KO codes

Ashok Vardhan Makkuva (UIUC)

Joint work with Xiyang Liu, Mohammad Vahid Jamali, Hessam Mahdavifar, Sewoong Oh, Pramod Viswanath

Outline

Motivation

Learning codes

- KO codes: novel neural codes
 - > KO codes, ICML 2021

Age of Information

1948: Then there was light

The Bell System Technical Journal

Vol. XXVII

July, 1948

No. 3

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

THE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist¹ and Hartley² on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.

Codes: a mathematical lens

Code = (Encoder, Decoder)

Technical challenges

- Challenge: space of (encoders, decoders) very large
 - Rate = $\frac{1}{2}$, k = 100: 2^{100} codewords in 200 dimensional space

Our approach: efficient DL-algorithms to learn codes

Learning a new code

KO (encoder, decoder)

KO codes

KO codes: An overview

Novel family of neural codes

Outperform both RM and Polar in certain regimes

Fascinating properties

KO codes beat RM

Code-dimension=46, Block length = 512

Signal-to-noise ratio(SNR) [dB]

KO codes beat RM

Code-dimension=37, Block length = 256

Signal-to-noise ratio(SNR) [dB]

KO beats Polar

Code-dimension=7, Block length = 64

Signal-to-noise ratio(SNR) [dB]

Gaussian like!

Code-dimension=46, Block length = 512

Pairwise distance between two codewords

Collaborators

La Fin

Thank you!