Private zeroth-order optimization

Sewoong Oh (University of Washington)

Joint work with Liang Zhang (ETH), Kiran Koshy Thekumparampil (Amazon), and Niao He (ETH)
3 years ago...

- DP-SGD (Differentially Private Stochastic Gradient Descent) or ZO-SGD (Zeroth-order Stochastic Gradient Descent) methods were thought to be unfit for large scale optimization.

- Because, unlike (S)GD, DP-SGD and ZO-SGD suffer from dimension dependence for solving

\[
\minimize_x F_S(x) := \frac{1}{n} \sum_{i=1}^{n} f(x; \xi_i)
\]
Private first-order method: DP-SGD

- (ε, δ)-differential privacy achieved with a choice of noise $z_t \sim \mathcal{N}(0, (4\sqrt{2T \log(1.25/\delta)}/\varepsilon)^2 I_{d \times d})$

$$x_{t+1} \leftarrow x_t - \alpha \left(\frac{1}{n} \sum_{i=1}^{n} \text{clip}_C (\nabla f(x_t; \xi_i)) + \frac{C}{n} z_t \right)$$

- Under L-Lipschitz and ℓ-smooth $f(.)$, and $x \in \mathbb{R}^d$

$$\|\nabla F_S(x)\|^2 \lesssim \frac{\sqrt{d \log(1/\delta)}}{n \varepsilon}$$

“Differentially private empirical risk minimization revisited: Faster and more general.”, Wang et al. NeurIPS’17
Experiments seems to contradict theory

- DP-SGD does not suffer from high-dimensionality as long as we are fine-tuning a pretrained model.

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU (DP)</th>
<th>BLEU (non-private)</th>
<th>Drop due to privacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT-2-Medium</td>
<td>42.0</td>
<td>47.1</td>
<td>5.1</td>
</tr>
<tr>
<td>GPT-2-Large</td>
<td>43.1</td>
<td>47.5</td>
<td>4.4</td>
</tr>
<tr>
<td>GPT-2-XL</td>
<td>43.8</td>
<td>48.1</td>
<td>4.3</td>
</tr>
</tbody>
</table>

\[(\varepsilon = 6.8, \delta = 1e-5)\]

as long as we are **fine-tuning** a pretrained model.

DP-SGD does not suffer from high-dimensionality

- Each $f(x; \xi_i)$ is L-Lipschitz and ℓ-smooth,
- (Effective rank r) $-H \preceq \nabla^2 F_S(x) \preceq H$, and $\text{Tr}(H) \leq r\|H\|_2$.

$$\|\nabla F_S(x)\|^2 \lesssim \frac{\sqrt{r \log(1/\delta)}}{n \varepsilon}$$

“Evading the curse of dimensionality in unconstrained private GLMs.”, Song et al., AISTATS’21
DP-SGD does not suffer from high-dimensionality

- Each $f(x; \xi_i)$ is L-Lipschitz and ℓ-smooth,

- (Effective rank r) $-H \preceq \nabla^2 F_S(x) \preceq H$, and $\text{Tr}(H) \leq r \|H\|_2$.

\[
\|\nabla F_S(x)\|^2 \leq \frac{\sqrt{r \log(1/\delta)}}{n \varepsilon}
\]

- Several variants of the above assumptions in the literature, such as singular value decay in the collection of the gradients

Remaining bottlenecks in (private) fine-tuning of LLMs

- As LLMs get larger, memory for backpropagation is becoming a bottleneck
- Can we finetune LLMs while running only inference?
Remaining bottlenecks in (private) fine-tuning of LLMs

- As LLMs get larger, memory for backpropagation is becoming a bottleneck
- Can we finetune LLMs while running only inference?

- Zeroth-order gradient estimate
 \[
 \frac{f(x_t + \lambda u_t; \xi_i) - f(x_t - \lambda u_t; \xi_i)}{2\lambda} \quad u_t
 \]
 - \(u_t \) is drawn uniformly at random from \(\sqrt{dS^{d-1}} \)
 - Only requires forward passes
 - Asymptotically unbiased:

 \[
 \mathbb{E}\left[\frac{f(x_t + \lambda u_t; \xi_i) - f(x_t - \lambda u_t; \xi_i)}{2\lambda} u_t \right] \xrightarrow{\lambda \to 0} \mathbb{E}\left[\langle \nabla f(x_t; \xi_i), u_t \rangle u_t \right] = d \mathbb{E}[\nabla f(x_t, \xi_i)]
 \]
ZO-SGD suffers in high-dimensions in the worst-case

Zeroth-order optimization

- Gradient Descent: \(\| \nabla F_S(x) \|^2 \lesssim \frac{1}{T} \)
- ZO-SGD: \(\| \nabla F_S(x) \|^2 \lesssim \frac{d}{T} \)
Dimension independence rate with low effective rank

Zeroth-order optimization

- **Gradient Descent:** \[\| \nabla F_S(x) \|^2 \lesssim \frac{1}{T} \]
- **ZO-SGD:** \[\| \nabla F_S(x) \|^2 \lesssim \frac{d}{T} \]

Assume

- Each \(f(x; \xi_i) \) is \(L \)-Lipschitz and \(\ell \)-smooth,
- (Effective rank \(r \)) \(-H \preceq \nabla^2 F_S(x) \preceq H \), and \(\text{Tr}(H) \leq r \| H \|_2 \).

\[\| \nabla F_S(x) \|^2 \lesssim \frac{r}{T} \]

“Zeroth-order Optimization with Weak Dimension Dependency”, Yue et al., COLT’23
Zeroth-order optimization: MeZO does not suffer from high-dimensionality

“Fine-Tuning Language Models with Just Forward Passes”, Malladi et al., NeurIPS‘23
Private Zeroth-order Optimization with dimension independent rates
First attempt: replace gradient with 0-th order approximation

- Zeroth-order gradient estimate
 - Randomly draw direction u_t uniformly over the sphere $\sqrt{d}S^{d-1}$

\[
\frac{f(x_t + \lambda u_t; \xi_i) - f(x_t - \lambda u_t; \xi_i)}{2\lambda} u_t \xrightarrow{\lambda \to 0} \langle \nabla f(x_t; \xi_i), u_t \rangle u_t
\]
First attempt: replace gradient with 0-th order approximation

- **Zeroth-order gradient estimate**
 - Randomly draw direction u_t uniformly over the sphere $\sqrt{dS^{d-1}}$
 -
 $$
 \frac{f(x_t + \lambda u_t; \xi_i) - f(x_t - \lambda u_t; \xi_i)}{2\lambda} u_t \xrightarrow{\lambda \to 0} \langle \nabla f(x_t; \xi_i), u_t \rangle u_t
 $$

- **Zeroth-order update**

 $$
 x_{t+1} \leftarrow x_t - \alpha \left(\frac{1}{n} \sum_{i=1}^{n} \text{clip}_C \left(\frac{f(x_t + \lambda u_t; \xi_i) - f(x_t - \lambda u_t; \xi_i)}{2\lambda} u_t \right) + \frac{C}{n} z_t \right)
 $$

 0-th order gradient estimate
First attempt: replace gradient with 0-th order approximation

- **Zeroth-order gradient estimate**
 - Randomly draw direction u_t uniformly over the sphere $\sqrt{dS^{d-1}}$
 - $\frac{f(x_t + \lambda u_t; \xi) - f(x_t - \lambda u_t; \xi)}{2\lambda} u_t \xrightarrow{\lambda \to 0} \langle \nabla f(x_t; \xi), u_t \rangle u_t$

- **Zeroth-order update**

$$x_{t+1} \leftarrow x_t - \alpha \left(\frac{1}{n} \sum_{i=1}^{n} \text{clip}_C \left(\frac{f(x_t + \lambda u_t; \xi) - f(x_t - \lambda u_t; \xi)}{2\lambda} u_t \right) + \frac{C}{n} z_t \right)$$

- **Clipping threshold** $C = Ld$
 - In practice, it is a hyperparameter to be tuned
 - In theory, typical choice is to select worst-case “gradient” norm to avoid clipping bias
Degrades with dimension even under low effective rank

Assume

- Each $f(x; \xi_i)$ is L-Lipschitz and ℓ-smooth,
- (Effective rank r) $-H \leq \nabla^2 F_S(x) \leq H$, and $\text{Tr}(H) \leq r\|H\|_2$.

Theorem

- First Attempt approach achieves (ε, δ)-DP and

\[
\mathbb{E} \left[\| \nabla F_S(x_\tau) \|_2^2 \right] \lesssim \left((F_S(x_0) - F_S^*) \ell + L^2 \right) \frac{d\sqrt{r \log(1/\delta)}}{n\varepsilon},
\]

with step-size $\alpha = \frac{1}{4\ell r}$, and $T = r \frac{n \varepsilon}{d\sqrt{r \log(1/\delta)}}$.
Improved private 0th-order method: DPZero

- The descent direction need not be private
 - \mathbf{u}_t is drawn uniformly at random over the sphere $\sqrt{d}S^{d-1}$, and does not touch the data

\[x_{t+1} \leftarrow x_t - \alpha \left(\frac{1}{n} \sum_{i=1}^{n} \text{clip}_C \left(\frac{f(x_t + \lambda \mathbf{u}_t; \xi_i) - f(x_t - \lambda \mathbf{u}_t; \xi_i)}{2\lambda} \right) + \frac{C}{n} \mathbf{z}_t \right) \mathbf{u}_t \]

(approximate) directional derivative scalar noise

1st-order DPSGD 0th-order DPSGD DPZero
Improved private 0th-order method: DPZero

- Typical magnitude of the derivative is significantly smaller than the worst-case
 - \mathbf{u}_t is drawn uniformly at random over the sphere $\sqrt{d} S^{d-1}$

$$x_{t+1} \leftarrow x_t - \alpha \left(\frac{1}{n} \sum_{i=1}^{n} \text{clip}_{C} \left(\frac{f(x_t + \lambda \mathbf{u}_t; \xi_i) - f(x_t - \lambda \mathbf{u}_t; \xi_i)}{2\lambda} \right) + \frac{C}{n} z_t \right) \mathbf{u}_t$$

(arbitrary) directional derivative

$$\simeq \langle \nabla f(x_t; \xi_i), \mathbf{u}_t \rangle \simeq \begin{cases} \sqrt{d} \mathcal{L} & \text{worst-case} \\ \mathcal{L} & \text{w.h.p} \end{cases}$$
Algorithm 3 DPZero

Input: Dataset $S = \{\xi_1, \cdots, \xi_n\}$, initialization $x_0 \in \mathbb{R}^d$, number of iterations T, stepsize $\alpha > 0$, smoothing parameter $\lambda > 0$, clipping threshold $C > 0$, privacy parameters $\varepsilon > 0, \delta \in (0, 1)$.

1: for $t = 0, 1, \cdots, T - 1$ do
2: Sample u_t uniformly at random from the Euclidean sphere $\sqrt{d}S^{d-1}$.
3: Sample $z_t \sim \mathcal{N}(0, \sigma^2)$ with variance $\sigma = 4 \sqrt{2T \log(e + (\varepsilon/\delta))}/\varepsilon$, and

$$x_{t+1} \leftarrow x_t - \alpha \left(\frac{1}{n} \sum_{i=1}^{n} \text{clip}_C \left(\frac{f(x_t + \lambda u_t; \xi_i) - f(x_t - \lambda u_t; \xi_i)}{2\lambda} \right) + \frac{C}{n} z_t \right) u_t.$$

Output: x_τ for τ sampled uniformly at random from $\{0, 1, \cdots, T - 1\}$.

- With $C = \tilde{O}(L)$ and small enough $\lambda = O\left(\frac{L}{\ell d^{3/2}} \sqrt{r \log(1/\delta) \sqrt{n\varepsilon}} \right)$.
Algorithm 3 DPZero

Input: Dataset $S = \{\xi_1, \cdots, \xi_n\}$, initialization $x_0 \in \mathbb{R}^d$, number of iterations T, stepsize $\alpha > 0$, smoothing parameter $\lambda > 0$, clipping threshold $C > 0$, privacy parameters $\varepsilon > 0, \delta \in (0, 1)$.

do

Sample u_t uniformly at random from the Euclidean sphere $\sqrt{d}S^{d-1}$.

Sample $z_t \sim \mathcal{N}(0, \sigma^2)$ with variance $\sigma = 4\sqrt{2T \log(e + (\varepsilon/\delta))/\varepsilon}$, and

$$x_{t+1} \leftarrow x_t - \alpha \left(\frac{1}{n} \sum_{i=1}^{n} \text{clip}_C \left(\frac{f(x_t + \lambda u_t; \xi_i) - f(x_t - \lambda u_t; \xi_i)}{2\lambda} \right) + \frac{C}{n} z_t \right) u_t.$$

Output: x_τ for τ sampled uniformly at random from $\{0, 1, \cdots, T - 1\}$.

- With $C \approx \tilde{O}(L)$ and small enough $\lambda = O\left(\frac{L}{\ell d^{3/2}} \sqrt{\frac{r \log(1/\delta)}{n \varepsilon}} \right)$.
Nearly dimension independent guarantee

Assume

- Each $f(x; \xi_i)$ is L-Lipschitz and ℓ-smooth,

- (Effective rank r) $-H \leq \nabla^2 F_S(x) \leq H$, and $\text{Tr}(H) \leq r\|H\|_2$.

Theorem [Zhang, Thekumparampil, O., He 2023]

- DPZero achieves (ϵ, δ)-DP and

$$
\mathbb{E}\left[\|\nabla F_S(x_\tau)\|^2\right] \lesssim \left((F_S(x_0) - F_S^*) \ell + L^2 \right) \frac{\sqrt{r \log(1/\delta)}}{n\epsilon},
$$

with step-size $\alpha = \frac{1}{4\ell r}$, and $T = r \frac{n\epsilon}{\sqrt{r \log(1/\delta)}}$.
Empirical results in toy examples

- $n = 10,000$, $(\varepsilon=2, \delta=10^{-6})$-DP, $A = \text{diag}(1,\frac{1}{2},\frac{1}{3},...,\frac{1}{d})$

$$
\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \sqrt{(x - x_i)^T A (x - x_i)}
$$
Conclusion

- Zeroth-order optimization allows one to fine-tune larger language models
- **DPZero** is the first private zeroth-order optimization algorithm that achieves dimension-independence (under structured Hessian)
- “DPZero: Dimension-Independent and Differentially Private Zeroth-Order Optimization” Liang Zhang, Kiran Koshy Thekumparampil, Sewoong Oh, Niao He

- Ongoing experiments on LLMs
- Future research directions
 - Stochastic mini-batch
 - Population guarantee
 - Convex, PL, nonsmooth
 - Potentially improved rates with tree-aggregation and variance reduction