then forge a

signature without completing the third signing round. This is problematic since the third signing

round is where signers verify the commitments sent in previous rounds, and it is the only round

where the signers use their private keys.

We fill this gap by providing a security proof of strong unforgeability, and consequently existen-

tial unforgeability, using a definition that considers a forgery trivial only if the honest signer has

completed all interactive rounds of a signing session with the corresponding message and public

keys. This stronger definition comes at the cost of a looser reduction than the reduction in [5] by

a factor of approximately qs, where qs denotes the maximum number of signing sessions opened by

the adversary.

4.2 One-More Unforgeability

In this section we show that the three-round MuSig satisfies our definition of one-more unforgeabil-

ity.

XIDL and Linking into the Reductions Chains. In [5], Bellare and Dai construct a chain

of reductions from the discrete log problem to their definition of the existential unforgeability of

MuSig. One of the links in the chain is the Random Target Identification Logarithm (XIDL) game

22

in Figure 2.1, and they show that it is hard whenever the discrete log assumption (Figure 2.1)

holds, as written in Lemma 2.0.2.1

In Lemma 4.2.1, we prove that MuSig is strongly unforgeable in the random oracle model if

winning the XIDL is hard. The combination of these lemmas proves the strong unforgeability of

MuSig in the ROM under the discrete log assumption.

Lemma 4.2.1 (XIDL → SUF of MuSig in the ROM). Let G be a group of prime order p. Let

g be a generator of G. Let MS = MuSig[G, g] be the associated multi-signature scheme, with its

hash functions modeled as random oracles. Let Ams be an adversary for the game Gsuf-ms[MS] and

assume the execution of Ams has at most q0, q1, q2, qs distinct queries to Hcom, Hagg, Hsign, and

SignO1, the number of signing parties in queries to signing oracle queries and Fin is at most n,

and the number of signatures it outputs is at most ℓ. Let q = q0(q0 + n · qs) + (qs + q1 + 1)2 +

q2(qs + q1 + 1) + qs(q2 + qs) + n · qs(q0 + n · qs). Then, there exists an adversary Axidl for the game

Gmxidl
G,g,q1+qs+1,q2+ℓ such that

Advsuf−ms
MS (Ams) ≤ (1 + qs)Advxidl

G,g,qs+q1+1,q2+ℓ(Axidl) +
q

p

and the running time of Axidl is similar to that of Ams.

We now describe the proof idea for Lemma 4.2.1, and then translate it into a formal proof.

Proof Idea for Lemma 4.2.1.

We describe informally how to win the XIDL game with high probability given an adversary that

breaks the strong unforgeability of MuSig in the ROM.

Session parameters and signature types. Each execution of the third signing round of the

signing oracle uses a specific aggregate public key ṽk, aggregate nonce R, and message m. We refer

this tuple (R, ṽk,m) as the session parameter of this signing session.

Now consider an adversary Ams in the random oracle model. If they wish to complete a signing

session with the signing oracle, then for each corrupt signer they must provide a commitment

1They also achieve tighter security bounds using the algebraic group model [17], but this is orthogonal to this
paper.

23

ti as input to the second signing round and then an Ri for the third signing round satisfying

Hcom(Ri) = ti. To have a non-negligible probability of completing the signing session, they must

have called the random oracle Hcom with input Ri before providing the input to the second signing

round. Thus, whenever the adversary calls SignO2 with input (m,X1, . . . , Xn, t1, . . . , tn), the

reduction can recover all of the Ri and compute the session parameters.

Now suppose Ams breaks the strong unforgeability of MuSig. At the end of the game it outputs

ℓ valid signatures (Rj , zj)
ℓ
j=1, where the Rj ’s are all distinct, for some message m and a group of

keys X1, . . . , Xn with aggregated key ṽk. Each of these signatures must fall into one of the following

cases:

Case 1: (Rj , ṽk,m) was the session parameters for some signing oracle signing session that exe-

cuted the third signing round.

Case 2: (Rj , ṽk,m) was the session parameters for some signing oracle signing session that exe-

cuted the second signing round, but not the third.

Case 3: (Rj , ṽk,m) was not the session parameters for any signing oracle signing session.

Since Ams wins the strong unforgeability game, at most ℓ−1 signing oracle sessions with message

m and keys X1, . . . , Xn completed the third signing round. Hence, at most ℓ−1 signatures fall into

Case 1 and at least one signature falls into Case 2 or 3. We refer to such signatures as “forgeries.”

Using a forgery to win XIDL. Let X denote the output of the XIDL Init procedure, which

the reduction sets to be the public key of the honest signer.

Now, suppose (R, z) is a valid multi-signature for a message m and a group of public keys

vk1, . . . , vkn with vkk = X. If the key aggregation exponent Hagg(k, vk1, . . . , vkn) is an XIDL

target2 and c = H(R, ṽk,m) is a challenge obtained from the XIDL’s Challenge oracle with

input R, then (R, z) wins the XIDL game. Thus, we program the random oracle so that responses

to Hagg(k, vk1, . . . , vkn) queries are indeed XIDL targets and c is an XIDL challenge corresponding

2The above procedure works for the case where there exist a unique k such that vkk = X. If more than one such
k exists, then we can program the random oracle so that

∑
{k:Xk=X} H(k, vki, . . . , vkn) is an XIDL target and the

hash function values appear uniformly random. See the formal proof for more details.

24

to that target. It remains to show how to simulate the signing oracle so that we can program the

random oracle in such a way.

How to simulate the signing oracle. In order to construct a reduction, we must simulate the

signing oracle without knowing the secret key of the honest signer. We use the standard technique

of simulating the Schnorr signing oracle without knowledge of the public key.

1st round: The reduction simply outputs a random commitment tk←$ Zp.

2nd round: The reduction picks a uniformly random signature share and challenge zk, c←$ Zp,

chooses a nonce-share Rk ← gzkX−c·Hagg(k,vk1,...,vkn), and sets Hcom(Rk) ← tk so the com-

mitment from the first round holds. As explained before, the reduction can now recover the

session parameters (R, X̃,m) even though R is not yet known to the adversary. Therefore, it

programs the random oracle Hsign(R, ṽk,m)← c, and outputs the nonce share Rk.

3rd round: The reduction outputs the partial signature zk that it generated when simulating the

second signing round. It is a valid signature share by construction.

Guessing which session parameters are for forgery. When simulating the signing oracle

for a session with parameters (R, ṽk,m), we program the random oracle challenge Hsign(R, ṽk,m)←

c for a c that we selected before determining R. Therefore, the reduction cannot use that challenge

to win the XIDL game. This is why it needs a forgery.

Suppose the forgery is (R, z) and that is valid for a message m and an aggregated key X̃. If the

forgery falls into Case 3 (the cases are defined at the beginning of the proof idea) we can use it to

win the XIDL game, since its session parameters (R, X̃,m) were not used by the signing oracle and

thus the corresponding challenge is an XIDL challenge. However, if the forgery falls into Case 2,

then the reduction programmed Hsign(R, ṽk,m)← c when simulating SignO2 and thus we cannot

use it directly to win the XIDL game.3

To win the XIDL game using this type of forgery, the reduction generates an integer ρ uniformly

at random from {1, . . . , qs, qs + 1} where qs refers to the maximum number of signing sessions that

3Previous MuSig security proofs do not consider signatures of Case 2 as forgeries, since they consider a forgery
trivial whenever the adversary initiated a signing session with the signing oracle for the corresponding message.

25

can be opened by the adversary. Then, it simulates all signing sessions of index different from

ρ as described above. For the ρth session, however, it runs the first two signing rounds of the

signing session honestly by picking the nonce share Rk first, then generating the commitment and

programming the signing oracle tk ← Hcom(Rk)←$ Zp. Once the session parameters (R, ṽk,m) are

known at the initiation of the second round we can program the random oracle Hsign(R, ṽk,m)← c

where c is an XIDL challenge. Note that the reduction cannot simulate the third signing round of

the ρth signing session and will have to abort if the adversary asks for it. It will, however, be able

to win the XIDL game if the adversary outputs a forgery that falls into Case 2 with the session

parameters of the ρth signing session.

Thus, if the adversary outputs a forgery that falls into Case 2, and we chose ρ so it corresponds

to the session with the same parameters as the forgery, then we win the XIDL game. Hence, if the

adversary produces a forgery that falls into Case 2 then we win the XIDL game with probability

of at least 1
qs+1 . If the adversary outputs a forgery that falls into Case 3, then we win if we were

able to simulate all signing oracle queries, which is guaranteed if we chose ρ = qs + 1 and thus

we win with a probability of at least 1
qs+1 . Since every successful adversary against the strong

unforgeability of MuSig must provide a forgery that falls into Case 2 or 3, this means that if an

adversary breaks the strong unforgeability of MuSig then the reduction wins the XIDL game with

probability of approximately 1
qs+1 .

Dealing with multiple copies of X. The above technique works when all of the ti’s except one

were generated by the adversary. However, recall that our security definition allows for multiple

copies of the the same public key in the public key vector. In particular, it is possible that X

appears multiple times in the vector, and all of the commitments and corresponding R’s in the

execution of the corresponding signing session were generated by the signing oracle. This can cause

our approach to simulating the signing oracle fail, requiring another trick.

To illustrate the issue, consider the adversary initiates a signing session with two signers and

vk1 = vk2 = X. Then, they complete the first signing round with the honest signer, obtaining a

commitment t1 and t2. Now, the adversary attempts to continue each of the two signing sessions by

querying the signing oracle twice for the second signing round with inputs (1, 1, t1, t2, X,X,m) and

(2, 2, t1, t2, X,X,m) for some message m. This causes our reduction to fail, since it would have to

26

know the partial nonces for both signers when responding to the first query, but the partial nonce

for the second signer has not yet been generated (as it will only be generated when the signing

oracle completes the second signing round for that signer). Thus, the reduction fails, even though

this adversarial behavior is allowed by our security definition.

To handle this case, we utilize the following trick: choose all of the corresponding R’s for some

session parameters at the same time. That is, even though not all of the R’s for signers with

verification key X have been selected yet, the reduction has all the information it needs in order to

select all such R’s the first time a query has been made to SignO2 with these session parameters.

Similarly to how we handle that case in random oracle queries to Hagg, we ensure all of the honest

signer’s Rs get generated at the same time, resolving this issue. To do this pedantically, we need

to also consider all such queries as a part of the same session, for the sake of the guessing which

session parameters are for forgery (otherwise, it might be the case that one session number is equal

to ρ and some are not, even though they have the same session parameters, causing the reduction

to fail). Thus, we need to assign session numbers at the second signing round as opposed to the

first, and only then check if the session number equals to ρ.

Due to the notational complexity that dealing with this case involves we choose to skip it when

formally describing the reduction in this thesis. However, we note that with some careful indexing

it would be easy to translate the reduction to handle this edge case. It would not effect the concrete

security parameters.

We now translate the described proof idea into a formal proof.

Proof of Lemma 4.2.1: Let G be a group of prime order p with a generator g and let MS =

MuSig[G, g] be the associated multi-signature scheme with its hash functions modeled as random

oracles. Let Ams be an adversary for the game Gsuf-ms[MS] and assume the execution of Ams makes

at most q0, q1, q2, qs queries to Hcom, Hagg, Hsign, and SignO1, respectively. Figure 4.2 constructs

an adversary Axidl against the XIDL game that simulates the Gsuf-ms[MS] for Ams, and if Ams was

successful it uses its output to win the XIDL game with high probability.

Analysis of Axidl: As we explained in the proof idea portion, in order to win the reduction must

“guess right” when selecting ρ, which happens with probability of at least 1
qs+1 , independently of

the execution of Ams. Now, suppose the reduction picked the right value of ρ.

27

First, note that unless bad is set to true, the simulation is perfect. Furthermore, if Ams wins, then

it must be the case that they provided signatures (Rj , zz)
ℓ
j=1 for a message m and public key X̃

such that ℓ is more than the number of signing oracle sessions with the message m and aggregated

key X̃ that programmed the Hsign challenge. Hence, one of the challenges Hsign(Rj , X̃,m) must be

an XIDL challenge, and thus the reduction wins the XIDL game with the corresponding zj .

Thus, the reduction may only fail if bad is set to true. To upper bound the probability that bad is

set to true, we enumerate all the possible cases where it may happen and bound their probability

conditioned on the fact that the reduction guessed ρ correctly:

• In the simulation of Hcom, if the adversary finds a hash collision. At most q0 +n ·qs values are

added to the Hcom dictionary over the execution of Axidl and the reduction simulates Hcom q0

times. Hence, the probability of a collision is no more than q0(q0+n·qs)
p .

• In the simulation of Hagg, if the adversary finds a collision of aggregated keys or queries Hsign

with an aggregated key before constructing it. An aggregated key is determined at most

once for each SignO query, at most once for each Hagg query, and at most once after the

execution of Ams when using the forgery to win the XIDL. Thus, the probability of finding a

key collision is bounded above by (qs+q1+1)2

p . Similarly, since Hsign can be initialized with an

aggregated key that is not yet computed by the reduction only on calls to Hsign, we have that

the probability that Hsign with an aggregated key before it is added to the key set is bounded

above by q2(qs+q1+1)
p .

• If in the simulation of SignO2 the value Hsign[R, ṽk,m] is already defined (for the R chosen

uniformly at random at this execution). The probability of this happening at each execution

of S̃ignO2 is at most q2+qs
p , since the Hsign dictionary contains at most qs + q2 elements at

each point in the execution, and thus the probability of this happening during the reduction

is no more than qs(q2+qs)
p .

• In the simulation of SignO2, the value Hcom[Rk] or Hcom[Rk] is already defined (for the Rk

chosen uniformly at random at this execution). The probability of this happening at each

execution of S̃ignO is at most n · q0+n·qs
p since at most q0 +n ·qs values are added to the Hcom

28

dictionary over the execution of Axidl, and thus the probability of this happening during the

reduction is at most n·qs(q0+n·qs)
p .

• Lastly, note that if it guesses ρ correctly, then the reduction never has to set bad to true when

simulating SignO3. This is because if we guessed ρ = qs + 1, then we can simulate all signing

oracle queries and bad would never be set at this point. Otherwise, to guess ρ correctly means

that Ams outputs a forgery that falls into case 2 with session parameters corresponding to the

ρth signing session, and therefore the third round of the ρth signing session is never executed.

Hence, the probability that bad is set to true if the reduction guessed ρ correctly is at most

q0(q0 + n · qs) + (qs + q1 + 1)2 + q2(qs + q1 + 1) + qs(q2 + qs) + n · qs(q0 + n · qs)
p

.

Thus, if q is as defined in the lemma statement, we obtain that

Advxidl
G,g,q1,q2(Axidl) ≥

Advsuf−ms
MS (Ams)− q/p

qs + 1
.

Rearranging the equation leads to the statement we wished to prove.

4.3 Insecurity with Delayed Message Selection

Here we present our attacks against the existential unforgeability of MuSig when used with delayed

message selection. This version of the scheme is long known to be insecure, due to the sub-

exponential attack published in a 2018 blog post by Jonas Nick’s [28] (the attack is based on

Wagner’s algorithm for the generalized birthday algorithm [39]). We build on the ideas from the

sub-exponential attacks and use the algorithm solving the ROS problem of Benhamouda et al. [11]

to design a more efficient polynomial time attack in the same setting.

Suppose the first two rounds of MuSig and BN multi-signatures (the commitments and revealing

the nonces rounds) are executed before message selection. A pseudo-code description of this insecure

version of MuSig and comparison with the secure version is provided in Figure 4.3. We will describe

the attacks when executed with two signers, but it is straightforward to generalize it to a setting

with more signers.

29

A simple implementation of the attack can be found at https://github.com/selanavot/

MuSig_DMS_attack, implemented using SageMath [38]. The attack runs in less than a second

on a laptop machine.

Attack setting. The standard existential unforgeability definition allows the adversary to cor-

rupt all but one of the signers in a group, as well as ask the honest signer for signatures with

differing groups. Furthermore, to break existential unforgeability the adversary only needs to forge

a signature for an arbitrary message. All of our attacks can be carried out by a weaker adversary,

who can forge a signature for a message of their choice.

In particular, in the attacks against MuSig the adversary only needs to observe parallel signing

sessions and control which message will be signed, but can succeed against any group of signers

even if none of them is corrupt. Our attacks against BN multi-signatures also don’t require the

adversary to collude with signers, but the adversary needs the honest signers to complete a signing

session for different messages. This is possible when the adversary mediates signer communication

or corrupts all but one of the signers.

The polynomial time attack. Let S1 and S2 be the signers with private keys x1 and x2 and

public key X1 and X2, respectively. Let X̃ = X
Hagg(1,X1,X2)
1 · XHagg(2,X1,X2)

2 denote the aggregate

verification key. This time, let ℓ ≥ ⌈log2(p)⌉ be an integer and let mℓ+1 be some message for which

the adversary wishes to forge a signature, and for each i ∈ {1, . . . , ℓ} choose distinct messages m0
i

and m1
i that the signers would be willing to sign.

Now, the adversary begins ℓ signing sessions and observes the first two signing rounds to obtain

an aggregate nonce Ri = Ri,1 · Ri,2 for each i ∈ {1, . . . , ℓ}. Then the adversary calculates the

corresponding challenges c0i = Hsign(Ri, X̃,m0
i) and c1i = Hsign(Ri, X̃,m1

i) for each i ∈ {1, . . . , ℓ}.

Now, define the group homomorphisms ρ+ : (Zp)
ℓ → Zp and ρ× : (G)ℓ → G as follows:

ρ+(x1, . . . , xℓ) =
ℓ∑

i=1

2i−1xi
c1i − c0i

,

and

ρ×(g1, . . . , gℓ) =

ℓ∏
i=1

g

2i−1

c1
i
−c0

i
i .

Let Rℓ+1 = ρ×(R1, . . . , Rℓ), and let cℓ+1 = Hsign(Rℓ+1, X̃,mℓ+1). Let d = cℓ+1−ρ+(c01, . . . , c
0
ℓ), and

https://github.com/selanavot/MuSig_DMS_attack
https://github.com/selanavot/MuSig_DMS_attack

30

write d in binary as
∑ℓ

i=1 2i−1bi for some b1, . . . , bℓ ∈ {0, 1}, which is possible since ℓ ≥ ⌈log2(p)⌉.

Now, for each i ∈ {1, . . . , ℓ}, complete the signing session i with the message mbi
i to obtain a

multi-signature (Ri, zi). We claim that σ = (Rℓ+1, ρ
+(z1, . . . , zℓ)) is a valid multi-signature for

the message mℓ+1 under the aggregate verification key X̃, and is thus a forgery that breaks the

unforgeability of the scheme.

Validity of forged signature. We wish to verify that σ = (Rℓ+1, ρ
+(z1, . . . , zℓ)) is a valid

signature for mℓ+1 under the aggregate verification key X̃. Thus, we must show that

gρ
+(z1,...,zℓ) = Rℓ+1X̃

cℓ+1 .

Note that (Ri, zi) is a valid Schnorr signature for the message mbi
i under the verification key X̃

for each i, and thus gzi = RiX̃
c
bi
i . Hence,

ρ×(gz1 , . . . , gzℓ) = ρ×(R1X̃
c
b1
1 , . . . , RℓX̃

c
bℓ
ℓ),

or equivalently,

gρ
+(z1,...,zℓ) = ρ×(R1, . . . , Rℓ) · X̃ρ+(c

b1
1 ,...,c

bℓ
ℓ).

But Rℓ+1 = ρ×(R1, . . . , Rℓ), and Lemma 4.3.1 shows that ρ+(cb11 , . . . , cbℓℓ) = cℓ+1. Hence,

gρ
+(z1,...,zℓ) = Rℓ+1 · X̃cℓ+1 ,

which is what we wanted to prove.

Lemma 4.3.1. By the construction above, ρ+(cb11 , . . . , cbℓℓ) = cℓ+1.

This lemma is at the heart of the attack, and is precisely the idea that allows Benhamouda et

al. to solve the ROS problem [11].

Proof of Lemma 4.3.1. By definition,
∑ℓ

i=1 2i−1bi = cℓ−1 − ρ+(c01, . . . , c
0
ℓ). Hence, to prove the

lemma it is sufficient to show that
∑ℓ

i=1 2i−1bi = ρ+(cb11 , . . . , cbℓℓ)− ρ+(c01, . . . , c
0
ℓ).

31

Starting from the right-hand side, we have that

ρ+(cb11 , . . . , cbℓℓ)− ρ+(c01, . . . , c
0
ℓ) = ρ+(cb11 − c01, . . . , c

bℓ
ℓ − c0ℓ)

=
ℓ∑

i=1

2i−1(cbii − c0i)

c1i − c0i
.

However, for each i it holds that
2i−1(c

bi
i −c0i)

c1i−c0i
is 0 whenever bi is 0 and is 2i−1 whenever bi is 1.

Hence, for each i it holds that
2i−1(c

bi
i −c0i)

c1i−c0i
= 2i−1bi, and thus the right-hand side of the equation

above simplifies to
∑ℓ

i=1 2i−1bi, which completes the proof.

32

ANewTarget,Challenge
xidl (X):

1 bad← false // abort whenever bad← true

2 Hagg, Hsign, Hcom ← empty dictionary

3 K ← ∅ // tracks aggregated keys used

4 ctrs, ctrt, ctrc ← 0 // tracks signing oracle
queries, XIDL targets, XIDL challenges

5 TcomTtar, Tchal ← empty dictionary // tracks Hcom

queries, XIDL targets, XIDL challenges

6 st← empty list

7 ρ←$ {1, . . . , qs + 1} // guess SignO2 query for
Case 2 forgery

8 Sim← {(S̃ignOi)
3
i=1, H̃agg, H̃sign, H̃com}

9 (m, (Xi)
n
i=1, (Rj , zj)

ℓ
j=1)← ASim

ms (X)

10 X̃ ←
∏n

i=1 X
H̃agg(i,X1,...,Xn)
i

11 For j = 1, . . . , ℓ:

12 H̃sign(Rj , X̃,m) // ensure initialization

13 If Tchal[Rj , X̃,m] initialized:

14 Return (Tchal[Rj , X̃,m], zj)

15 Return ⊥

S̃ignO1():

16 t←$ Zp

17 ctrs← ctrs + 1, stctrs.t← t

18 Return t

S̃ignO2(j, k, (vki, ti)
n
i=1,m):

19 ṽk ←
∏n

i=1 vk
H̃agg(i,vk1,...,vkn)
i

20 If j = ρ:

21 Rk←$ G

22 Else:

23 z, c←$ Zp; stj .z ← z

24 Rk ← gzX−c

25 For i ∈ {1, . . . , n} \ {k}:
26 If Tcom[ti] initialized: Ri ← Tcom(ti)

27 Else:

28 Ri←$ Zp

29 If Hcom[Ri] initialized: bad← true

30 Hcom[Ri]← ti; Tcom[ti]← Ri

31 R←
∏n

i=1 Ri; stj .R← R

32 stj .ṽk ← ṽk

33 If Hsign[R, ṽk,m] initialized: bad← true

34 Hsign[R, ṽk,m]← c

35 If Hcom[Rk] initialized: bad← true

36 Hcom[Rk]← stj .t

37 Return Rk

S̃ignO3(j, R1, . . . , Rn):

38 If j = ρ: bad← true

39 Return stj .z

H̃agg(k,X1, . . . , Xn):

40 If Hagg[k,X1, . . . , Xn] uninitialized:

41 For i = 1, . . . , n:

42 If Xi ̸= X: Hagg[i,X1, . . . , Xn]←$ Zp

43 S ←
∏

{i : Xi ̸=X} X
Hagg[i,X1,...,Xn]
i

44 e← NewTarget(S)

45 J ← {j : Xj = X}; jmax ← max(J)

46 For i ∈ J \ {jmax} :
47 ei←$ Zp; Hagg[i,X1, . . . , Xn]← ei

48 Hagg[jmax, X1, . . . , Xn]← e−
∑

i∈J\{jmax} ei

49 X̃ ←
∏n

i=1 X
Hagg[i,X1,...,Xn]
i

50 If ∃(R,m) such thatHsign[R, X̃,m] is initialized:

51 bad← true

52 If X̃ ∈ K:

53 bad← true

54 K ← K ∪ {X̃}
55 ctrt← ctrt + 1; Ttar[X̃]← ctrt

56 Return Hagg[k,X1, . . . , Xn]

H̃com(R):

57 If Hcom[R] uninitialized:

58 Hcom[R]←$ Zp;

59 If Tcom[Hcom[R]] initialized: bad← true

60 Tcom[Hcom[R]]← R

61 Return Hcom[R]

H̃sign(R, X̃,m):

62 If Hsign[R, X̃,m] uninitialized:

63 If Ttar[X̃] uninitialized:

64 Hsign[R, X̃,m]←$ Zp

65 Else:

66 c← Challenge(Ttar[X̃], R)

67 ctrc← ctrc + 1

68 Tchal[R, X̃,m]← ctrc

69 Return Hsign[R, X̃,m]

Figure 4.2: The reduction algorithm used in the proof of Lemma 4.2.1.

33

Scheme MuSig[G, g, p,Hcom, Hagg, Hsign]:

Scheme InsecureMuSig[G, g, p,Hcom, Hagg, Hsign]:

MuSig.nr = 4

MuSig.lir = 3

KeyGen():

1 x←$ Zp; X ← gx

2 st.sk ← x; st.vk ← X

3 Return (sk = x, vk = X)

KeyAgg(vk1, . . . , vkn):

4 Return
∏n

i=1 vk
Hagg(i,vk1,...,vkn)
i

AggVer(m,σ, ṽk):

5 (R, z)← σ

6 Return [gz = R · ṽkHsign(ṽk,R,m)
]

Sign1():

7 st.j ← st.j + 1; j ← stj

8 stj .r←$ Zp; stj .R← gstj .r

9 stj .t← Hcom(stj .R)

10 stj .rnd← 1

11 Return stj .t

Sign2(j, k, t1, . . . , tn, k , vk1, . . . , vkn,m):

12 If stj .rnd ̸= 1 or stj .t ̸= tk:

13 Return ⊥
14 stj .k ← k; sts.n← n

15 For i from 1 to n: sts.ti ← ti

16 Save Session Params(j, k, vk1, . . . , vkn,m)

17 stj .rnd← 2

18 Return stj .R

Sign3(j, R1, . . . , Rn ,m, vk1, . . . , vkn):

19 If stj .rnd ̸= 2 or Rstj .k ̸= stj .R:

20 Return ⊥
21 If ∃i such that stj .ti ̸= Hcom(Ri):

22 Return ⊥
23 Save Session Params(j, stj .me, vk1, . . . , vkn,m)

24 R←
∏n

i=1 Ri

25 ṽk ← KeyAgg(stj .vk1, . . . , stj .vkn)

26 c← Hsign(R, ṽk, stj .m)

27 a← Hagg(stj .k, stj .vk1, . . . , stj .vkn)

28 z ← stj .r + st.sk · c · a
29 stj .rnd← 3

30 Return (R, z)

Sign4(R, z1, . . . , zn):

31 Return (R,
∑n

i=1 zi)

Save Session Params(j, k, vk1, . . . , vkn,m):

32 // helper method to store session params

33 If vkk ̸= st.vk:

34 Return ⊥
35 stj .m← m

36 For i from 1 to n: stj .vki ← vki

Figure 4.3: Comparison of the secure version of MuSig and the insecure version with delayed
message selection. The secure version contains all but the dashed boxes, and the insecure version
contains all but the solid boxes.

34

Section 5

ANALYSIS OF BELLARE-NEVEN MULTI-SIGNATURES

In this chapter we analyze the Bellare-Neven multi-signature scheme (abbreviated BN) [7]. It

is a predecessor of MuSig and the first secure scheme in the plain public key model, meaning the

setting where the signers do not need to participate in a distributed key generation protocol or

prove ownership of a secret key. It is very similar to MuSig but without key aggregation, and is

also proven secure in the random oracle model under the discrete log assumption when the message

to sign is determined before the second signing round and the hash functions are modeled as random

oracles.

First, we show that BN satisfies our definition of One-More Unforgeability. In addition to

proving one-more unforgeability, this proof also shows that it is impossible to forge a signature for

a message for which a signing session was initiated but not completed. Additionally, it proves the

security of BN signatures when the first signing round is pre-processed before the message has been

determined.

Then, we show that as is the case with MuSig, pre-processing the second signing rounds before

the message to sign has been selected renders the scheme completely insecure and not existentially

unforgeable. This analysis is presented after the analysis of MuSig is due to this attack building on

the attack against MuSig with delayed message selection.

5.1 Scheme Description

We follow the scheme description of Bellare and Dai [5], which has minor differences from the

original paper [7]. We now describe the scheme informally, and include a formal description in

Figure 5.1 using our syntax.

The scheme is parameterized by a group G of prime order p with a generator g and two hash

functions Hcom and Hsign with codomain Zp that are used for commitments and signing respectively.

Key generation and the first two signing rounds were left unaltered by MuSig. For key gen-

35

eration, each signer k generates a private key skk←$ Zp and a public key vkk ← gskk . For the

first signing round, signer k chooses rk←$ Zp, computes Rk ← grk , and outputs a commitment

tk ← Hcom(Rk) which is sent to all the other signers. In the second signing round, the signer re-

ceives the commitments from all other signers t1, . . . , tn, and outputs Rk. In the third signing round,

which is different from MuSig, the signer k receives nonces R1, . . . , Rn from all the signers and veri-

fies the commitments by checking that ti = Hcom(Ri) for each i. Then, they compute R←
∏n

i=1Ri,

a challenge ck ← Hsign(k,R, vk1, . . . , vkn,m), and output a signature share zk ← rk + skk ·ck. Now,

any of the signer can output the multi-signature (R, z) where R←
∏n

i=1Ri and z ←
∑n

i=1 zi.

Verification requires the message m, the signature σ = (R, z), and all the signers public keys

(vk1, . . . , vkn). The verifier computes ci ← Hsign(i, R, vk1, . . . , vkn,m) for each i ∈ {1, . . . , n} and

output true if and only if gz = R
∏n

i=1 vk
ci
i .

As with MuSig, the message and the keys of all the signers are not used until the third signing

round. However, as our attack shows, it is needed for security that the message being signed is

selected before the second signing round.

5.2 One-More Unforgeability

We now prove the one-more unforgeability of the BN-scheme using the IDL assumption, as presented

in Lemma 5.2.1. Combined with Lemma 2.0.1, this proves the one-more unforgeability of BN from

the discrete log assumption. The proof is very similar to that of the one-more unforgeability of

MuSig, except that the lack of key aggregation allows the use of the IDL assumption as opposed to

the XIDL.

Lemma 5.2.1 (IDL → SUF of BN in the ROM). Let G be a group of prime order p. Let g be a

generator of G. Let MS = BN[G, g] be the associated multi-signature scheme, with its hash functions

modeled as random oracles. Let Ams be an adversary for the game Gsuf-ms[MS] and assume the

execution of Ams has at most q0, q1, qs distinct queries to Hcom, Hsign, and SignO1, the number

of signing parties in queries to signing oracle queries and Fin is at most n, and the number of

signatures it outputs is at most ℓ. Let q = q0(q0 + n · qs) + qs(q1 + qs) + n · qs(q0 + n · qs). Then,

36

there exists an adversary Aidl for the game Gmidl
G,g,q1

such that

Advsuf−ms
MS (Ams) ≤ (1 + qs)Advidl

G,g,q1(Aidl) +
q

p

and the running time of Aidl is similar to that of Ams.

We now describe the proof idea for Lemma 5.2.1, and then translate it into a formal proof.

Proof Idea for Lemma 5.2.1.

We describe informally how to win the IDL game with high probability given an adversary that

breaks the strong unforgeability of BN in the ROM.

Session parameters and signature types. Each execution of the third signing round of the

signing oracle uses a specific vector of public keys vk1, . . . , vkn, aggregate nonce R, and message

m. We refer this tuple (R, vk1, . . . , vkn,m) as the session parameter of this signing session.

Now consider an adversary Ams in the random oracle model. If they wish to complete a signing

session with the signing oracle, then for each corrupt signer they must provide a commitment

ti as input to the second signing round and then an Ri for the third signing round satisfying

Hcom(Ri) = ti. To have a non-negligible probability of completing the signing session, they must

have called the random oracle Hcom with input Ri before providing the input to the second signing

round. Thus, whenever the adversary calls SignO2 with input (m, vk1, . . . , vkn, t1, . . . , tn), the

reduction can recover all of the Ri and compute the session parameters.

Suppose Ams breaks the strong unforgeability of BN. At the end of the game it outputs ℓ valid

signatures (Rj , zj)
ℓ
j=1, where the Rj ’s are all distinct, for some message m and a group of keys

vk1, . . . , vkn. Each of these signatures must fall into one of the following cases:

Case 1: (Rj , vk1, . . . , vkn,m) was the session parameters for some signing oracle signing session

that executed the third signing round.

Case 2: (Rj , vk1, . . . , vkn,m) was the session parameters for some signing oracle signing session

that executed the second signing round, but not the third.

Case 3: (Rj , vk1, . . . , vkn,m) was not the session parameters for any signing oracle signing session.

37

Since Ams wins the strong unforgeability game, at most ℓ−1 signing oracle sessions with message

m and keys vk1, . . . , vkn completed the third signing round. Hence, at most ℓ − 1 signatures fall

into Case 1 and at least one signature falls into Case 2 or 3. We refer to signatures that fall into

Case 2 or 3 as “forgeries.”

Using a forgery to win IDL. Let X denote the output of the IDL Init procedure, which the

reduction sets to be the public key of the honest signer.

Now, suppose (R, z) is a valid multi-signature for a message m and a group of public keys

vk1, . . . , vkn with vkk = X. If c = H(k,R, vk1, . . . , vkn,m) is a challenge obtained from the IDL’s

Challenge oracle with input R ·
∏n

i=1 vk
ci
i , then z wins the IDL game. Thus, we program the

random oracle so that responses to Hagg(k, vk1, . . . , vkn) queries are indeed IDL targets and c is

an XIDL challenge corresponding to that target. It remains to show how to simulate the signing

oracle so that we can program the random oracle in such a way.

How to simulate the signing oracle. In order to construct a reduction, we must simulate the

signing oracle without knowing the secret key of the honest signer (i.e. the secrete log of X). To do

that, we extend the standard technique of simulating the Schnorr signing oracle without knowledge

of the secret key.

1st round: The reduction simply outputs a random commitment tk←$ Zp.

2nd round: The reduction picks a uniformly random signature share and challenge zk, c←$ Zp,

chooses a nonce-share Rk ← gzkX−c·Hagg(k,vk1,...,vkn), and sets Hcom(Rk) ← tk so the com-

mitment from the first round holds. As explained before, the reduction can now recover the

session parameters (R, vk1, . . . , vkn,m) even though R is not yet known to the adversary.

Therefore, it programs the random oracle Hsign(R, vk1, . . . , vkn,m) ← c, and outputs the

nonce share Rk.

3rd round: The reduction outputs the partial signature zk that it generated when simulating the

second signing round. It is a valid signature share by construction.

Guessing which session parameters are for forgery. When simulating the signing oracle

for a session with parameters (R, ṽk,m), we program the random oracle challenge Hsign(R, ṽk,m)←

38

c for a c that we selected before determining R. Therefore, the reduction cannot use that challenge

to win the XIDL game. This is why it needs a forgery.

Suppose the forgery is (R, z) and that is valid for a message m and an aggregated key X̃. If the

forgery falls into Case 3 (the cases are defined at the beginning of the proof idea) we can use it to

win the XIDL game, since its session parameters (R, X̃,m) were not used by the signing oracle and

thus the corresponding challenge is an XIDL challenge. However, if the forgery falls into Case 2,

then the reduction programmed Hsign(R, ṽk,m)← c when simulating SignO2 and thus we cannot

use it directly to win the XIDL game.1

To win the XIDL game using this type of forgery, the reduction generates an integer ρ uniformly

at random from {1, . . . , qs, qs + 1} where qs refers to the maximum number of signing sessions that

can be opened by the adversary. Then, it simulates all signing sessions of index different from

ρ as described above. For the ρth session, however, it runs the first two signing rounds of the

signing session honestly by picking the nonce share Rk first, then generating the commitment and

programming the signing oracle tk ← Hcom(Rk)←$ Zp. Once the session parameters (R, ṽk,m) are

known at the initiation of the second round we can program the random oracle Hsign(R, ṽk,m)← c

where c is an XIDL challenge. Note that the reduction cannot simulate the third signing round of

the ρth signing session and will have to abort if the adversary asks for it. It will, however, be able

to win the XIDL game if the adversary outputs a forgery that falls into Case 2 with the session

parameters of the ρth signing session.

Thus, if the adversary outputs a forgery that falls into Case 2, and we chose ρ so it corresponds

to the session with the same parameters as the forgery, then we win the XIDL game. Hence, if the

adversary produces a forgery that falls into Case 2 then we win the XIDL game with probability

of at least 1
qs+1 . If the adversary outputs a forgery that falls into Case 3, then we win if we were

able to simulate all signing oracle queries, which is guaranteed if we chose ρ = qs + 1 and thus

we win with a probability of at least 1
qs+1 . Since every successful adversary against the strong

unforgeability of MuSig must provide a forgery that falls into Case 2 or 3, this means that if an

adversary breaks the strong unforgeability of MuSig then the reduction wins the XIDL game with

probability of approximately 1
qs+1 .

1Previous MuSig security proofs do not consider signatures of Case 2 as forgeries, since they consider a forgery
trivial whenever the adversary initiated a signing session with the signing oracle for the corresponding message.

39

Dealing with multiple copies of X. As was the case in the MuSig security proof, the reduc-

tion requires an additional trick when X appears multiple times in the list of public keys during

queries to SignO2. As in the MuSig security proof, this issue can be resolved by generating all of

the corresponding R’s at the same time. However, this solution would result in increased notational

complexity and little effect on the reduction technique or the concrete result, so we choose to not

use it when presenting our final proof. However, with some care our reduction can be translated to

handle that case.

We now translate these proof ideas into a formal proof.

Proof of Lemma 5.2.1: Let G be a group of prime order p with a generator g and let MS =

BN[G, g] be the associated multi-signature scheme with its hash functions modeled as random

oracles. Let Ams be an adversary for the game Gsuf-ms[MS] and assume the execution of Ams

makes at most q0, q1, qs queries to Hcom, Hsign, and SignO1, respectively. Figure 5.2 constructs

an adversary Aidl against the IDL game that simulates the Gsuf-ms[MS] for Ams, and if Ams was

successful it uses its output to win the IDL game with high probability.

Analysis of Aidl: As we explained in the proof idea portion, in order to win the reduction must

“guess right” when selecting ρ, which happens with probability of at least 1
qs+1 , independently of

the execution of Ams. Now, suppose the reduction picked the right value of ρ.

First, note that unless bad is set to true, the simulation is perfect. Furthermore, if Ams wins, then

it must be the case that they provided signatures (Rj , zj)
ℓ
j=1 for a message m and public keys

(vki)
n
i=1 such that ℓ is more than the number of signing oracle sessions with the message m and

public keys vector (vki)
n
i=1 that programmed the Hsign challenge. Hence, one of the challenges

Hsign(k,Rj , (vki)
n
i=1,m) for vkk = X must be an IDL challenge, and thus the reduction wins the

IDL game with the corresponding zj .

Thus, the reduction may only fail if bad is set to true. To upper bound the probability that bad is

set to true, we enumerate all the possible cases where it may happen and bound their probability

conditioned on the fact that the reduction guessed ρ correctly:

• In the simulation of Hcom, if the adversary finds a hash collision. At most q0 + n · qs values

are added to the Hcom dictionary over the execution of Aidl and the reduction simulates Hcom

40

q0 times. Hence, the probability of a collision is no more than q0(q0+n·qs)
p .

• If in the simulation of SignO2 the value Hsign[j, R, (vki)
n
i=1,m] is already defined (for the R

chosen uniformly at random at this execution). The probability of this happening at each

execution of S̃ignO2 is at most q1+qs
p , since the Hsign dictionary contains at most qs + q2

elements at each point in the execution, and thus the probability of this happening during

the reduction is no more than qs(q1+qs)
p .

• In the simulation of SignO2, the value Hcom[Rk] or Hcom[Rk] is already defined (for the Rk

chosen uniformly at random at this execution). The probability of this happening at each

execution of S̃ignO is at most n · q0+n·qs
p since at most q0 + n · qs values are added to the

Hcom dictionary over the execution of Aidl, and thus the probability of this happening during

the reduction is at most n·qs(q0+n·qs)
p .

• Lastly, note that if it guesses ρ correctly, then the reduction never has to set bad to true when

simulating SignO3. This is because if we guessed ρ = qs + 1, then we can simulate all signing

oracle queries and bad would never be set at this point. Otherwise, to guess ρ correctly means

that Ams outputs a forgery that falls into case 2 with session parameters corresponding to the

ρth signing session, and therefore the third round of the ρth signing session is never executed.

Hence, the probability that bad is set to true if the reduction guessed ρ correctly is at most

q0(q0 + n · qs) + qs(q1 + qs) + n · qs(q0 + n · qs)
p

.

Thus, if q is as defined in the lemma statement, we obtain that

Advidl
G,g,q1(Aidl) ≥

Advsuf−ms
MS (Ams)− q/p

qs + 1
.

Rearranging the equation leads to the statement we wished to prove.

41

5.3 Insecurity with Delayed Message Selection

Here we present our attacks against BN multi-signatures when used with delayed message selection,

which utilizes the algorithm solving the ROS problem of Benhamouda et al. [11].

Suppose the first two rounds BN multi-signatures (the commitments and revealing the nonces

rounds) are executed before message selection (see the insecure version in Figure 5.1). We will

describe the attacks when executed with two signers, but it is straightforward to generalize it to a

setting with more signers.

Attack setting. The standard existential unforgeability definition allows the adversary to cor-

rupt all but one of the signers in a group, as well as ask the honest signer for signatures with

differing groups. Furthermore, to break existential unforgeability the adversary only needs to forge

a signature for an arbitrary message.

The attack we present here can be carried out by a weaker adversary, who can forge a signature

for a message of their choice. In particular, our attack doesn’t require the adversary to collude

with signers, but the adversary needs the honest signers to complete a signing session for different

messages. This is possible when the adversary mediates signer communication or corrupts all but

one of the signers.

Attack details. This attack is an extension of the attack against MuSig with delayed message

selection (Section 4.3). The main difference is that in contrast to MuSig, different signers in BN

multi-signatures use distinct challenges when signing a message. At a high level, we now need a

separate instance of the ROS attack that we used against MuSig for each signer in order to forge

their partial signature.

As before, let S1 and S2 be the signers with private keys x1 and x2 and public keys X1 and X2,

respectively. Let ℓ ≥ ⌈log2(p)⌉ be an integer, let mℓ+1 be some message for which the adversary

wishes to forge a multi-signature, and for each i ∈ {1, . . . , ℓ} choose distinct messages m0
i and m1

i

that the signers would be willing to sign.

Now, the adversary begins ℓ signing sessions and observes the first two signing rounds to obtain

nonce shares Ri,1 = gri,1 and Ri,2 = gri,2 for each i ∈ {1, . . . , ℓ}. Then, the adversary calculates

challenges cbi,1 = Hsign(1, Ri,1 · Ri,2, X1, X2,m
b
i) and cbi,2 = Hsign(2, Ri,1 · Ri,2, X1, X2,m

b
i) for each

i ∈ {1, . . . , ℓ} and b ∈ {0, 1}. Now, define the group homomorphisms ρ+j : (Zp)
ℓ → Zp and

42

ρ×j : (G)ℓ → G for j ∈ {1, 2} as follows:

ρ+j (x1, . . . , xℓ) =
ℓ∑

i=1

2i−1xi
c1i,j − c0i,j

,

and

ρ×j (g1, . . . , gℓ) =
ℓ∏

i=1

g

2i−1

c1
i,j

−c0
i,j

i .

Let R1 = ρ×1 (R1,1, . . . , Rℓ,1) and R2 = ρ×2 (R1,2, . . . , Rℓ,2). Let R = R1 · R2, let cℓ+1,1 =

Hsign(1, R,X1, X2,mℓ+1), and also let cℓ+1,2 = Hsign(2, R,X1, X2,mℓ+1). Let d1 = cℓ+1,1 −

ρ+1 (c01,1, . . . , c
0
ℓ,1) and write it in binary as

∑ℓ
i=1 2i−1bi,1 for some b1,1, . . . , bℓ,1 ∈ {0, 1}, which is

possible since ℓ ≥ ⌈log2(p)⌉. Similarly, let d2 = cℓ+1,2 − ρ+2 (c01,2, . . . , c
0
ℓ,2) and write it in binary as∑ℓ

i=1 2i−1bi,2.

Now, for each i ∈ {1, . . . , ℓ} complete the third signing round of the signing session i with S1

using the message m
bi,1
i to obtain a signature share zi,1 = ri,1 + c

bi,1
i,1 · x1. Similarly, complete the

third signing round of session i with S2 using the (potentially different) message m
bi,2
i to obtain

a signature share zi,2 = ri,2 + c
bi,2
i,2 · x2. Now, they can calculate zℓ+1,1 = ρ+1 (z1,1, . . . , zℓ,1) and

zℓ+1,2 = ρ+2 (z1,2, . . . , zℓ,2).

We claim that σ = (R, zℓ+1,1 + zℓ+1,2) is a valid multi-signature for the message mℓ+1 under the

group S1 and S2, and thus this attack breaks the existential unforgeability of the scheme.

Validity of forged signature. We wish to verify that σ = (R, zℓ+1,1 + zℓ+1,2) is a valid multi-

signature for the message mℓ+1 and the group of signers S1 and S2. Hence, we must show that

gzℓ+1,1+zℓ+1,2 = R ·Xcℓ+1,1

1 ·Xcℓ+1,2

2 .

Starting from the left-hand side, we have that

gzℓ+1,1+zℓ+1,2 = gρ
+
1 (z1,1,...,zℓ,1)+ρ+2 (z1,2,...,zℓ,2)

= ρ×1 (R1,1, . . . , Rℓ,1) · ρ×2 (R1,2, . . . , Rℓ,2) ·X
ρ+1 (c

b1,1
1,1 ,...,c

bℓ,1
ℓ,1)

1 X
ρ+2 (c

b1,2
1,2 ,...,c

bℓ,2
ℓ,2)

2 .

The first two terms in the above equation are R1 and R2. Furthermore, ρ+1 (c
b1,1
1,1 , . . . , c

bℓ,1
ℓ,1) = cℓ+1,2

43

and ρ+2 (c
b1,2
1,2 , . . . , c

bℓ,2
ℓ,2) = cℓ+1,2 using the same idea as in Lemma 4.3.1. Thus, the above equation

simplifies to

gzℓ+1,1+zℓ+1,2 = R ·Xcℓ+1,1

1 ·Xcℓ+1,2

2 ,

which is what we wanted to prove.

44

Scheme BN[G, g, p,Hcom, Hsign]:

Scheme InsecureBN[G, g, p,Hcom, Hsign]:

BN.nr = 4; BN.lir = 3

KeyGen():

1 x←$ Zp; X ← gx

2 st.sk ← x; st.vk ← X

3 Return (sk = x, vk = X)

Verify(m,σ, vk1, . . . , vkn):

4 (R, z)← σ

5 Return [gz = R ·
∏n

i=1 vk
Hsign(i,R,vk1,...,vkn,m)

i]

Sign1():

6 st.j ← st.j + 1; j ← stj

7 stj .r←$ Zp; stj .R← gstj .r

8 stj .t← Hcom(stj .R)

9 stj .rnd← 1

10 Return stj .t

Sign2(j, k, t1, . . . , tn, , vk1, . . . , vkn,m):

11 If stj .rnd ̸= 1 or stj .t ̸= tk:

12 Return ⊥
13 stj .k ← k; sts.n← n

14 For i from 1 to n: sts.ti ← ti

15 Save Session Params(j, k, vk1, . . . , vkn,m)

16 stj .rnd← 2

17 Return stj .R

Sign3(j, R1, . . . , Rn ,m, vk1, . . . , vkn):

18 If stj .rnd ̸= 2 or Rstj .k ̸= stj .R:

19 Return ⊥
20 If ∃i such that stj .ti ̸= Hcom(Ri):

21 Return ⊥
22 Save Session Params(j, stj .me, vk1, . . . , vkn,m)

23 R←
∏n

i=1 Ri

24 c← Hsign(stj .k, R, stj .vk1, . . . , stj .vkn, stj .m)

25 z ← stj .r + st.sk · c
26 stj .rnd← 3

27 Return (R, z)

Sign4(R, z1, . . . , zn):

28 Return (R,
∑n

i=1 zi)

Save Session Params(j, k, vk1, . . . , vkn,m):

29 // helper method to store session params

30 If vkk ̸= st.vk:

31 Return ⊥
32 stj .m← m

33 For i from 1 to n: stj .vki ← vki

Figure 5.1: The secure Bellare-Neven multi-signature scheme, compared to the insecure version
with delayed message selection. The secure version contains all but the dashed boxes, and the
insecure version contains all but the solid boxes.

45

AChallenge
idl (X):

1 bad← false // abort whenever bad← true

2 Hsign, Hcom ← empty dictionary

3 K ← ∅ // tracks aggregated keys used

4 ctrs, ctrc ← 0 // tracks signing oracle queries
and IDL challenges

5 Tcom, Tchal ← empty dictionary // tracks Hcom

queries, IDL challenges

6 st← empty list

7 ρ←$ {1, . . . , qs + 1} // guess SignO2 query for
Case 2 forgery

8 Sim← {(S̃ignOi)
3
i=1, H̃sign, H̃com}

9 (m, (Xi)
n
i=1, (Rj , zj)

ℓ
j=1)← ASim

ms (X)

10 For j = 1, . . . , ℓ:

11 H̃sign(Rj , (Xi)
n
i=1,m) // ensure initialization

12 If Tchal[Rj , (Xi)
n
i=1,m] initialized:

13 Return (Tchal[Rj , (Xi)
n
i=1,m], zj)

14 Return ⊥

S̃ignO1():

15 t←$ Zp

16 ctrs← ctrs + 1, stctrs.t← t

17 Return t

S̃ignO2(j, k, (vki, ti)
n
i=1,m):

18 If j = ρ:

19 Rk←$ G

20 Else:

21 z, c←$ Zp; stj .z ← z

22 Rk ← gzX−c

23 For i ∈ {1, . . . , n} \ {k}:
24 If Tcom[ti] initialized: Ri ← Tcom[ti]

25 Else:

26 Ri←$ Zp

27 If Hcom[Ri] initialized: bad← true

28 Hcom[Ri]← ti; Tcom[ti]← Ri

29 R←
∏n

i=1 Ri; stj .R← R

30 If Hsign[j, R, (vki)
n
i=1,m] initialized: bad← true

31 Hsign[j, R, (vki)
n
i=1,m]← c

32 If Hcom[Rk] initialized: bad← true

33 Hcom[Rk]← stj .t; Tcom[stj .t]← Rk

34 Return Rk

S̃ignO3(j, R1, . . . , Rn):

35 If j = ρ: bad← true

36 Return stj .z

H̃com(R):

37 If Hcom[R] uninitialized:

38 Hcom[R]←$ Zp;

39 If Tcom[Hcom[R]] initialized: bad← true

40 Tcom[Hcom[R]]← R

41 Return Hcom[R]

H̃sign(k,R, (vki)
n
i=1,m):

42 If Hsign[k,R, (vki)
n
i=1,m] uninitialized:

43 For i where vki ̸= X:

44 If Hsign[i, R, (vki)
n
i=1,m] uninitialized:

45 Hsign[i, R, (vki)
n
i=1,m]←$ Zp

46 ci ← Hsign[i, R, (vki)
n
i=1,m]

47 If X ∈ {vk1, . . . , vkn}:
48 c← Challenge(R ·

∏
i:vki ̸=vkk

vkci
i)

49 J ← {j : vkj = X}; jmax ← max(J)

50 For i ∈ J \ {jmax} :
51 ei←$ Zp

52 Hsign[i, R, (vki)
n
i=1,m]← ei

53 H[jmax, R, (vki)
n
i=1,m]← c−

∑
i∈J\{jmax} ei

54 ctrc← ctrc + 1

55 Tchal[Rj , (vki)
n
i=1,m]← ctrc

56 Return Hsign[(k,R, vk1, . . . , vkn,m)]

Figure 5.2: The reduction algorithm used in the proof of Lemma 5.2.1.

46

Section 6

ANALYSIS OF MUSIG2

We prove the strong unforgeability of the multi-signature scheme MuSig2 [30] under the Alge-

braic One More Discrete Log assumption of [30] which we present in Figure 6.1 (a weaker falsifiable

variant of the One More Discrete Log assumption [6]).

MuSig2 requires only two interactive signing rounds, of which one can be pre-processed before

the message to sign and the set of signers have been determined. It also supports key aggregation

and produces ordinary Schnorr signatures with respect to the aggregated signing key.

Our strong unforgeability proof of MuSig2 is nearly identical to its original existential unforge-

ability proof [30], and we strive to use similar structure and notation when presenting the proof as

well as reuse as much of it as possible. The similarity of our proof to the existential unforgeability

proof serves as evidence that our definition of strong unforgeability is straightforward to use.

6.1 Scheme Description.

We will describe the scheme informally. A formal description using our syntax is found in Figure

6.2.

The scheme uses a group G of prime order p with a generator g and three hash functions Hagg,

Hnonce, and Hsign with codomain Zp. Key generation and aggregation is the same as in MuSig,1

where each signer generates the keys sk←$ Zp and vk ← gsk and the aggregate verification key for

a group of n signers is ṽk ←
∏n

i=1 vk
Hagg(i,X1,...,Xn)
i .

In the first signing round each signer k generates four2 random values rk,1, . . . , rk,4←$ Zp and

sends Rk,ℓ ← grk,ℓ for each ℓ ∈ {1, . . . , 4} to all other signers. In the second round, on input

1We slightly deviate from the original MuSig2 scheme by writing ṽk ←
∏n

i=1 vk
Hagg(i,vk1,...,vkn)
i , as opposed to

ṽk ←
∏n

i=1 vk
Hagg(vki,vk1,...,vkn)
i . This follows the convention of [5], which views the public keys of the signing group

as a list as opposed to a multi-set in the security definitions.

2There is a simpler variant of MuSig2 that uses only two nonces [30] that we do not consider in this paper. Its
security proof relies on the algebraic group model.

47

Game Gmaomdl
G,g

Init():

1 c← 0; q ← 0

Challenge():

2 c← c+ 1

3 xc←$ Zp; Xc ← gxc

4 Return Xc

Dlog(α, β1, . . . , βc):

5 // Outputs the DLog of X = gα
∏c

i=1 X
βi

i given its algebraic
representation in terms of the challenges

6 q ← q + 1

7 Return α+
∑c

i=1 βixi

Fin(y1, . . . , yc):

8 If q ≥ c or ∃i ∈ {1, . . . , n} such that yi ̸= xi:

9 Return false

10 Return true

Figure 6.1: The Algebraic One More Discrete Log (AOMDL) game in a group G with a generator
g of prime order p.

((vki, Ri,1, . . . , Ri,4)
n
i=1,m), each signer k computes Rℓ ←

∏n
i=1Ri,ℓ for ℓ ∈ {1, . . . , 4}, the aggregate

verification key ṽk, and b ← Hnonce(ṽk, R1, . . . , R4,m). Then each signer computes the aggregate

nonce R ←
∏4

ℓ=1R
(bℓ−1)
ℓ , the challenge c ← Hsign(ṽk, R,m), and their partial signature zk ←∑4

ℓ=1 rk,ℓ · bℓ−1 + c · skk · Hagg(k, vk1, . . . , vkn) which they send to all other signers. The final

multi-signature is given by (R,
∑n

i=1 zi), which can be computed by any of the signers.

A multi-signature (R, z) can be verified with respect to a message m and an aggregate verification

key ṽk by checking that gz = R · ṽkHsign(ṽk,R,m)
, which is identical to the verification of a standard

Schnorr signature. MuSig2 satisfies perfect correctness.

Aggregator node. In the setting with an aggregator node, the communication cost of MuSig2

can be reduced by having the aggregator compute the Rj ’s instead of the signers. More specifically,

after the first signing round the aggregator receives (Ri,1, . . . , Ri,4)
n
i=1 and computes Rℓ ←

∏n
i=1Ri,ℓ

for ℓ ∈ {1, . . . , 4}. The Rℓ’s can now be used as the input to the second signing round of each signer,

as opposed to all of the Ri,ℓ’s.

This shortcut does not affect the existential and strong unforgeability of MuSig2, since an

adversary can compute the Rℓ’s given the Ri,ℓ’s, and because given a uniformly random Rℓ an

adversary can simulate a selection of R1,ℓ, . . . , Rn,ℓ that appear uniformly random and have product

Rℓ. Therefore, without loss of generality, we do not consider this shortcut in our proof.

48

Scheme MuSig2G,g,Hagg,Hnonce,Hsign
:

MuSig2.nr = 3

MuSig2.lir = 2

KeyGen():

1 x←$ Zp; X ← gx

2 st.sk ← x; st.vk ← X

3 Return (sk = x, vk = X)

KeyAgg(vk1, . . . , vkn):

4 Return
∏n

i=1 vk
Hagg(i,vk1,...,vkn)
i

Sign1():

5 st.j ← st.j + 1 // num of signing sessions

6 j ← st.j, stj .rnd← 1

7 For i ∈ {1, . . . , 4}:
8 stj .ri←$ Zp; Ri ← gstj .ri

9 Return (R1, . . . , R4)

Sign2(j, k,m, (vki, Ri,1, . . . , Ri,4)
n
i=1):

10 If stj .rnd ̸= 1 or vkk ̸= st.vk:

11 Return ⊥
12 stj .rnd← 2

13 ṽk ← KeyAgg(vk1, . . . , vkn)

14 For ℓ = 1, . . . , 4:

15 Rℓ ←
∏n

i=1 Ri,ℓ

16 b← Hnonce(ṽk, R1, . . . , R4,m)

17 R←
∏4

ℓ=1 R
(bℓ−1)
ℓ

18 c← Hsign(R, ṽk,m)

19 z ←
∑4

ℓ=1 stj .rℓ · b
ℓ−1 + c · skk ·Hagg(k, vk1, . . . , vkn)

20 Return (R, z)

Sign3(R, z1, . . . , zn):

21 Return (R,
∑n

i=1 zi)

AggVer(m,σ, ṽk):

22 (R, z)← σ

23 Return [gz = R · ṽkHsign(ṽk,R,m)
]

Figure 6.2: A description of MuSig2 over a group G of order p with generator g. The third round
is often omitted since it can be performed by any observer of the protocol.

6.2 One-More Unforgeability.

The one-more unforgeability of MuSig2 is given in the following lemma which we prove in this

section.

Lemma 6.2.1 (AOMDL→ SUF of MuSig2 in the ROM). Let G be a group with prime order p and

generator g. Let MS = MuSig2[G, g], where its hash functions are modeled as random oracles. Let

Ams be an adversary against Gsuf-ms[MS] making at most qs queries to the signing oracle SignO1

and qh queries to each random oracle. Let q = 4qh + 3qs + 2. Then, there exists an algorithm D

such that

Advsuf−ms
MS (Ams) ≤

(
2q3(Advaomdl

G,g (D) +
32q2 + 12

p
)

)1/4

and D runs in approximately 4 times the runtime of Ams.

Proof idea: double forking technique. The proof of the strong unforgeability of MuSig2 is

nearly identical to the existential unforgeability proof of [30].

49

In the existential unforgeability proof, an adversary Ams that breaks the existential unforge-

ability of MuSig2 in the ROM on input public key vk is used to win the AOMDL game in the

following manner: suppose Ams outputs a forged signature (R, s) on a message m and public keys

(vk1, . . . , vkn) where vkk = vk after making qs signing oracle queries. First, they construct an

adversary B that simulates Gsuf-ms[MuSig2] for Ams by taking 4qs + 1 AOMDL challenges but only

making qs queries to the Dlog oracle. Then, they construct an adversary C that “rewinds” B by

executing it again using the same randomness initially, but with a different value for Hsign(R, ṽk,m),

where ṽk is the aggregate public key corresponding to (vk1, . . . , vkn). According to the General-

ized Forking Lemma [7], the second execution of B produces a forgery using the same parameters

(R, ṽk,m) with non-negligible probability, allowing the reduction to extract the discrete log of ṽk.

Note that C runs B twice, and therefore it makes at most 2qs queries to the Dlog oracle.

Now, to extract the discrete log of vk the reduction constructs an adversary D that rewinds

C by executing it again using the same randomness initially, but with a different value of

Hagg(k, vk1, . . . , vkn). If C succeeds both times with the same list of public keys vk1, . . . , vkn,

which happens with non-negligible probability, then we can use the discrete logs of the aggregated

public key to extract the discrete log of vk. Note that D runs C twice, and hence makes at most 4qs

queries to the Dlog oracle. However, the reduction algorithm is set so that learning the discrete

log of vk, which is the first OMDL challenge, allows the reduction to learn the discrete log of all

4s + 1 discrete log challenges (the other challenges are used for the nonces in B’s simulation of

SignO2), hence winning the AOMDL game.

We refer readers to [30] for a thorough explanation of the proof technique.

What we do. In Lemma 6.2.2, we construct a modified adversary B, which uses an adversary

Ams that breaks the strong unforgeability of MuSig2 (as opposed to the existential unforgeability

in [30]). Our B takes the same input and has the same output as the algorithm B in the proof of

[30] and uses its input in the exact same way. Thus, once our Lemma 6.2.2 is established, we can

plug in our B to Lemma 3 and Theorem 1 of [30], and obtain a proof of the strong unforgeability

of MuSig2 as stated in Lemma 6.2.1.

Lemma 6.2.2 (underlying algorithm for the rewinding based reduction). Let G be a group of prime

order p with generator g. Let MS = MuSig2[G, g] be the associated multi-signature scheme, where

50

its hash functions are modeled as random oracles. Let Ams be an adversary against Gsuf-ms[MS]

that makes at most qs queries to SignO1, qh queries to each hash function, and uses a random tape

of length ρA. Let q = 4qh+3qs+2. If X,U1, . . . , U4qs are AOMDL challenges and h1, . . . , hq←$ Zp,

then with probability

acc(B) ≥ Advsuf−ms
MS (Ams)−

4q2

p

the adversary B defined in Figure 6.3 makes at most qs queries to the AOMDL discrete log oracle

and outputs a tuple (isign, iagg, X1, . . . , Xn, R, z, a1, . . . , an) where isign, iagg ∈ {1, . . . , q}, isign < iagg,

X ∈ {X1, . . . , Xn}, a1, . . . , an ∈ Zp,
∑

{i : Xi=X} ai = hiagg , and

gz = R
n∏

i=1

X
aihisign

i .

Furthermore, the runtime of B is approximately that of Ams.

Proof of Lemma 6.2.2: We will first prove that all the requirement hold whenever Ams and B

succeed, and then analyze its success probability.

First, note that B makes a single Dlog query whenever Ams makes a query to the second round of

the signing oracle SignO2, and does not query Dlog at any other time. Hence, it makes at most

qs queries to Dlog, as desired.

Now, we will ensure that ctrh does not exceed q. On each query Ams makes to Hagg and Hsign, ctrh

is incremented by 1, and it is incremented by at most two on each Hsign query, resulting in at most

4 · qh incrementations from handling the adversary’s random oracle queries. Additionally, for each

SignO2 query the adversary makes B computes the aggregated key (incrementing the counter once)

and b (which makes H̃nonce increment the counter twice), resulting in at most 3 · qs incrementations

to handle signing oracle queries. Lastly, to use a forgery B computes the aggregated key, which

may increment ctrh by one. Thus, ctrh does not exceed 4qh + 3qs + 1, as desired.

IfAms succeeds, then it outputs more signatures than the number of signatures for the corresponding

message m and public keys X1, . . . , Xn produced by the signing oracle. In particular, for some j,

the signing oracle did not return a signature for (m,X1, . . . , Xn) with Rj as the R value. If bad is

not set to true, then the adversary did not find a collision of aggregated keys for different lists of

51

public keys, and therefore the signing oracle did not return a signature for (m, X̃) with Rj as the

R value, and thus B returns an output based on the forgery σj and not ⊥.

For the other requirements, note that if Ams succeeds then it outputs a list of public keys containing

X, and hence X ∈ {X1, . . . , Xn}. Furthermore, by construction iagg is the index such that

hiagg =
∑

{i : Xi=X}

Hagg(i,X1, . . . , Xn) =
∑

{i : Xi=X}

ai

as desired, and by construction hisign = Hsign(Rj , X̃,m). Since each of the signatures that Ams

outputs is valid for the message m, it holds that

gsj = R

n∏
i=1

X
aihisign

i .

Lastly, note that if iagg > isign then Hsign[Rj , X̃,m] was set before Hagg[k,X1, . . . , Xn] was initialized

for any k, and therefore bad is set to true when Hsign[Rj , X̃,m] is initialized, meaning that B does

not succeed. Thus, if B succeeds then iagg < isign.

Now, we will lower bound success probability of B. As we have shown, if AMS succeeds and bad is

not set to true, then B succeeds. Note that bad is set to false in two cases: when a new aggregated

key has already been used in an Hsign query and when two aggregated keys collide. Each of those

bad events can only happen when we initialize a new Hagg value, which happens at most once in

calls to Hagg, SignO2, and on the output of Ams. Each time, the probability that those events

happen are bounded above by |Hsign|/p ≤ q/p and |K|/p ≤ q/p, resulting in a total probability

bounded above by 2q2/p.

Hence, B succeeds with probability of at least Pr[Gsuf-ms
MS (Ams)] − 2q2/p, which implies the prob-

ability bound in the lemma. We use the bound in the lemma as opposed to the tighter bound we

obtained for compatibility with the proof of [30].

52

BDlog(X∗, U1, . . . , U4qs , h1, . . . , hq):

1 bad← false // abort whenever bad← true

2 Hagg, Hsign, Hnonce ← empty dictionary

3 ctrh← 0 // counter for random oracle queries

4 ctrs← 0 // counter for signing oracle queries

5 Q← ∅ // tracks signing oracle responses

6 K ← ∅ // tracks aggregated keys used

7 Tagg, Tsign ← empty dictionary // tracks indices
in h for random oracle replies

8 ρA←$ {0, 1}RA // random tape for A
9 Sim← {S̃ignO1, S̃ignO2, H̃agg, H̃sign, H̃nonce}

10 (m, (Xi)
n
i=1, (Rj , zj)

ℓ
j=1)← ASim

ms (X; ρA)

11 X̃ ←
∏n

i=1 X
H̃agg(i,X1,...,Xn)
i

12 If ∃j ∈ {1, . . . , ℓ} such that (Rj , X̃,m) ̸∈ Q:

13 H̃sign(Rj , X̃,m) // ensure initialization

14 isign ← Tsign[Rj , X̃,m]

15 iagg ← Tagg[X1, . . . , Xn]

16 For i = 1, . . . , n:

17 ai ← H̃agg(i,X1, . . . , Xn)

18 Return (isign, iagg, X1, . . . , Xn, Rj , zj , a1, . . . , an)

19 Return ⊥

S̃ignO1():

20 ctrs← ctrs + 1

21 ĵ ← 4(ctrs− 1)

22 Return Uĵ+1, Uĵ+2, Uĵ+3, Uĵ+4

S̃ignO2(j, k,m, (vki, Ri,1, . . . , Ri,4)
n
i=1):

23 j′ ← 4(ctrs− 1)

24 (Rk,1, . . . , Rk,4)← Uĵ+1, . . . , Uĵ+4

25 X̃ ←
∏n

i=1 vk
H̃agg

i (i, vk1, . . . , vkn)

26 For ℓ = 1, . . . , 4:

27 Rℓ ←
∏n

i=1 Ri,ℓ

28 b← H̃nonce(ṽk,m,R1, . . . , R4)

29 R←
∏4

ℓ=1 R
(bℓ−1)
ℓ

30 Q← Q ∪ {(R, ṽk,m)}
31 c← H̃sign(ṽk, R,m)

32 // query dlog oracle for the partial signature:

33 α← 0; β1 ← c · H̃agg(k, vk1, . . . , vkn)

34 For i = 2, . . . , 4qs + 1:

35 βi ← 0

36 (βj′+2,...,j′+5)← (b0, . . . , b3)

37 z ← Dlog(α, β1, . . . , β4qs)

38 Return (R, z)

H̃agg(k,X1, . . . , Xn):

39 If Hagg[k,X1, . . . , Xn] uninitialized:

40 If X ∈ {X1, . . . , Xn}:
41 ctrh← ctrh + 1

42 v ← max{i : Xi = X}
43 s← 0

44 For i = 1, . . . , v − 1:

45 If Xi = X:

46 Hagg[i,X1, . . . , Xn]←$ Zp

47 s← s+Hagg[i,X1, . . . , Xn]

48 Hagg[v,X1, . . . , Xn]← hctrh − s

49 Tagg[X1, . . . , Xn]← ctrh

50 For i = 1, . . . , n:

51 If Xi ̸= X: Hagg[i,X1, . . . , Xn]←$ Zp

52 X̃ ←
∏n

i=1 X
Hagg[i,X1,...,Xn]
i

53 If ∃(R,m) such thatHsign[R, X̃,m] is initialized:

54 bad← true

55 If X̃ ∈ K:

56 bad← true

57 K ← K ∪ {X̃}
58 Return Hagg[k,X1, . . . , Xn]

H̃nonce(X̃, R1, . . . , R4,m):

59 If Hnonce[X̃, R1, . . . , R4,m] uninitialized:

60 ctrh← ctrh + 1

61 Hnonce[X̃, R1, . . . , R4,m]← hctrh

62 b← Hnonce[X̃, R1, . . . , R4,m]

63 R←
∏4

ℓ=1 R
(bℓ−1)
ℓ

64 H̃sign(R, X̃,m) // ensure initialization

65 Return Hnonce[X̃, R1, . . . , R4,m]

H̃sign(R, X̃,m):

66 If Hsign[R, X̃,m] uninitialized:

67 ctrh← ctrh + 1

68 Hsign[R, X̃,m]← hctrh

69 Tsign[R, X̃,m]← ctrh

70 Return Hsign[R, X̃,m]

Figure 6.3: The algorithm from Lemma 6.2.2, which is used to prove the strong unforgeability of
MuSig2. It is very similar to Figure 7 of [30].

53

Section 7

ANALYSIS OF HBMS

In [5] Bellare and Dai present HBMS (“Hash-Based Multi-Signature”), a two round multi-

signature scheme, and prove its existential unforgeability using the discrete log assumption in

the random oracle model. We will show that HBMS does not satisfy our definition of strong

unforgeability by providing a concrete polynomial time attack by an adversary who corrupts at

least one signer and can participate in concurrent signing sessions. The attack uses the algorithm

of Benhamouda et al. [11] to solve the ROS problem [35], which broke the unforgeability of many

multi-signature schemes including an older variant of MuSig [23].

In the attack the adversary completes the first signing round of ℓ concurrent signing sessions for

some ℓ ≥ ⌈log2(p)⌉, where each session has the same group of signers and the same message and p

is the order of the underlying group. Then, the adversary completes the signing sessions to obtain

one multi-signature from each, and uses the output of those sessions to construct an additional

signature for the same message. Thus, the adversary obtains ℓ + 1 multi-signatures, of which ℓ are

obtained legitimately and one is a forgery, breaking strong unforgeability.

The attack is practical against a group who produces signatures together repeatedly, and it

can be carried out by a single malicious signer regardless of the number of signers in the group.

We emphasize, however, that it does not compromise the existential unforgeability of HBMS nor

violate existing security proofs.

We point out that HBMS is strongly unforgeable against adversaries that don’t exploit the

fact that it is an interactive multi-signature scheme (i.e. if we assume an atomic execution of the

signing protocol and no corrupt signers). In other words, HBMS produces strongly unforgeable

plain signatures in a distributed way, without being strongly unforgeable itself. In Section 7.3 we

formally define this weaker security notion (which we call non-interactive strong unforgeability),

and we prove that it is satisfied by HBMS.

54

7.1 Scheme Description

We describe the HBMS scheme informally. A formal description of the scheme is given in Figure 9

of [5].

HBMS involves three hash functions: H0 with codomain G and H1, H2 with codomain Zp, where

G is a multiplicative group of order p with a generator g provided by the scheme parameters. For

key generation, each signer i of the n signers samples a secret key xi uniformly at random from Zp

and a public key Xi ← gxi . The aggregate key is X̃ ←
∏n

i=1X
H2(i,X1,...,Xn)
i .

To sign a message m with a group of signers (Xi)
n
i=1, the scheme involves two interactive signing

rounds. In the first round, given the message and signing group as input, each signer i calculates

h ← H0(X1, . . . , Xn,m) ∈ G, samples ri and si uniformly at random from Zp, and computes a

commitment Mi ← hsigri which is sent to every other signer. In the second round, each signer

receives a list of commitments (M1, . . . ,Mn) from all the signers and computes T ←
∏n

i=1Mi. Each

signer then computes the challenge c← H1(T, X̃,m) and the reply zi ← ri+xi ·c·H2(i,X1, . . . , Xn),

and sends (si, zi) to every other signer. Finally, every signer can now compute the final signature

(T, s, z) where s←
∑n

i=1 si, z ←
∑n

i=1 zi, and T ←
∏n

i=1Mi.

To verify a signature (T, s, z) with respect to public keys (X1, . . . , Xn) and a message m, the

verifier computes h ← H0(X1, . . . , Xn,m) and X̃ ←
∏n

i=1X
H2(i,X1,...,Xn)
i , and returns true if and

only if the equation

gzhs = T · X̃H1(T,X̃,m)

holds. Note that during verification the entire vector of public keys is needed for computing h, and

hence HBMS does not support key aggregation. Perfect correctness is easy to verify, and [5] proves

the existential unforgeability of HBMS.

7.2 Attack Against One-More Unforgeability

We will present an attack in the two signers setting where one signer is corrupt, which is sufficient

to break our definition of strong unforgeability. It is easy to generalize it to a setting with more

signers, as long as at least one signer is corrupt.

Let S1 be a corrupt signer controlled by the adversary and S2 an honest signer (with whom the

adversary can communicate via a signing oracle). Let m be a message of the adversary’s choice and

55

pick ℓ ≥ ⌈log2(p)⌉. Each signer Si ∈ {S1, S2} proceeds with the key generation honestly by picking

xi←$ Zp and Xi ← gxi and computing X̃ ← X
H2(1,X1,X2)
1 X

H2(2,X1,X2)
2 .

Now, for each j ∈ {1, . . . , ℓ}, the adversary opens a signing session with signing group

(X1, X2) and message m, and receive a nonce Nj = hsjgrj from the honest signer S2, where

h ← H0(X1, X2,m). For each j ∈ {1, . . . , ℓ} and b ∈ {0, 1}, the adversary samples rbj and

sbj uniformly at random from Zp and computes N
b
j ← hs

b
jgr

b
j and T

b
j ← Nj · N

b
j as well as

cbj ← H1(T
b
j , X̃,m). The adversary must also ensure that all of the T

bj
j are distinct and that

c0j ̸= c1j for each j by regenerating the nonces if needed.

Now, define the group homomorphisms ρ+ : (Zp)
ℓ → Zp and ρ× : Gℓ → G given by

ρ+(g1, . . . , gℓ) =

ℓ∑
j=1

2j−1gj
c1j − c0j

and

ρ×(g1, . . . , gℓ) =

ℓ∏
j=1

g

2j−1

c1
j
−c0

j

j .

Let Tℓ+1 ← ρ×(N1, . . . , Nℓ) and calculate cℓ+1 ← H1(Tℓ+1, X̃,m). Let d ← cℓ+1 − ρ+(c01, . . . , c
0
ℓ)

and write it in binary as d =
∑ℓ

j=1 2j−1bj for some b1, . . . , bℓ ∈ {0, 1}, which is possible since

ℓ ≥ ⌈log2(p)⌉.

Next, continue to the second round of each signing session j by sending N
bj
j to the honest signer

and obtaining the returned signature shares sj and zj . The adversary can now obtain ℓ legitimate

signatures for the message m by computing

σj ← (T
bj
j , sj + s

bj
j , zj + r

bj
j + x1 · c

bj
j ·H2(1, X1, X2))

for each j ∈ {1, . . . , ℓ}, as well as a forgery

σℓ+1 ← (Tℓ+1, ρ
+(s1, . . . , sℓ), ρ

+(z1, . . . , zℓ) + cℓ+1 · x1 ·H2(1, X1, X2)).

We will prove below that all ℓ + 1 signatures (σ1, . . . , σℓ, σℓ+1) are valid for the message m and

signing group (X1, X2), and that they are all distinct with high probability. This implies that the

56

adversary obtained ℓ + 1 valid signatures after only completing ℓ signing oracle signing sessions,

breaking the strong unforgeability of HBMS.

Validity of σ1, . . . , σℓ. Since all of the T
bj
j are distinct, all of the σj are distinct for j ∈ {1, . . . , ℓ}.

Also note that each of those signatures was obtained legitimately with both signers following the

protocol, and hence by the perfect correctness of HBMS they are valid.

Validity of σℓ+1. The signature σℓ+1 = (Tℓ+1, ρ
+(s1, . . . , sℓ), ρ

+(z1, . . . , zℓ) + cℓ+1 · x1 ·

H2(1, X1, X2)) is the forged signature, and is the only one that is not trivial to obtain.

For the distinctiveness of σℓ+1, note that the collection {T b1
1 , . . . , T

bℓ
ℓ } is selected uniformly at

random from all subsets of G of cardinality ℓ, independently of (N1, . . . , Nℓ). Hence, the probability

that is contains Tℓ+1 = ρ×(N1, . . . , Nℓ) is ℓ
|G| ≈

log2(p)
p , which is very small. Hence, with large

probability, Tℓ+1 ̸= T
bj
j and therefore σℓ+1 ̸= σj for all j ∈ {1, . . . , ℓ}.

We will now verify that σℓ+1 is valid. To check its validity, we must verify that

gρ
+(z1,...,zℓ)+cℓ+1·x1·H2(1,X1,X2) · hρ+(s1,...,sℓ) = Tℓ+1 · X̃cℓ+1

where h← H0(X1, X2,m). Starting from the right-hand side, we have that

Tℓ+1 · X̃cℓ+1 = ρ×(N1, . . . , Nℓ) · (X
H2(1,X1,X2)
1 X

H2(2,X1,X2)
2)cℓ+1 =

= gρ
+(r1,...,rℓ) · hρ+(s1,...,sℓ) · g(x1·H2(1,X1,X2)+x2·H2(2,X1,X2))cℓ+1 .

Applying Lemma 7.2.1, which states that cℓ+1 = ρ+(cb11 , . . . , cbℓℓ), we can simplify the equation to

= hρ
+(s1,...,sℓ)gx1·H2(1,X1,X2)cℓ+1+ρ+(r1,...,rℓ)+x2·H2(2,X1,X2)·ρ+(c

b1
1 ,...,c

bℓ
ℓ)

and therefore, since ρ+ is homomorphic and zj = rj + x2 ·H2(2, X1, X2) · c
bj
j for each j,

= hρ
+(s1,...,sℓ)gx1·H2(1,X1,X2)cℓ+1+ρ+(z1,...,zℓ)

which is what we wanted to prove. Hence, σℓ+1 is a valid signature.

Lemma 7.2.1. By the construction above, cℓ+1 = ρ+(cb11 , . . . , cbℓℓ).

57

This lemma is at the heart of the attack, and the construction allowing this lemma to hold is

precisely the algorithm of [11] to solve the ROS problem.

Proof of Lemma 7.2.1 The proof of this lemma is identical to that of 4.3.1.

7.3 SUF of Underlying Plain Signature Scheme

In this section we prove that HBMS is strongly unforgeable against adversaries that don’t exploit

the fact that those protocols are interactive multi-signature schemes, or essentially treats them as

a plain single signer digital signature scheme, where the signer is the group as a whole. Note that

HBMS is not strongly unforgeable against adversaries that corrupts some of the signers and exploits

the interactive nature of the schemes. Hence, this section highlights the danger of integrating a

multi-signature scheme (without verifying that it is strongly unforgeable) in a platform that is used

for normal strongly unforgeable signature schemes, even if the multi-signatures are indistinguishable

from the standard signatures.

Defining security of the underlying scheme. To define this security notion, which we call

“non-interactive strong unforgeability,” we provide a game that an adversary plays against a multi-

signature scheme, where the adversary is given a signing group and may query a signing oracle

to obtain multi-signatures of that group for messages of the adversary’s choice. The adversary

wins if they can come up with a valid multi-signature for that group that was not obtained from

the signing oracle. For the scheme to satisfy this security definition, it is required that efficient

adversaries have a negligible winning probability for all n. See Figure 7.1 for a formal definition.

We use the XIDL game (Figure 2.1) to prove that HBMS satisfies the non-interactive strong

unforgeability definition. Since XIDL is hard in groups where the discrete log problem is hard

(Lemma 2.0.2), this proves the non-interactive strong unforgeability of HBMS under the discrete

log assumption.

Lemma 7.3.1 (XIDL → NISUF of HBMS in the ROM). Let G be a group of prime order p

with generator g. Let MS = HBMS[G, g] be the associated multi-signature scheme, where its hash

functions are modeled as random oracles. Let Ams be an adversary against Gni-suf-ms
n [MS] that

makes at most q0, q1, qs queries to H0, H1, and SignO respectively. Then, we can construct an

58

Games Gni-suf-ms
n [MS]

Init():

1 For i = 1, . . . , n:

2 (vki, ski)←$ MS.Kg()

3 Q← ∅ // message-signature pairs obtained le-
gitimately

4 Return (vki)
n
i=1

SignO(m):

5 σ ← ExecMS((vki)
n
i=1), (ski)

n
i=1,m)

6 Q← Q ∪ {(m,σ)}
7 Return σ

Fin(m,σ):

8 If MS.Verify((vki)
n
i=1,m, σ):

9 If (m,σ) ̸∈ Q:

10 Return true

11 Return false

Figure 7.1: Game used to define the “non-interactive strong unforgeability” of a multi-signature
scheme MS.

adversary Axidl against Gmxidl
G,g,1,q1+1 such that

Advni-suf-ms
MS (Ams) ≤ (q0 + qs + 1)Advxidl

G,g,1,q1+1(Axidl) +
qs(q1 + qs)

p

and the runtime of Axidl is approximately the runtime of Ams.

Proof idea for Lemma 7.3.1. Suppose an adversary Ams break the non-interactive strong un-

forgeability of HBMS (i.e. wins the game in Figure 7.2). Then, given an aggregate public key

X̃, they must provide a signature (s, z, T) for some message m such that hsgz = TX̃H1(T,X̃,m),

where h = H0(m,X1, . . . , Xn). If X̃ is an XIDL target and H1(T, X̃,m) is an XIDL challenge,

then the element z + s ·DLOGg(h) wins the XIDL game, where the reduction can know DLOGg(h)

since it programmed the random oracle H0. To simulate the signing oracle, we follow the standard

procedure for simulating Schnorr signatures by first picking c, z′←$ Zp, then letting T = gz
′
X̃−c,

and then programming the random oracle H1(T, X̃,m)← c. Then, we can pick a random s←$ Zp,

and the triple (s, T, z′ − sDLOGg(h)) is a valid HBMS signature (where h = H0(m,X1, . . . , Xn)).

Note that we cannot use an XIDL challenge for signing, since we have to pick it before deciding on

the corresponding T . Thus, to win the XIDL game we need a signature on an (m,T) pair not used

by the signing oracle, hence the need for a forgery.

If the forged signature indeed has a different (m,T) pair from any signing oracle response,

then we can use it to win the XIDL; we call such a forgery a Type 1. However, it could be the

case that the adversary obtained an HBMS signature (s, z, T) on the same (m,T) pair as some

59

signing oracle response, (s∗, z∗, T), which we call a Type 2 forgery. However, this means that

z + sDLOGg(h) = z∗ + s∗DLOGg(h) for s ̸= s∗, allowing the adversary to extract the discrete log

of h.

To use this fact, we guess whether the adversary will output a Type 1 or Type 2 forgery. If we

guess Type 1, we can win the XIDL game as described. If we guess type 2, we can set the XIDL

input X to be one of the random oracles responses to H0(m,X1, . . . , Xn) instead, and simulate the

signing oracle by executing HBMS honestly with keys that the reduction generated. If we guessed

the right query, which happens with probability inversely proportional to the maximum number of

H0 values for which the random oracle was programmed, the adversary learns the discrete log of

X, and can trivially win the XIDL game.

Now, we make this idea more precise in a formal proof.

Proof of Lemma 7.3.1: In Figure 7.2 we construct an adversary Axidl which plays the XIDL

game by executing Ams and simulating perfectly the oracles that it has access to (as long as bad is

not set to true). Without loss of generality, we assume that all random oracle queries of Ams are

well-formed, since otherwise we can simply simulate their responses uniformly at random. We will

now analyze its success probability.

Now, suppose Ams wins Gni-suf-ms
n [MS] by returning some forgery (m,σ) where σ = (s, z, T). Let

h = H0(m,X1, . . . , Xn) and c = H1(T, X̃,m), and note that hsgz = TX̃c. Now consider the

following cases:

Case 1 There was no signing oracle query that returned a signature (s′, T ′, z′) on m with T = T ′.

In this case, if ρ = 0, then the forgery allows Bxidl to win the XIDL game, as long as bad was

not set to true. For each signing oracle query, since T is uniformly random independently of

the previous execution of the algorithm, we have that bad is set to true with probability of

at most q1+qs
p , and thus across all signing oracle queries the probability that bad ← true is

bounded above by qs(q1+qs)
p . If bad was not set to true in the execution of Ams and we have a

forgery of the type corresponding to this case, then C[T] would be initialized in the execution

of Ams and thus bad would not be set in line 16.

Case 2 There was a signing oracle query that returned a signature (s′, T ′, z′) on m with T = T ′.

60

Game Gni-suf-ms
n [HBMSG,g,H0,H1,H2]

Init():

1 For i = 1, . . . , n:

2 xi←$ Zp; Xi ← gx

3 X̃ ←
∏n

i=1 X
H2(i,X1,...,Xn)
i

4 x̃←
∑n

i=1 xi ·H2(i,X1, . . . , Xn)

5 Q← ∅
6 Return (X1, . . . , Xn)

SignO(m):

7 h← H0(X1, . . . , Xn,m)

8 s, r←$ Zp

9 T ← hsgr

10 c← H1(T, X̃,m)

11 z ← r + c · x̃
12 Q← Q ∪ {(m, (s, T, z))}
13 Return (s, T, z)

Fin(m,σ):

14 If (m,σ) ∈ Q: Return false

15 Parse σ as (s, T, z)

16 h← H0(X1, . . . , Xn,m)

17 Return [gzhs = T · X̃H1(T,X̃,m)]

ANewTarget,Challenge
xidl (X):

1 // randomly selects whether to execute Bxidl
or Cdl, presented in Figures 7.3 and 7.4

2 I←$ {0, 1, . . . , q0 + qs}
3 If I = 0:

4 Return BNewTarget,Challenge
xidl (X)

5 Else:

6 x← Cdl(X, I)

7 If x = ⊥ or gx ̸= X: Return ⊥
8 e← NewTarget(1G)

9 c← Challenge(1, 1G)

10 Return (1, x · c · e)

Figure 7.2: Left: the non-interactive strong unforgeability of HBMS over a group G with a generator
g of order p. Right: the reduction algorithm used to prove Lemma 7.3.1, where the referenced
subroutines are in Figures 7.3 and 7.4.

In this case, there was a call to H̃0(m,X1, . . . , Xn) by the signing oracle (or the adversary).

Suppose this call was the ℓ’s value programmed by H̃0. Then, if we guessed ρ = ℓ, then Cdl
correctly finds the discrete log of X, allowing Axidl to win the XIDL.

Thus, in both possible cases, we have that

Pr[Gmxidl
G,g(Axidl)] ≥

1

q0 + qs + 1

(
Pr[Gni-suf-ms

n [ms](Ams)]−
qs(q1 + qs)

p

)
,

which is what we wanted to prove.

61

BNewTarget,Challenge
xidl (X):

1 bad← false // Abort whenever bad← true

2 H0, H1, H2, H
dl
0 , C ← empty dictionaries

3 q ← 0 // tracks H̃1 queries

4 X1 ← X

5 For i = 2, . . . , n:

6 xi←$ Zp; Xi ← gx

7 For i = 2, . . . , n− 1

8 αi←$ Zp

9 H2[i,X1, . . . , Xn]← αi

10 H2[1, X1, . . . , Xn]← NewTarget(
∏n

i=2 X
αi
i)

11 X̃ ←
∏n

i=1 X
H2(i,X1,...,Xn)
i

12 (m, (s, z, T))← AS̃ignO,H̃0,H̃1,H̃2
ms (X1, . . . , Xn)

13 H̃0(m,X1, . . . , Xn) // ensure initialization

14 H̃2(T, X̃,m) // ensure initialization

15 k ← Hdl
0 [m,X1, . . . , Xn]

16 If C[T] uninitialized: bad← true

17 Return (C[T], z + s · k)

S̃ignO(m):

18 z′, c, s←$ Zp

19 T ← gz
′
X−c

20 If H1[T, X̃,m] initialized: bad← true

21 H1[T, X̃,m]← c

22 h← H̃0(X1, . . . , Xn,m)

23 k ← Hdl
0 [X1, . . . , Xn,m]

24 z ← z′ − k · s
25 Return (s, z, T)

H̃0(X
′
1, . . . , X

′
n,m):

26 If H0[X
′
1, . . . , X

′
n,m] uninitialized:

27 k←$ Zp

28 H0[X
′
1, . . . , X

′
n,m]← gk

29 Hdl
0 [X

′
1, . . . , X

′
n,m]← k

30 Return H0[X
′
1, . . . , X

′
n,m]

H̃1(T,X
′,m):

31 If H1[T,X
′,m] uninitialized:

32 If X ′ = X̃:

33 c← Challenge(1, T)

34 q ← q + 1

35 C[T]← q

36 H1[T,X
′,m]← c

37 Else: H1[T,X
′,m]←$ Zp

38 Return H1[T,X
′,m]

H̃2(i,X
′
1, . . . , X

′
n):

39 If H2[i,X
′
1, . . . , X

′
n] uninitialized:

40 H2[i,X
′
1, . . . , X

′
n]←$ Zp

41 Return H2[i,X
′
1, . . . , X

′
n]

Figure 7.3: Algorithms Bxidl, a subroutine used by Axidl of Figure 7.2 in the proof of Lemma 7.3.1.

62

Cdl(X, I):

1 H0, H1, H2, Q← empty dictionaries

2 q ← 0 // tracks H̃1 queries

3 ℓ← 0 // tracks signatures

4 For i = 1, . . . , n:

5 xi←$ Zp; Xi ← gx

6 X̃ ←
∏n

i=1 X
H̃2(i,X1,...,Xn)
i

7 x̃←
∑n

i=1 xi · H̃2(i,X1, . . . , Xn)

8 (m, (s, z, T))← AS̃ignO,H̃0,H̃1,H̃2
ms (X1, . . . , Xn)

9 h← H̃0(X1, . . . , Xn,m)

10 If h = X:

11 For i ∈ {1, . . . , |Q|}:
12 (s′, z′, T ′)← Q[i]

13 If hsgz = hs′gz
′
and (s, z) ̸= (s′, z′):

14 Return (z − z′)(s′ − s)−1

15 Return ⊥

S̃ignO(m):

16 h← H̃0(X1, . . . , Xn,m)

17 s, r←$ Zp; T ← hsgr; c← H̃1(T, X̃,m)

18 z ← r + c · x̃
19 i← i+ 1

20 Q[i]← (s, T, z)

21 Return (s, T, z)

H̃0(X
′
1, . . . , X

′
n,m):

22 If H0[X
′
1, . . . , X

′
n,m] uninitialized:

23 q ← q + 1

24 If q = I: H0[X
′
1, . . . , X

′
n,m]← X

25 Else: H0[X
′
1, . . . , X

′
n,m]←$ G

26 Return H0[X
′
1, . . . , X

′
n,m]

H̃1(T,X
′,m):

27 If H1[T,X
′,m] uninitialized:

28 H1[T,X
′,m]←$ Zp

29 Return H1[T,X
′,m]

H̃2(i,X
′
1, . . . , X

′
n):

30 If H2[i,X
′
1, . . . , X

′
n] uninitialized:

31 H2[i,X
′
1, . . . , X

′
n]←$ Zp

32 Return H2[i,X
′
1, . . . , X

′
n]

Figure 7.4: Algorithms Cdl, subroutines used by Axidl of Figure 7.2 in the proof of Lemma 7.3.1.

63

Section 8

ANALYSIS OF MBCJ

In [2], Bagherzandi et al. present BCJ, a two-round multi-signature scheme. Approximately

a decade later, Drijvers et al. found an error in the security proof of BCJ and a sub-exponential

attack against its existential unforgeability when concurrent signing sessions are permitted [16],

using Wagner’s algorithm for the generalized birthday problem [39]. This attack can be improved

to polynomial time using the algorithm of Benhamouda et al. to solve the ROS problem [11]. As

an alternative to the insecure BCJ, Drijvers et al. present mBCJ, a modification to the scheme

that prevents the mentioned attacks [16].

The modified scheme mBCJ is nearly identical to BCJ, except that some of the scheme param-

eters (the “commitment parameters”) are computed as the hash of the message being signed, as

opposed to public parameters that are the same for every signing session. Thus, a forged mBCJ

signature on an unsigned message has to be valid for the corresponding commitment parameters,

which are different from the parameters used by the signing oracle for signing different messages.

The information gained from the signing oracle is now useless for forging a signature for an un-

signed message, and the BCJ attack no longer works. Signing oracle queries for the same message,

however, use the same commitment parameters and can assist the adversary in forging an addi-

tional signature for the same message. In this section, we use this observation to modify the attack

against BCJ to break the one-more unforgeability of mBCJ. Similarly, since the commitment pa-

rameters are dependent on the message being signed but not on the signing group, we show that

the adversary can forge a signature for a message that was signed by the signing oracle, and is valid

with a signing set of the adversary’s choice.

Similarly to HBMS, mBCJ is strongly unforgeable against adversaries that ignore the fact that

it is an interactive multi-signature scheme (we define this notion formally in Section 7.3, and prove

it for mBCJ in Section 8.4). In other words, mBCJ produces strongly unforgeable plain signatures

in a distributed way, without being strongly unforgeable itself.

64

8.1 Scheme Description and Security Model

Security proof of mBCJ, and our results. The existential unforgeability of mBCJ is proved

under the discrete log assumption [16], but using a weaker security definition than ours. First, the

scheme is presented in the key-verification model [3], where signers attach a secret-key proof-of-

possession to their public key, to be checked when verifying a signature. Consequently, to win in

the corresponding security definition, the adversary must attach valid proofs-of-possession to the

public keys used in the forgery. Secondly, in the definition used to prove mBCJ secure, to win the

adversary must forge a signature for a message that the honest signer did not sign, regardless of the

signing sets used for signing oracle queries and for the forgery. In particular, if the honest signer

signed a message m with signing set S, forging a signature for m with a different signing set S′

that contains the honest signer is not considered a win for the adversary. This is different from

many definitions in literature (notably that of Bellare and Neven [7], and ours), which consider a

multi-signature as a signature on the pair (m,S), where S is the signing set generating the signature.

In this section we first show that even in the setting where mBCJ is proven secure it does not

satisfy one-more unforgeability. More specifically, an adversary can query the signing oracle ℓ times

for some message m, and obtain ℓ+1 signatures for the same message, and the attack is polynomial

time. Next, we show that a modification of this attack allows the adversary to not only forge an

additional signature for m, but it is possible for that signature to be valid for a group of signers

of the adversary’s choice, which may be different from the group of signers used in signing oracle

queries.

We point out that neither of these attacks contradict the mBCJ security proof of [16], as their

security definition does not consider such attacks a win for the adversary.

Tree-based communication model. To improve efficiency and reduce the communication com-

plexity of mBCJ, it is described with a tree-based communication model. The signer are arranged

in a directed tree with a root, who initiates each signing round and obtains the final signature. At

each round, each signer receives the input from their parent and passes it to their children. When

the input reaches a leaf node, they complete the signing round and pass their output to their parent,

who combines their children’s output with their own output and passes it up the tree towards the

root.

65

In mBCJ, the tree structure allows the outputs of both signing rounds to be aggregated as they

percolate up the tree, and in the second round the signers only learn the aggregation of the first

signing round outputs as opposed to the output of all the signers. While we present the scheme

without this optimization (for the sake of consistency with the other schemes in this paper), our

attacks work in that setting as well.

Description of mBCJ. The mBCJ scheme is parameterized by a group G of prime order p with

a generator g1, and hash functions H0, H1 with codomain Zp and H2 with codomain G3.

For key generation, each signer picks x←$ Zp and computes X ← gx. Then, they compute a

proof-of-possession π = (c, z) by choosing r←$ Zp, computing c ← H1(X, gr1), and z ← r + c · x.

The output is (sk = x, vk = (X,π)).

In the first signing round, on input message m, each signer i computes the commitment parame-

ters (g2, h1, h2)← H2(m). Then, they choose (ri, αi,1, αi,2)←$ Z3
p and compute ti,1 ← g

αi,1

1 h
αi,2

1 and

ti,2 ← g
αi,1

2 h
αi,2

2 gri1 , outputting (ti,1, ti,2). For the second signing round, on input (tj,1, tj,2, Xj)
n
j=1,

each signer i computes the aggregate public key X ←
∏

j Xj , the aggregate nonces t1 ←
∏

j tj,1

and t2 ←
∏

j tj,2, and the challenge c← H0(t1, t2, X,m). Finally, they output (αi,1, αi,2, si), where

si = ri + c · xi. The final multi-signature is (t1, t2, s, α1, α2), where s ←
∑

j sj , α1 ←
∑

j αj,1, and

α2 ←
∑

j αj,2.

To verify a signature (t1, t2, s, α1, α2) with respect to a message m and keys vk1 =

(X1, π1), . . . , vkn = (Xn, πn), the verifier first verifies all the proofs-of-possession by parsing each πi

as (ci, zi) and checking that ci = H1(Xi, g
zi
1 X−ci

i), outputting false if any of the checks fails. Then,

they compute the commitment parameters (g2, h1, h2) ← H2(m), the aggregate key X ←
∏

j Xj ,

and the challenge c← H0(t1, t2, X,m). The verification returns true if and only if t1 = gα1
1 hα2

1 and

t2 = gα1
2 hα2

2 gs1 ·X
−c

.

8.2 One-More Unforgeability Attack.

We present the attack in the two-signer setting where one signer is corrupt. It is easy to generalize

it to a setting with more signers, as long as at least one is corrupt. This attack also applies in the

tree-based communication model when the root is corrupt.

Let S1 be a corrupt signer controlled by the adversary, and let S2 be an honest signer with

66

whom the adversary can communicate via a signing oracle. Let m be a message of the adversary’s

choice, let (g2, h1, h2)← H2(m), and pick ℓ ≥ ⌈log(p)⌉. Each signer Si ∈ {S1, S2} proceeds with key

generation honestly by picking xi←$ Zp, computing Xi ← gxi , and computing a proof-of-possession

π as described in the scheme description.

Notation.In this attack there are two signers, each with a share of two nonces per signing session,

participating in ℓ sessions. This requires three-dimensional indexing, and we use subscripts i, j, k

to denote signer i, nonce number j, in session k. An overline is used for aggregated nonces, keys,

or signature shares, with the corresponding number and session in subscript. A superscript is used

for a potential selection by the adversary.

Attack.

The adversary begins ℓ signing session for the message m, obtaining t2,1,j and t2,2,j from the

S2 signing oracle for each session j. Now, the adversary chooses (α1,1,j , α1,2,j)←$ Z2
p for each

session j, as well as two options (r01,j , r
1
1,j)←$ Z2

p. Compute the nonce shares t1,1,j ← g
α1,1,j

1 h
α1,2,j

1

and tb1,2,j = g
α1,1,j

2 h
α1,2,j

2 g
rb1,j
1 for b ∈ {0, 1}, and the consequent aggregate nonces t1,j = t1,1,jt2,1,j

and t
b
2,j = tb1,2,jt2,2,j for b ∈ {0, 1}. For each session j ∈ {1, . . . , ℓ} and b ∈ {0, 1} compute the

challenge cbj ← H0(t1,j , t
b
2,j , X1X2,m). Now, define the group homomorphisms ρ+ : (Zp)

ℓ → Zp and

ρ× : Gℓ → G given by

ρ+(y1, . . . , yℓ) =
ℓ∑

j=1

2j−1yj
c1j − c0j

and

ρ×(y1, . . . , yℓ) =

ℓ∏
j=1

y

2j−1

c1
j
−c0

j

j ,

and define t1,ℓ+1 ← ρ×(t2,1,1, . . . , t2,1,ℓ) and t2,ℓ+1 ← ρ×(t2,2,1, . . . , t2,2,ℓ). Let cℓ+1 ←

H0(t1,ℓ+1, t2,ℓ+1, X1X2,m), let d ← cℓ+1 − ρ+(c01, . . . , c
0
ℓ), and write it in binary as d =∑ℓ

j=1 2j−1bjfor some b1, . . . , bℓ ∈ {0, 1}, which is possible since ℓ ≥ ⌈log2(p)⌉.

Next, continue to the second round of each signing session j with the group of signers (S1, S2)

by sending (t1,1,j , t
bj
1,2,j) to the S2 signing oracle, and obtain a response (s2,j , α2,1,j , α2,2,j). First,

the adversary completes each of the j sessions by following the protocol to generate a legitimate

67

multi-signature

σj ← (t1,j , t
bj
2,j , s2,j + r

bj
1,j + c

bj
j · x1, α1,1,j + α2,1,j , α1,2,j + α2,2,j).

Additionally, the adversary forges a signature

σℓ+1 = (t1,ℓ+1, t2,ℓ+1, sℓ+1, α1,ℓ+1, α2,ℓ+1)

where the t’s are as defined above, sℓ+1 ← ρ+(s2,1, . . . , s2,ℓ) + x1 · cℓ+1, and αk,ℓ+1 ←

ρ+(α2,k,1, . . . , α2,k,ℓ) for k ∈ {1, 2}.

Note that σ1, . . . , σℓ where obtained legitimately with both signers following the protocol, and

hence by the perfect correctness of mBCJ they are valid. We will prove below that σℓ+1 is also

valid for the message m and signing group (S1, S2). This implies that the adversary obtained

ℓ + 1 signatures after only completing ℓ signing oracle signing sessions, breaking the one-more

unforgeability of mBCJ. Also note that the adversary has a proofs-of-possession of the secret key

associated with X1, and thus this attack works in the key-verification model.

Validity of σℓ+1. To verify the validity of σℓ+1 we must check that t1,ℓ+1 = g
α1,ℓ+1

1 h
α2,ℓ+1

1 and

t2,ℓ+1 = g
α1,ℓ+1

2 h
α2,ℓ+1

2 g
sℓ+1

1 · (X1X2)
−cℓ+1 . Starting from the left hand side of the first equation, we

have that

t1,ℓ+1 = ρ×(t2,1,1, . . . , t2,1,ℓ) = ρ×(g
α2,1,1

1 h
α2,2,1

1 , . . . , g
α2,1,ℓ

1 h
α2,2,ℓ

1)

= g
ρ+(α2,1,1,...,α2,1,ℓ)
1 h

ρ+(α2,2,1,...,α2,2,ℓ)
1 = g

α1,ℓ+1

1 h
α2,ℓ+1

1 ,

which is what we wanted to show.

For the second equation, starting from the right hand side, we have that

g
α1,ℓ+1

2 h
α2,ℓ+1

2 g
sℓ+1

1 · (X1X2)
−cℓ+1 =

= g
ρ+(α2,1,1,...,α2,1,ℓ)
2 h

ρ+(α2,2,1,...,α2,2,ℓ)
2 g

ρ+(s2,1,...,s2,ℓ)+x1·cℓ+1

1 (X1X2)
−cℓ+1

= ρ×(t2,2,1, . . . , t2,2,ℓ)X
cℓ+1

1 X
ρ+(c

b1
1 ,...,c

bℓ
ℓ)

2 (X1X2)
−cℓ+1

= t2,ℓ+1 ·X
ρ+(c

b1
1 ,...,c

bℓ
ℓ)−cℓ+1

2 .

68

However, by a proof identical to the proof of Lemma 4.3.1 (with slightly different notation),

cℓ+1 = ρ+(cb11 , . . . , cbℓℓ). Consequently, the exponent of X2 cancels out, leaving us with t2,ℓ+1,

which completes the proof.

8.3 Forging a Signature with Arbitrary Signing Groups

Again, consider an adversary who has signing oracle access to an honest signer. We will show that

after only calling the signing oracle for the message m and signing set S, the adversary can find a

valid signature for m that is valid for a different set of signers S′ that contains the honest signer.

A trivial way to achieve this is to find two groups of signers S and S′ with the same aggregated

public key. In this case, any signature that is valid for m and S is also valid for m and S′. As a

concrete example, consider the setting from before where there is an honest signer S2 with public

key X2 (and a secret key proof-of-possession), and a signer S1 with public key X1 = gx1
1 controlled

by the adversary. Using the signing oracle, the adversary can obtain a signature σ that is valid for m

and the signing group (S1, S2). Now, the adversary can choose x3, x4 ∈ Zp satisfying x3 + x4 = x1,

and since X1X2 = X1g
x3
1 gx4

1 , the multi-signature σ is valid for the group of signers with public keys

(X2, g
x3
1 , gx4

1). Furthermore, the adversary knows the secret keys associated with gx3
1 and gx4

1 , so

they can provide proofs-of-possession for those keys and the attack works in the key-verification

model.

This simple attack is enough to show that mBCJ does not satisfy our definition of existential

unforgeability. It does not, however, allow the adversary to forge signatures that are valid for

aggregate public keys that were not used in signing oracle queries. We present a simple modification

of the one-more unforgeability attack that allows the adversary to do that.

As before, consider a corrupted signer S1 with public key X1 = gx1
1 , an honest signer S2 with

public key X2, and additionally consider a signer Sevil with public key Xevil = gxevil
1 with their

private key known to the adversary. The adversary wishes to forge a signature for the message m

with signing set (Sevil, S2) after only making signing oracle queries with the signing set (S1, S2).

To do that, the adversary carries out our one-more unforgeability attack against mBCJ with the

following modifications.

• It sets the forgery challenge cℓ+1 ← H0(t1,ℓ+1, t2,ℓ+1, XevilX2,m), where Xevil replaces the X1

69

in the original attack.

• In the forged signature σℓ+1, it sets s ← ρ+(s2,1, . . . , s2,ℓ) + xevil · cℓ+1, where xevil replaces

the x1 in the original attack.

By following the steps to verify the validity of σℓ+1 in the original attack, we can see that σℓ+1

is valid for the message m and the signing set (Sevil, S2). Note that this set may have a different

aggregate public key than those used in all signing oracle queries. Furthermore, the adversary

knows the secret key xevil and can generate a proof of possession, so the attack works in the key

verification model.

8.4 SUF of Underlying Plain Signature Scheme

To prove the non-interactive strong unforgeability of mBCJ, we once again use the chain reductions

of Bellare and Dai [5]. This time we use the Identification Discrete Logarithm game (IDL) [21, 5],

presented in Figure 2.1, as the underlying assumption in our proof, which Bellare and Dai show

is hard to win whenever the discrete log problem is hard.1 In Lemma 2.0.1 we repeat their result

regarding the difficulty of IDL under the DL assumption, and in Lemma 8.4.1 we prove the non-

interactive strong unforgeability of mBCJ in the random oracle model assuming that IDL is hard.

The combination of these lemmas is a proof of the non-interactive strong unforgeability of mBCJ

in the ROM under the DL assumption.

Lemma 8.4.1 (IDL → NISUF of mBCJ in the ROM). Let G be a group of prime order p with

a generator g1. Let MS = mBCJ[G, g1] be the associated multi-signature scheme with its hash

functions modeled as random oracles. Let Ams be an adversary against Gni-suf-ms
n [MS] that makes

at most q0, q1, q2, qs queries to H0, H1, H2, and the signing oracle respectively. Then, we construct

an adversary Aidl against Gmidl
G,g1,q0+1 such that

Advni-suf-ms
MS (Ams) ≤ Advidl

G,g1,q0+1(Aidl) +
n(n− 1) + (q0 + qs + 1)(q0 + qs)

p2
+

q2 + qs + 1

p
.

Furthermore, the runtime of Aidl is approximately that of Ams.

1They also achieve tighter security bounds using the algebraic group model [17], but this is orthogonal to this
paper.

70

Game Gni-suf-ms
n [mBCJG,g1,H0,H1,H2]

Init():

1 For i = 1, . . . , n:

2 xi←$ Zp; Xi ← gx

3 ri←$ Zp; ci ← H1(X, gri1); zi ← ri + ci · xi

4 πi ← (ci, zi)

5 X ←
∏n

i=1 Xi; x←
∑n

i=1 xi

6 Q← ∅
7 Return ((X1, π1), . . . , (Xn, πn))

Fin(m,σ):

8 If (m,σ) ∈ Q: Return false

9 Parse σ as (t1, t2, s, α1, α2)

10 (g2, h1, h2)← H2(m); c← H0(t1, t2, X,m)

11 Return [t1 = gα1
1 hα2

1 and t2 = gα1
2 hα2

2 gs1 ·X
−c

]

SignO(m):

12 (g2, h1, h2)← H2(m)

13 r, α1, α2←$ Zp

14 t1 ← gα1
1 hα2

1 ; t2 = gα1
2 hα2

2 gr1

15 c← H0(t1, t2, X,m); s← r + xc

16 σ ← (t1, t2, s, α1, α2)

17 Q← Q ∪ {(m,σ)}
18 Return σ

Figure 8.1: The non-interactive strong unforgeability game of mBCJ over a group G with a generator
g1 of order p.

Proof idea for Lemma 8.4.1. Suppose an adversary Ams can break the non-interactive strong

unforgeability of mBCJ (i.e. wins the game in Figure 8.1 in the ROM). We will use Ams to construct

an adversary Aidl that wins the IDL game (Figure 2.1) when parameterized by the group used for

mBCJ and the generator g1.

On input X, Aidl sets up n random looking mBCJ public keys so that their aggregate public key

is X. More specifically, it chooses Xi←$ G for i ∈ {1, . . . , n−1} and sets Xn ← X ·
∏n−1

i=1 X−1
i . Now,

it generates a secret key proof-of-possession for each Xi by choosing ci, zi←$ Zp, Ri ← gzi1 X−c
i , and

programming the random oracle H1(Xi, Ri)← ci. It now executes Ams with those public keys and

proofs of possessions as its input, simulating its oracles as we describe below.

Aidl simulates random oracle queries for H0(t1, t2, X,m) by querying the IDL Challenge oracle

with input t2, and returning the obtained challenge. It simulates H1 random oracle queries by

choosing an output uniformly at random. For H2(m) signing oracle queries, Aidl also replies with

uniformly random output (g2,m, h1,m, h2,m), but it generates them in such a way that it knows

the discrete log of g2,m and h2,m with respect to g1 and the discrete log of h1,m with respect to

X. More specifically, it chooses ω1,m, ω2,m, ω3,m←$ Zp and sets h1,m ← Xω1,m , g2,m ← g
ω2,m

1 and

71

h2,m ← g
ω3,m

1 , and stores the ω values. As we explain below, knowing those discrete logs allows Aidl

to use an mBCJ forgery to win the IDL game.

We simulate the signing oracle in a similar manner to how we simulated the proofs-of-possessions.

On input m, we first generate the commitment parameters (h1,m, g2,m, h2,m) that correspond to m.

Next, we choose α1, α2, s, c←$ Zp, set t1 ← gα1
1 hα2

1,m, and set t2 ← gα1
2,mhα2

2,mgs1 · X−c. Lastly we

program the random oracle H0(t1, t2, X,m) ← c, and output (t1, t2, s, α1, α2). It is easy to verify

that the outputted signature is valid with respect to m and the aggregate public key X, and that

its distribution is identical to that of an honestly generated signature.

We are left to explain how to win the IDL game given a successful mBCJ forgery. Suppose Ams

outputs a successful forgery σ = (t1, t2, s, α1, α2) for the message m and the aggregate public public

key X. This means that

t1 = gα1
1 hα2

1,m,

and

t2 = gα1
2,mhα2

2,mgs1 ·X−H0(t1,t2,X,m).

Without loss of generality, assume that the random oracle value for H0(t1, t2, X,m) has already

been set. If it was set by a random oracle query, then H0(t1, t2, X,m) is an IDL challenge that was

generated on input t2. Thus, if we let z ← ω2,mα1 + ω3,mα2 + s, by the validity equation of t2 it

holds that gz1 = t2 · XH0(t1,t2,X,m), which allows the adversary to win the IDL game. Otherwise,

the random oracle value for H0(t1, t2, X,m) was set by the signing oracle, which means that the

signing oracle returned another valid signature σ′ = (t1, t2, s
′, α′

1, α
′
2) for the message m. Thus,

since gα1
1 hα2

1,m = g
α′
1

1 h
α′
2

1,m (by the validity equation of t1), we know that

α1 + xω1,mα2 = α′
1 + xω1,mα′

2.

It is easy to verify that α2 ̸= α′
2 are distinct since σ and σ′ are distinct,2 which means that the

centered equation above allows Aidl to extract x using simple field operations. Once it extract x

(the discrete log of X), Aidl can trivially win the IDL game. We now express this idea in a more

2If α2 = α′
2, then by the validity equation of t1 we know that α1 = α′

1, and therefore by the validity equation of
t2 we know that s = s′ and thus σ = σ′.

72

formal way.

Proof of Lemma 8.4.1: In Figure 8.2, we construct an adversary Aidl which plays the IDL game

(parameterized with the group G and the generator g1) by executing Ams and simulating the oracles

that it has access to. Without loss of generality, we assume that all random oracle queries of Ams

are well-formed, since otherwise we can simply simulate their responses uniformly at random. We

will now analyze its success probability.

First, note that if bad is not set to true, then Aidl simulates perfectly the oracles that Ams has

access to. The only places that bad can be set to true are the following:

• When Aidl generates proofs-of-possession for the secret key, if there is a collision (Xi, Ri) =

(Xj , Rj) for some i ̸= j. Since the choices of Xi and Ri are uniformly random in G2 (when

not conditioned the value of X), the probability of collision is bounded above by n(n−1)
p2

.

• In SignO, if we need to program the random oracle for H0 for an input for which it has already

been programmed. This can only happen if we choose t1 and t2 for which a random oracle

value has been set. Since the maximum number of H0 random oracle values set throughout the

protocol is q0 + qs + 1, the probability of this happening is bounded above by (q0+qs+1)(q0+qs)
p2

.

• In H̃2, if we choose ω1 = 0. Since ω1 is chosen uniformly at random for each H̃2 execution,

and H̃2 is executed at most q2 + qs + 1 times, the probability of this happening is bounded

above by q2+qs+1
p .

Hence, the probability that bad is set to true is bounded above by n(n−1)+(q0+qs+1)(q0+qs)
p2

+ q2+qs+1
p .

We are left to prove that if Ams wins, then Aidl wins too. If Ams wins it outputs (m, (t1, t2, s, α1, α2))

satisfying

t1 = gα1
1 hα2

1

and

t2 = gα1
2 hα2

2 gs1 ·X−H0[t1,t2,X,m],

where (g2, g1, h2) = H2[m]. If H0[t1, t2, X,m] was first initialized on a H̃2 query, then it initialized

73

Hq
0 [t1, t2, X,m]. In this case H0[t1, t2, X,m] was the IDL challenge query number Hq

0 [t1, t2, X,m],

and therefore returning (Hq
0 [t1, t2, X,m], s + α1ω2 + α2ω3) wins the IDL game.

If H0[t1, t2, X,m] was not initialized on a H̃2 query, then it was initialized on a S̃ignO query. In

this case, Σ[t1, t2,m] has been set with (α′
1, α

′
2, s

′) such (t1, t2, s
′, α′

1, α
′
2) is a valid signature for

the message m and aggregate key X. However, if Ams wins, the signature it outputted must be

different then (t1, t2, s
′, α′

1, α
′
2) and consequently α2 ̸= α′

2. Furthermore, since ω1 ̸= 0 (otherwise

we would have set bad← true in H̃2), Aidl successfully extract x, the discrete log of X, using which

it trivially wins the IDL game.

We have shown that the probability that bad is set to true is bounded above by

n(n−1)+(q0+qs+1)(q0+qs)
p2

+ q2+qs+1
p , and that if bad is not set to true and Ams wins then Aidl wins.

Furthermore, Aidl makes at most q0 + 1 queries to Challenge. Hence,

Pr[Gmidl
G,g1,q+1(Aidl)] ≥ Pr[Gni-suf-ms

n [ms](Ams)−
n(n− 1) + (q0 + qs + 1)(q0 + qs)

p2
− q2 + qs + 1

p
,

which is what we wanted to prove.

74

AChallenge
idl (X):

1 bad← false // Abort whenever bad← true

2 H0, H1, H2, H
q
0 , H

dl
2 ,Σ← empty dictionaries

3 q ← 0 // tracks H̃0 queries

4 For i = 1, . . . , n− 1:

5 Xi←$ G

6 Xn ← X ·
∏n−1

i=1 X−1
i

7 For i = 1, . . . , n // create proofs of possessions

8 ci, zi←$ Zp; Ri ← gzi1 X−1
i

9 If H1(Xi, Ri) initialized: bad← true

10 H1[Xi, Ri]← ci

11 πi ← (ci, zi)

12 (m, (t1, t2, s, α1, α2))← AS̃ignO,H̃0,H̃1,H̃2
ms ((X1, π1), . . . , (Xn, πn))

13 c← H̃0(t1, t2, X,m); (g2, h1, h2)← H̃2(m)

14 (ω1, ω2, ω3)← Hdl
2 [m]

15 If Hq
0 [t1, t2, X,m] initialized:

16 I ← Hq
0 [t1, t2, X,m]

17 Return (I, s+ α1ω2 + α2ω3)

18 Else:

19 (α′
1, α

′
2, s

′)← Σ[t1, t2,m]

20 x← (α1 − α′
1)(α

′
2 − α2)

−1ω−1
1

21 r←$ Zp; R← gr1 ; c
′ ← Challenge(R)

22 Return (q + 1, r + x · c′)

S̃ignO(m):

23 (h1, g2, h2)← H̃2(m)

24 α1, α2, c, s←$ Zp

25 t1 ← gα1
1 hα2

1 ; t2 ← gα1
2 hα2

2 gs1X
−c

26 If H0[t1, t2, X,m] initialized: bad← true

27 H0[t1, t2, X,m]← c

28 Σ[t1, t2,m]← (α1, α2, s)

29 Return (t1, t2, s, α1, α2)

H̃0(t1, t2, X
′,m):

30 If H0[t1, t2, X
′,m] uninitialized:

31 If X ′ = X:

32 q ← q+1; Hq
0 [t1, t2, X,m]← q

33 c← Challenge(t2)

34 H0[t1, t2, X
′,m]← c

35 Else:

36 H0[t1, t2, X
′,m]←$ Zp

37 Return H0[t1, t2, X
′,m]

H̃1(X
′, R):

38 If H1[X
′, R] uninitialized:

39 H1[X
′, R]←$ Zp

40 Return H1[X
′, R]

H̃2(m):

41 If H2[m] uninitialized:

42 ω1, ω2, ω3←$ Zp

43 If ω1 = 0: bad← true

44 h1 ← Xω1 ; g2 ← gω2
1 ; h2 ← gω3

1

45 H2[m]← (g2, h1, h2)

46 Hdl
2 [m]← (ω1, ω2, ω3)

47 Return H2[m]

Figure 8.2: Algorithms Aidl, the reduction used in the proof of Lemma 8.4.1.

75

BIBLIOGRAPHY

[1] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. On the malleability
of bitcoin transactions. In M. Brenner, N. Christin, B. Johnson, and K. Rohloff, editors,
Financial Cryptography and Data Security, pages 1–18, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[2] A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures secure under the discrete loga-
rithm assumption and a generalized forking lemma. In P. Ning, P. F. Syverson, and S. Jha,
editors, ACM CCS 2008: 15th Conference on Computer and Communications Security, pages
449–458, Alexandria, Virginia, USA, Oct. 27–31, 2008. ACM Press.

[3] A. Bagherzandi and S. Jarecki. Multisignatures using proofs of secret key possession, as
secure as the diffie-hellman problem. In R. Ostrovsky, R. De Prisco, and I. Visconti, editors,
Security and Cryptography for Networks, pages 218–235, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[4] M. Bellare, E. C. Crites, C. Komlo, M. Maller, S. Tessaro, and C. Zhu. Better than advertised
security for non-interactive threshold signatures. In Y. Dodis and T. Shrimpton, editors,
Advances in Cryptology – CRYPTO 2022, Part IV, volume 13510 of Lecture Notes in Computer
Science, pages 517–550, Santa Barbara, CA, USA, Aug. 15–18, 2022. Springer, Heidelberg,
Germany.

[5] M. Bellare and W. Dai. Chain reductions for multi-signatures and the HBMS scheme. In
M. Tibouchi and H. Wang, editors, Advances in Cryptology – ASIACRYPT 2021, Part IV,
volume 13093 of Lecture Notes in Computer Science, pages 650–678, Singapore, Dec. 6–10,
2021. Springer, Heidelberg, Germany.

[6] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-RSA-inversion
problems and the security of Chaum’s blind signature scheme. Journal of Cryptology,
16(3):185–215, June 2003.

[7] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006:
13th Conference on Computer and Communications Security, pages 390–399, Alexandria, Vir-
ginia, USA, Oct. 30 – Nov. 3, 2006. ACM Press.

[8] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM
CCS 93: 1st Conference on Computer and Communications Security, pages 62–73, Fairfax,
Virginia, USA, Nov. 3–5, 1993. ACM Press.

76

[9] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 409–426, St. Petersburg, Russia,
May 28 – June 1, 2006. Springer, Heidelberg, Germany.

[10] M. Bellare, S. Tessaro, and C. Zhu. Stronger security for non-interactive threshold signatures:
BLS and FROST. Cryptology ePrint Archive, Report 2022/833, 2022. https://eprint.iacr.
org/2022/833.

[11] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. On the (in)security of ROS.
In A. Canteaut and F.-X. Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
Part I, volume 12696 of Lecture Notes in Computer Science, pages 33–53, Zagreb, Croatia,
Oct. 17–21, 2021. Springer, Heidelberg, Germany.

[12] D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller blockchains. In
T. Peyrin and S. Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Part II,
volume 11273 of Lecture Notes in Computer Science, pages 435–464, Brisbane, Queensland,
Australia, Dec. 2–6, 2018. Springer, Heidelberg, Germany.

[13] C. Decker and R. Wattenhofer. Bitcoin transaction malleability and mtgox. In M. Kuty lowski
and J. Vaidya, editors, Computer Security - ESORICS 2014, pages 313–326, Cham, 2014.
Springer International Publishing.

[14] Y. Desmedt. Society and group oriented cryptography: A new concept. In C. Pomerance,
editor, Advances in Cryptology – CRYPTO’87, volume 293 of Lecture Notes in Computer
Science, pages 120–127, Santa Barbara, CA, USA, Aug. 16–20, 1988. Springer, Heidelberg,
Germany.

[15] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor, Advances in
Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 307–315,
Santa Barbara, CA, USA, Aug. 20–24, 1990. Springer, Heidelberg, Germany.

[16] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs. On the
security of two-round multi-signatures. In 2019 IEEE Symposium on Security and Privacy,
pages 1084–1101, San Francisco, CA, USA, May 19–23, 2019. IEEE Computer Society Press.

[17] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In
H. Shacham and A. Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II,
volume 10992 of Lecture Notes in Computer Science, pages 33–62, Santa Barbara, CA, USA,
Aug. 19–23, 2018. Springer, Heidelberg, Germany.

[18] R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal DSA/ECDSA signatures
and an application to bitcoin wallet security. In M. Manulis, A.-R. Sadeghi, and S. Schnei-
der, editors, ACNS 16: 14th International Conference on Applied Cryptography and Network

https://eprint.iacr.org/2022/833
https://eprint.iacr.org/2022/833

77

Security, volume 9696 of Lecture Notes in Computer Science, pages 156–174, Guildford, UK,
June 19–22, 2016. Springer, Heidelberg, Germany.

[19] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure applications of Pedersen’s dis-
tributed key generation protocol. In M. Joye, editor, Topics in Cryptology – CT-RSA 2003,
volume 2612 of Lecture Notes in Computer Science, pages 373–390, San Francisco, CA, USA,
Apr. 13–17, 2003. Springer, Heidelberg, Germany.

[20] K. Itakura, K; Nakamura. A public-key cryptosystem suitable for digital multisignatures. NEC
research & development, 1983.

[21] E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures from identification
schemes. In M. Robshaw and J. Katz, editors, Advances in Cryptology – CRYPTO 2016,
Part II, volume 9815 of Lecture Notes in Computer Science, pages 33–61, Santa Barbara, CA,
USA, Aug. 14–18, 2016. Springer, Heidelberg, Germany.

[22] J. Lau and P. Wuille. Dealing with signature encoding malleability. Bitcoin Improvement Pro-
posal 146, 2016. https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki.

[23] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple Schnorr multi-signatures with
applications to bitcoin (deprecated version). Cryptology ePrint Archive, Report 2018/068,
version 1, 2018. https://eprint.iacr.org/archive/2018/068/20180118:124757.

[24] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple Schnorr multi-signatures with
applications to bitcoin. In Design, Code, and Cryptography, pages 2139–2164, September
2019.

[25] National Institute of Standards and Technology. Multi-Party Threshold Cryptography, 2018–
Present. https://csrc.nist.gov/Projects/threshold-cryptography.

[26] S. Navot. Insecurity of MuSig and bellare-neven multi-signatures with delayed message selec-
tion. Cryptology ePrint Archive, Paper 2024/437, 2024.

[27] S. Navot and S. Tessaro. One-more unforgeability for multi - and threshold signatures. In K.-
M. Chung and Y. Sasaki, editors, Advances in Cryptology – ASIACRYPT 2024, pages 429–462,
Singapore, 2025. Springer Nature Singapore.

[28] J. Nick. Insecure shortcuts in musig, 2019. https://medium.com/blockstream/

insecure-shortcuts-in-musig-2ad0d38a97da.

[29] J. Nick, T. Ruffing, and E. Jin. Musig2 for bip340-compatible multi-signatures. Bit-
coin Improvement Proposal 327, 2022. https://github.com/bitcoin/bips/blob/master/

bip-0327.mediawiki.

https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki
https://eprint.iacr.org/archive/2018/068/20180118:124757
https://csrc.nist.gov/Projects/threshold-cryptography
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0327.mediawiki

78

[30] J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple two-round Schnorr multi-signatures. In
T. Malkin and C. Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part I, volume
12825 of Lecture Notes in Computer Science, pages 189–221, Virtual Event, Aug. 16–20, 2021.
Springer, Heidelberg, Germany.

[31] D. Pointcheval and J. Stern. Provably secure blind signature schemes. In K. Kim and T. Mat-
sumoto, editors, Advances in Cryptology – ASIACRYPT’96, volume 1163 of Lecture Notes
in Computer Science, pages 252–265, Kyongju, Korea, Nov. 3–7, 1996. Springer, Heidelberg,
Germany.

[32] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
In Journal of Cryptology. Journal of Cryptology, May 1998.

[33] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, June 2000.

[34] C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor,
Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science,
pages 239–252, Santa Barbara, CA, USA, Aug. 20–24, 1990. Springer, Heidelberg, Germany.

[35] C. P. Schnorr. Security of blind discrete log signatures against interactive attacks. In S. Qing,
T. Okamoto, and J. Zhou, editors, Information and Communications Security, pages 1–12,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[36] G. Segev and L. Shapira. An explicit high-moment forking lemma and its applications to the
concrete security of multi-signatures. IACR Communications in Cryptology, 1(2), 2024.

[37] S. Tessaro and C. Zhu. Threshold and multi-signature schemes from linear hash functions. In
Advances in Cryptology – EUROCRYPT 2023, Lyon, France, Apr. 23–27, 2023.

[38] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 10.4). The
Sage Development Team, 2024. https://www.sagemath.org.

[39] D. Wagner. A generalized birthday problem. In M. Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 288–303, Santa
Barbara, CA, USA, Aug. 18–22, 2002. Springer, Heidelberg, Germany.

[40] P. Wuille. Dealing with malleability. Bitcoin Improvement Proposal 62, 2014. https://

github.com/bitcoin/bips/blob/master/bip-0062.mediawiki.

[41] P. Wuille, J. Nick, and T. Ruffing. Schnorr signatures for secp256k1. Bitcoin Improvement Pro-
posal 340, 2020. https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki.

https://www.sagemath.org
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

	Introduction
	Preliminaries
	Security Definitions for Multi-Signatures
	Specifications and Usage
	Existential and Strong Unforgeability

	Analysis of MuSig
	Scheme Description and Prior Security Proofs.
	One-More Unforgeability
	Insecurity with Delayed Message Selection

	Analysis of Bellare-Neven Multi-Signatures
	Scheme Description
	One-More Unforgeability
	Insecurity with Delayed Message Selection

	Analysis of MuSig2
	Scheme Description.
	One-More Unforgeability.

	Analysis of HBMS
	Scheme Description
	Attack Against One-More Unforgeability
	SUF of Underlying Plain Signature Scheme

	Analysis of mBCJ
	Scheme Description and Security Model
	One-More Unforgeability Attack.
	Forging a Signature with Arbitrary Signing Groups
	SUF of Underlying Plain Signature Scheme

	Bibliography

