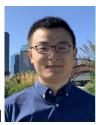
Differential Privacy Meets Robust Statistics

Sewoong Oh

Paul G. Allen School of Computer Science and Engineering University of Washington

joint work with

Xiyang Liu

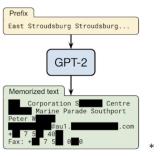


Weihao Kong

Sham Kakade

What can go wrong when training on shared data?

- Increasingly more models are being trained on shared data
- Sensitive information should not be revealed by the trained model
- Membership inference attacks can identify individual's sensitive data used in the training



Potential defense: Differentially Private Stochastic Gradient Descent[†]
 when computing the average of the gradients in the mini-batch,
 use differentially private mean estimation

^{*[}Carlini et al.,2020]

[†][Chaudhuri,Monteleoni,Sarwate,2011], [Abadi et al.,2016]

What can go wrong when training on shared data?

- When training on shared data, not all participants are trusted
- Malicious users can easily inject corrupted data
- Data poisoning attacks can create backdoors on the trained model such that any sample with the trigger will be predicts as 'deer'

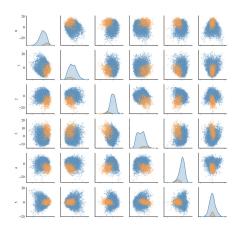
 $y_i = \text{'deer'}$

- Strong defense: Robust estimation*
- Insight: successful backdoor attacks leave a path of activations in the trained model that are triggered only by the corrupted samples

^{*[}Hayase,Kong,Somani,O.,2021] inspired by [Tran,Li,Madry,2018]

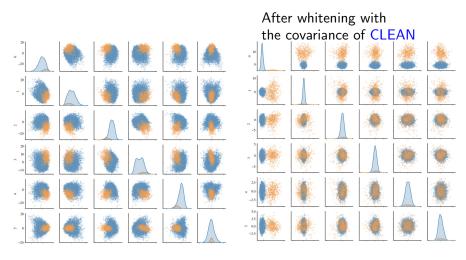
Middle layer of a model trained with corrupted data

- All samples with label 'deer': CLEAN and POISONED
- Top-6 PCA projection of node activations at a middle layer
- Can we separate POISONED from CLEAN?



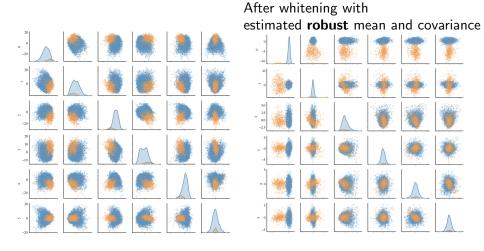
Middle layer of a model trained with corrupted data

- All samples with label 'deer': CLEAN and POISONED
- Top-6 PCA projection of node activations at a middle layer
- Can we separate POISONED from CLEAN?



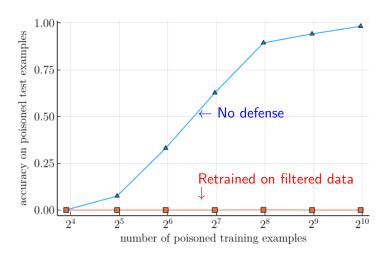
Middle layer of a model trained with corrupted data

- All samples with label 'deer': CLEAN and POISONED
- Top-6 PCA projection of node activations at a middle layer
- Can we separate POISONED from CLEAN?



SPECTRE: Defense against backdoor attacks

[Hayase, Somani, Kong, O.2021][‡]



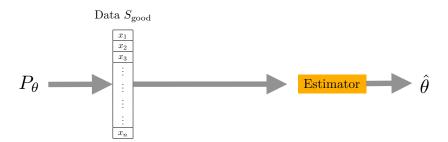
[†]https://github.com/SewoongLab/backdoor-suite

We need privacy and robustness, simultaneously

- When learning from shared data
 - ▶ Differential privacy is crucial in defending against inference attacks
 - ▶ Robust estimation is crucial in defending against data poisoning attacks
- We provide the first efficient estimators that are provably robust against data corruption and differentially private

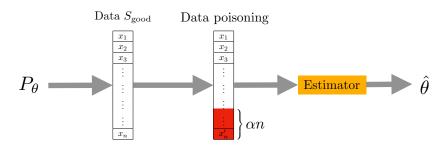
Statistical estimation, robustly and privately

Statistics



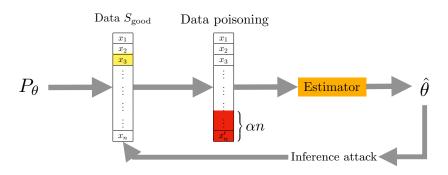
Statistical estimation, robustly and privately

Statistics⇒ Robust estimation



Statistical estimation, robustly and privately

Statistics⇒ Robust estimation⇒ Robust and private estimation



- This talk focuses on mean estimation
- Q. What is the extra cost (in the estimation error) we pay for {Robustness, Privacy, and Robustness+Privacy}

Mean estimation

- ullet Estimate the mean μ from n i.i.d. samples
- For this talk,
 we assume sub-Gaussian distribution with identity covariance matrix
- Minimax error rate:

$$\min_{\hat{\mu} \in \mathcal{F}_{S_n}} \max_{P_{\mu}} \mathbb{E} \left[\| \hat{\mu}(S_n) - \mu \| \right] \propto \sqrt{\frac{d}{n}}$$

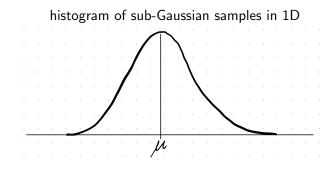
 \mathcal{F}_{S_n} is set of all estimators over n i.i.d. samples in \mathbb{R}^d from P_μ , P_μ is maximized over all sub-Gaussian distributions with identity covariance

- Threat model
 - Adversarial corruption model:

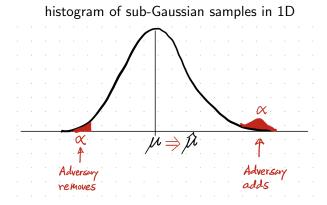
```
\{x_i\}_{i=1}^n \sim P_\mu is drawn, then adversary replaces \alpha\text{-fraction} arbitrarily
```

- Robust mean estimation:
 - ► Low dimensional: [Tukey,1960] [Huber,1964]
 - Computationally intractable methods in high dimension:
 [Donoho,Liu,1988], [ChenGaoRen,2015], [Zhu,Jiao,Steinhardt,2019]
 - Breakthroughs in polynomial time algorithms:
 [Lai,Rao,Vempala,2016],[Diakonikolas,Kamath,Kane,Li,Moitra,Stewart,2019]
 - Linear time algorithms:
 [Cheng, Dianikolas, Ge, 2019], [Depersin, Lecué, 2019], [Dong, Hopkins, Li, 2019]

- Threat model
 - Adversarial corruption model: $\{x_i\}_{i=1}^n \sim P_\mu \text{ is drawn, then adversary replaces } \alpha\text{-fraction arbitrarily}$
- Relatively easy to estimate mean robustly in low-dimensions



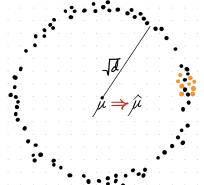
- Threat model
 - Adversarial corruption model: $\{x_i\}_{i=1}^n \sim P_\mu$ is drawn, then adversary replaces α -fraction arbitrarily
- Relatively easy to estimate mean robustly in low-dimensions



simple outlier detection achieves $|\hat{\mu} - \mu| \le \alpha \sqrt{\log(1/\alpha)}$

- Threat model
 - Adversarial corruption model: $\{x_i\}_{i=1}^n \sim P_\mu$ is drawn, then adversary replaces α -fraction arbitrarily
- Mean estimation becomes challenging in high-dimensions

scatter plot of sub-Gaussian samples in high-dimension



each corrupted sample looks uncorrupted and still $\|\hat{\mu} - \mu\| \ge \alpha \sqrt{d}$

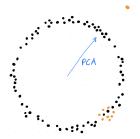
Efficient algorithm: Filtering [Diakonikolas et al., 2017]

Geometric Lemma [Dong, Hopkins, Li, 2019]

$$\|\mu_{\text{emp}}(S) - \mu\| \le \sqrt{\frac{d}{n}} + \alpha \sqrt{\log(1/\alpha)} + \sqrt{\alpha \|\text{Cov}(S) - \mathbf{I}\|}$$

- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\|$ is $O(\alpha \log(1/\alpha))$ $v \leftarrow \arg\max_{v:\|v\|=1} v^T \operatorname{Cov}(S) v$

 - $\triangleright S \leftarrow 1D\text{-Filter}(\{\langle v, x_i \mu_{emp}(S) \rangle^2\}_{i \in S})$
- Each step guarantees that
 - at least one sample is removed
 - if $\|\operatorname{Cov}(S) \mathbf{I}\| > C\alpha \sqrt{\log(1/\alpha)}$ more corrupted samples removed than clean samples in expectation



Efficient algorithm: Filtering [Diakonikolas et al., 2017]

Geometric Lemma [Dong, Hopkins, Li, 2019]

$$\|\mu_{\text{emp}}(S) - \mu\| \le \sqrt{\frac{d}{n}} + \alpha \sqrt{\log(1/\alpha)} + \sqrt{\alpha \|\text{Cov}(S) - \mathbf{I}\|}$$

- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\|$ is $O(\alpha \log(1/\alpha))$ $v \leftarrow \arg\max_{v:\|v\|=1} v^T \operatorname{Cov}(S) v$

 - $\triangleright S \leftarrow 1D\text{-Filter}(\{\langle v, x_i \mu_{emp}(S) \rangle^2\}_{i \in S})$
- Each step guarantees that
 - at least one sample is removed
 - if $\|\operatorname{Cov}(S) \mathbf{I}\| > C\alpha \sqrt{\log(1/\alpha)}$ more corrupted samples removed than clean samples in expectation

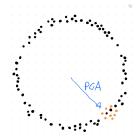
Efficient algorithm: Filtering [Diakonikolas et al., 2017]

Geometric Lemma [Dong, Hopkins, Li, 2019]

$$\|\mu_{\text{emp}}(S) - \mu\| \le \sqrt{\frac{d}{n}} + \alpha \sqrt{\log(1/\alpha)} + \sqrt{\alpha \|\text{Cov}(S) - \mathbf{I}\|}$$

- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\|$ is $O(\alpha \log(1/\alpha))$ $v \leftarrow \arg\max_{v:\|v\|=1} v^T \operatorname{Cov}(S) v$

 - $\triangleright S \leftarrow 1D\text{-Filter}(\{\langle v, x_i \mu_{emp}(S) \rangle^2\}_{i \in S})$
- Each step guarantees that
 - at least one sample is removed
 - if $\|\operatorname{Cov}(S) \mathbf{I}\| > C\alpha \sqrt{\log(1/\alpha)}$ more corrupted samples removed than clean samples in expectation



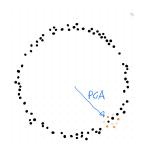
Efficient algorithm: Filtering [Diakonikolas et al.,2017]

Geometric Lemma [Dong, Hopkins, Li, 2019]

$$\|\mu_{\text{emp}}(S) - \mu\| \le \sqrt{\frac{d}{n}} + \alpha \sqrt{\log(1/\alpha)} + \sqrt{\alpha \|\text{Cov}(S) - \mathbf{I}\|}$$

- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\|$ is $O(\alpha \log(1/\alpha))$ $v \leftarrow \arg\max_{v:\|v\|=1} v^T \operatorname{Cov}(S) v$

 - \triangleright $S \leftarrow 1D\text{-Filter}(\{\langle v, x_i \mu_{\text{emp}}(S) \rangle^2\}_{i \in S})$
- Each step guarantees that
 - at least one sample is removed
 - if $\|\operatorname{Cov}(S) \mathbf{I}\| > C\alpha \sqrt{\log(1/\alpha)}$ more corrupted samples removed than clean samples in expectation



• Minimax error rate under α -corruption

$$\min_{\hat{\mu}} \max_{P_{\mu}} \mathbb{E} \left[\| \hat{\mu}(S_{n,\alpha}) - \mu \| \right] \propto \underbrace{\sqrt{\frac{d}{n}}}_{\text{no corruption}} + \underbrace{\alpha}_{\alpha\text{-corruption}}$$

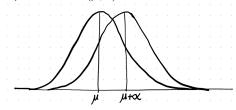
achieved by filtering algorithm of [Diakonikolas et al.,2017]

• Minimax error rate under α -corruption

$$\min_{\hat{\mu}} \max_{P_{\mu}} \mathbb{E} \left[\| \hat{\mu}(S_{n,\alpha}) - \mu \| \right] \propto \underbrace{\sqrt{\frac{d}{n}}}_{\text{no corruption}} + \underbrace{\alpha}_{\alpha\text{-corruption}}$$

achieved by filtering algorithm of [Diakonikolas et al.,2017]

- Lower bound [Chen, Gao, Ren, 2015]
 - Even with infinite samples $\|\hat{\mu}(S) \mu\| \ge \alpha$ because we cannot tell if clean distribution is $\mathcal{N}(\mu + \alpha, 1)$ or it was α -corrupted from $\mathcal{N}(\mu, 1)$



$$TV(\mathcal{N}(\mu, 1), \mathcal{N}(\mu + \alpha, 1)) = \Theta(\alpha)$$

Minimax error rate for mean estimation under sub-Gaussian distributions with identity covariance

	Error $\ \hat{\mu} - \mu\ $	
no corruption	\sqrt{d}	
or privacy	$\sqrt{\frac{d}{n}}$	
lpha-corruption	$\sqrt{\frac{d}{n}} + \alpha$	[Diakonikolas et al.,2017]
(ε,δ) -DP		
α -corruption and		
(ε,δ) -DP		

Differential Privacy provably ensures plausible deniability

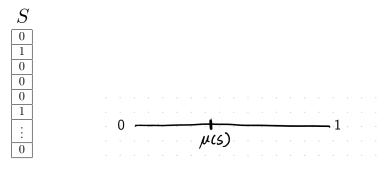
- Goal: a strong adversary who knows all the other entries in the database except for yours, should not be able to identify whether you participated in that database or not
- Definition*: For two databases S and S' that differ by only one entry, a randomized output to a query is (ε, δ) -differentially private if

$$\mathbb{P}(\mathsf{query_output}(S) \in A) \ \leq \ e^{\varepsilon} \, \mathbb{P}(\mathsf{query_output}(S') \in A) + \delta$$

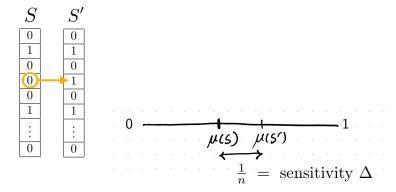
• smaller $\varepsilon, \delta \Rightarrow$ Testing S or S' fails \Rightarrow inference attack fails

^{*[}Dwork,McSherry,Nissim,Smith,2006]

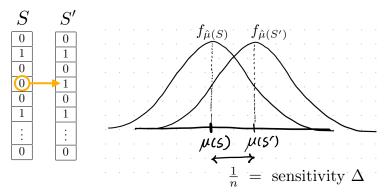
$(\varepsilon,\delta)\text{-differentially private mean estimation}$



(ε, δ) -differentially private mean estimation



$(\varepsilon,\delta)\text{-differentially private mean estimation}$

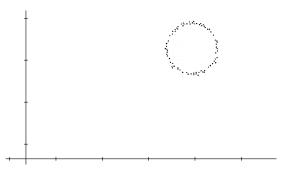


$$\hat{\mu}(S) = \mu(S) + \mathcal{N}\left(0, \left(\frac{\Delta\sqrt{\log 1/\delta}}{\varepsilon}\right)^2\right)$$

ullet extra error due to (ε, δ) -DP is

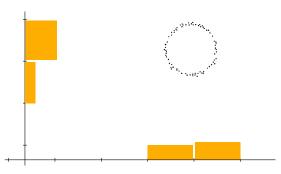
$$|\hat{\mu}(S) - \mu(S)| \simeq \frac{\Delta}{\varepsilon} = \frac{1}{n \, \varepsilon}$$

 $(\varepsilon,\delta)\text{-differentially private mean estimation}^*$



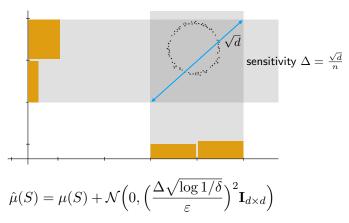
^{*[}Karwa, Vadhan, 2017], [Kamath, Li, Singhal, Ullman, 2019]

 (ε,δ) -differentially private mean estimation*



^{*[}Karwa, Vadhan, 2017], [Kamath, Li, Singhal, Ullman, 2019]

(ε,δ) -differentially private mean estimation*



ullet extra error due to (ε, δ) -DP is

$$\|\hat{\mu}(S) - \mu(S)\| \simeq \frac{\Delta}{\varepsilon} \sqrt{d} = \frac{d}{n \varepsilon}$$

^{*[}Karwa, Vadhan, 2017], [Kamath, Li, Singhal, Ullman, 2019]

Minimax error rate for mean estimation under sub-Gaussian distribution with identity covariance

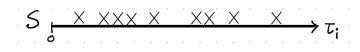
	Error $\ \hat{\mu} - \mu\ $	
no corruption	$\sqrt{\underline{d}}$	
or privacy	V n	
lpha-corruption	$\sqrt{\frac{d}{n}} + \alpha$	[Diakonikolas et al.,2017]
$(arepsilon,\delta) ext{-}DP$	$\sqrt{\frac{d}{n}} + \frac{d}{\varepsilon n}$	[Kamath,Li,Singhal,Ullman,2019]
lpha-corruption and		
$(arepsilon,\delta)$ -DP		

- (non-private) robust mean estimation [Diakonikolas et al.,2017]
- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\| = O(\alpha \log(1/\alpha))$
 - $v \leftarrow \arg\max_{v:||v||=1} v^T \text{Cov}(S)v$
 - $S \leftarrow 1\text{D-Filter}(\{\langle v, x_i \mu_{\text{emp}}(S) \rangle^2\}_{i \in S})$
- First challenge:
 - in the worst case, the filter runs for O(d) iterations
 - this happens if corrupted sample are spread out in orthogonal directions
 - because the filter only checks 1-dimensional subspace at a time
- This is particularly damaging for privacy, as more iterations mean more privacy leakage

- (non-private) quantum robust mean estimation [Dong, Hopkins, Li, 2019]
- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\| = O(\alpha \log(1/\alpha))$
 - $V \leftarrow \frac{1}{\operatorname{Trace}(\exp\{\beta \operatorname{Cov}(S)\})} \exp\{\beta \operatorname{Cov}(S)\}$
 - $S \leftarrow 1\text{D-Filter}(\{(x_i \mu_{\text{emp}}(S))^T V(x_i \mu_{\text{emp}}(S))\}_{i \in S})$

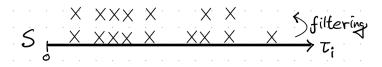
- (non-private) quantum robust mean estimation [Dong, Hopkins, Li, 2019]
- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\| = O(\alpha \log(1/\alpha))$
 - $V \leftarrow \frac{1}{\text{Trace}(\exp{\{\beta \text{Cov}(S)\}})} \exp{\{\beta \text{Cov}(S)\}}$
 - $S \leftarrow 1\text{D-Filter}(\{(x_i \mu_{\text{emp}}(S))^T V(x_i \mu_{\text{emp}}(S))\}_{i \in S})$
- If $\beta = \infty$, this recovers top PCA and uses only one-dimensional subspace
- If $\beta = 0$, this filters on $||x_i \mu_{emp}(S)||^2$ treating all directions equally
- For appropriate β , iterations reduce from O(d) to $O((\log d)^2)$

- (non-private) quantum robust mean estimation [Dong,Hopkins,Li,2019]
- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\| = O(\alpha \log(1/\alpha))$
 - $V \leftarrow \frac{1}{\text{Trace}(\exp{\{\beta \text{Cov}(S)\}})} \exp{\{\beta \text{Cov}(S)\}}$
 - $S \leftarrow 1 \text{D-Filter}(\{(x_i \mu_{\text{emp}}(S))^T V(x_i \mu_{\text{emp}}(S))\}_{i \in S})$
- Second challenge:
 - 1D-Filter has high sensitivity
 - each sample is independently filtered with probability proportional to $\tau_i \triangleq (x_i \mu_{emp}(S))^T V(x_i \mu_{emp}(S))$



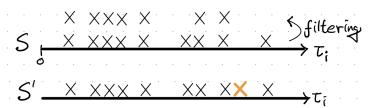
- (non-private) quantum robust mean estimation [Dong, Hopkins, Li, 2019]
- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\| = O(\alpha \log(1/\alpha))$

 - $V \leftarrow \frac{1}{\operatorname{Trace}(\exp\{\beta \operatorname{Cov}(S)\})} \exp\{\beta \operatorname{Cov}(S)\}$ $S \leftarrow 1\text{D-Filter}(\{(x_i \mu_{\operatorname{emp}}(S))^T V (x_i \mu_{\operatorname{emp}}(S))\}_{i \in S})$
- Second challenge:
 - ▶ 1D-Filter has high sensitivity
 - each sample is independently filtered with probability proportional to $\tau_i \triangleq (x_i - \mu_{\text{emp}}(S))^T V(x_i - \mu_{\text{emp}}(S))$



- (non-private) quantum robust mean estimation [Dong, Hopkins, Li, 2019]
- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\| = O(\alpha \log(1/\alpha))$

 - $V \leftarrow \frac{1}{\operatorname{Trace}(\exp\{\beta \operatorname{Cov}(S)\})} \exp\{\beta \operatorname{Cov}(S)\}$ $S \leftarrow 1\text{D-Filter}(\{(x_i \mu_{\operatorname{emp}}(S))^T V (x_i \mu_{\operatorname{emp}}(S))\}_{i \in S})$
- Second challenge:
 - ▶ 1D-Filter has high sensitivity
 - each sample is independently filtered with probability proportional to $\tau_i \triangleq (x_i - \mu_{\text{emp}}(S))^T V(x_i - \mu_{\text{emp}}(S))$



- (non-private) quantum robust mean estimation [Dong, Hopkins, Li, 2019]
- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\| = O(\alpha \log(1/\alpha))$
 - $V \leftarrow \frac{1}{\text{Trace}(\exp{\{\beta \text{Cov}(S)\}})} \exp{\{\beta \text{Cov}(S)\}}$
 - $S \leftarrow 1\text{D-Filter}(\{(x_i \mu_{\text{emp}}(S))^T V(x_i \mu_{\text{emp}}(S))\}_{i \in S})$

Second challenge:

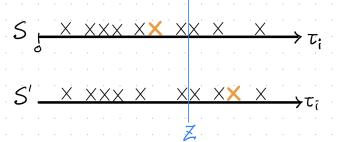
- ▶ 1D-Filter has high sensitivity
- each sample is independently filtered with probability proportional to $\tau_i \triangleq (x_i \mu_{emp}(S))^T V(x_i \mu_{emp}(S))$

Two datasets lead to independent filtering, and sensitivity blows up

- (non-private) quantum robust mean estimation [Dong, Hopkins, Li, 2019]
- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\| = O(\alpha \log(1/\alpha))$ $V \leftarrow \frac{1}{\operatorname{Trace}(\exp\{\beta \operatorname{Cov}(S)\})} \exp\{\beta \operatorname{Cov}(S)\}$

$$S \leftarrow 1\text{D-Filter}(\{(x_i - \mu_{\text{emp}}(S))^T V(x_i - \mu_{\text{emp}}(S))\}_{i \in S})$$

- Solution:
 - Use a single random threshold $Z \sim \text{Uniform}[0, \rho]$, and filter samples above Z
 - this preserves the sensitivity to be one

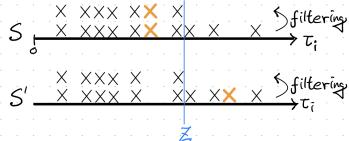


After filtering, two sets differ only by one sample

- (non-private) quantum robust mean estimation [Dong, Hopkins, Li, 2019]
- Repeat until $\|\operatorname{Cov}(S) \mathbf{I}\| = O(\alpha \log(1/\alpha))$ $V \leftarrow \frac{1}{\operatorname{Trace}(\exp\{\beta \operatorname{Cov}(S)\})} \exp\{\beta \operatorname{Cov}(S)\}$

$$S \leftarrow \mathsf{1D\text{-}Filter}(\{(x_i - \mu_{\text{emp}}(S))^T V(x_i - \mu_{\text{emp}}(S))\}_{i \in S})$$

- Solution:
 - Use a single random threshold $Z \sim \text{Uniform}[0, \rho]$, and filter samples above Z
 - this preserves the sensitivity to be one



After filtering, two sets differ only by one sample

PRIME: Private and robust Mean Estimation [Liu, Kong, Kakade, O., 2021]

- Run private histogram to get a bounding box with side length $O(\sqrt{\log n})$
- Repeat until $\|\tilde{\Sigma} \mathbf{I}\| = O(\alpha \log(1/\alpha))$

$$\tilde{\mu} \leftarrow \mu_{\text{emp}}(S) + \mathcal{N}\left(0, \left(\frac{d^{1/2}\sqrt{\log(1/\delta)}}{n\varepsilon}\right)^2 \mathbf{I}_{d\times d}\right)$$

$$\tilde{\Sigma} \leftarrow \text{Cov}(S) + \mathcal{N}\left(0, \left(\frac{d\sqrt{\log(1/\delta)}}{n\varepsilon}\right)^2 \mathbf{I}_{d^2 \times d^2}\right)$$

$$V \leftarrow \frac{1}{\text{Trace}(\exp\{\beta\tilde{\Sigma}\})} \exp\{\beta\tilde{\Sigma}\}$$

$$\rho \leftarrow \mathsf{DP}\text{-threshold}(\{(x_i - \tilde{\mu})^T V (x_i - \tilde{\mu})\}_{i \in S})$$

$$ightharpoonup Z \leftarrow \mathrm{Uniform}[0, \rho]$$

$$S \leftarrow 1 \text{D-Filter}(\{(x_i - \tilde{\mu})^T V(x_i - \tilde{\mu})\}_{i \in S}, Z)$$

Mean estimation under sub-Gaussian distributions with identity covariance

	Error $\ \hat{\mu} - \mu\ $	
no corruption	\sqrt{d}	
or privacy	\sqrt{n}	
lpha-corruption	$\sqrt{\frac{d}{n}} + \alpha$	[Diakonikolas et al.,2017]
$(arepsilon,\delta) ext{-}DP$	$\sqrt{\frac{d}{n}} + \frac{d}{\varepsilon n}$	[KamathLiSinghalUllman.,2019]
lpha-corruption and	$\sqrt{\frac{d}{n}} + \alpha + \frac{d^{3/2}}{\varepsilon n}$	[LiuKongKakadeO.,2021]
$(arepsilon,\delta) ext{-}DP$	(SVD-time)	

There is a $d^{1/2}$ gap between PRIME and lower bound!

Where does $\frac{d^{1.5}}{\varepsilon n}$ come from?

Sample complexity bottleneck: we need to compute

$$V \; \leftarrow \; \frac{1}{Z} \exp\{\beta \operatorname{Cov}(S)\}$$

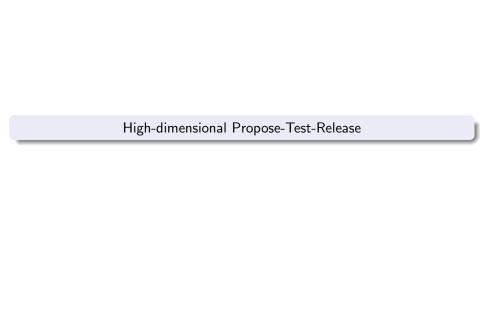
privately, at least once

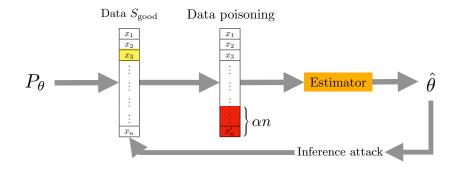
- Best known algorithm adds i.i.d. entry Gaussian matrix $W \in \mathbb{R}^{d \times d}$ with $\mathcal{N}(0, (\frac{d\sqrt{\log 1/\delta}}{\varepsilon n})^2)$ to the covariance matrix
- \bullet The spectral norm perturbation is $\|W\|_{\text{spectral}} = O(\frac{d^{1.5}}{\varepsilon_n})$

Minimax optimal mean estimation

	Error $\ \hat{\mu} - \mu\ $	
no corruption	\sqrt{d}	
or privacy	$\sqrt{\frac{d}{n}}$	
lpha-corruption	$\sqrt{\frac{d}{n}} + \alpha$	[Diakonikolas et al.,2017]
$(arepsilon,\delta) ext{-}DP$	$\sqrt{\frac{d}{n}} + \frac{d}{\varepsilon n}$	[KamathLiSinghalUllman.,2019]
lpha-corruption and	$\sqrt{\frac{d}{n}} + \alpha + \frac{d^{3/2}}{\varepsilon n}$	[LiuKongKakadeO.,2021]
(ε,δ) -DP	(SVD-time)	
	$\sqrt{\frac{d}{n}} + \alpha + \frac{d}{\varepsilon n}$ (exponential time)	
	(exponential time)	

There is no extra *statistical* cost in requiring robustness and privacy simultaneously.





What is the fundamental connection between robust estimators and DP estimators?

High-dimensional Propose-Test-Release

- General framework for solving (inefficiently) statistical estimation problems with (ε, δ) -DP guarantee
- ullet as a byproduct, we get robustness against lpha-corruption for free
- gives optimal sample complexity for mean estimation, covariance estimation, linear regression, and principal component analysis

• Problem instance: mean estimation with i.i.d. samples from a sub-Gaussian distribution with mean μ and covariance Σ with error metric

$$\|\Sigma^{-1/2}(\hat{\mu}-\mu)\|$$

 \bullet Problem instance: mean estimation with i.i.d. samples from a sub-Gaussian distribution with mean μ and covariance Σ with error metric

$$\|\Sigma^{-1/2}(\hat{\mu}-\mu)\|$$

• Efficient algorithm [Kamath,Li,Singhal,Ullman,2019]: if $\mathbf{I} \preceq \Sigma \preceq \kappa \mathbf{I}$ and $n \geq d^{3/2} \sqrt{\log \kappa} / \varepsilon$

$$\|\Sigma^{-1/2}(\hat{\mu} - \mu)\| \le \sqrt{\frac{d}{n}} + \frac{d}{\varepsilon n}$$

• Exponential-time [Brown, Gaboardi, Smith, Ullman, Zakynthinou, 2021]:

$$\|\Sigma^{-1/2}(\hat{\mu}-\mu)\| \leq \sqrt{\frac{d}{n}} + \frac{d}{\varepsilon^2 n}$$

• Lower bound [Barber, Duchi, 2014]:

$$\min_{\hat{\mu} \in \mathcal{F}_{\varepsilon,\delta}} \; \max_{P_{\mu,\Sigma}} \; \mathbb{E} \big[\, \| \Sigma^{-1/2} (\hat{\mu} - \mu) \| \, \big] \; \geq \; \sqrt{\frac{d}{n}} + \frac{d}{\varepsilon n}$$

Problem instance:

mean estimation with i.i.d. samples from a sub-Gaussian distribution with mean μ and covariance Σ with error metric

$$\|\Sigma^{-1/2}(\hat{\mu}-\mu)\|$$

Problem instance:

mean estimation with i.i.d. samples from a sub-Gaussian distribution with mean μ and covariance Σ with error metric

$$\|\Sigma^{-1/2}(\hat{\mu} - \mu)\| = \max_{\|v\|=1} v^T \Sigma^{-1/2}(\hat{\mu} - \mu)$$

$$= \max_{\|v\|=1} \frac{v^T \hat{\mu} - v^T \hat{\mu}}{\sqrt{v^T \Sigma v}}$$

Problem instance:

mean estimation with i.i.d. samples from a sub-Gaussian distribution with mean μ and covariance Σ with error metric

$$\|\Sigma^{-1/2}(\hat{\mu} - \mu)\| = \max_{\|v\|=1} v^T \Sigma^{-1/2}(\hat{\mu} - \mu)$$

$$= \max_{\|v\|=1} \frac{v^T \hat{\mu} - v^T \mu}{\sqrt{v^T \Sigma v}}$$

Design empirical loss function:

$$D_S(\hat{\mu}) = \max_{\|v\|=1} \frac{v^T \hat{\mu} - \mu_v^{\text{robust}}}{\sigma_v^{\text{robust}}}$$

HPTR step 2: sensitivity analysis

We want to minimize the loss function:

$$D_S(\hat{\mu}) = \max_{\|v\|=1} \frac{v^T \hat{\mu} - \mu_v^{\text{robust}}}{\sigma_v^{\text{robust}}}$$

 To stochastically minimize this robust empirical loss, we want to sample from (exponential mechanism*)

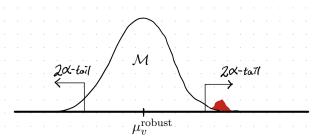
$$\hat{\mu} \sim \frac{1}{Z} \exp\left\{-\frac{\varepsilon}{2\Delta} D_S(\hat{\mu})\right\}$$

- If Δ is the sensitivity, then this is $(\varepsilon,0)$ -differentially private
- The sensitivity of $D_S(\hat{\mu})$ dramatically reduces if we use 1-d robust statistics
- Key ingredient is resilience property

^{*[}McSherry,Talwar,2007]

HPTR step 2: sensitivity analysis

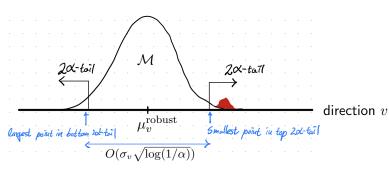
• $\mu_v^{
m robust} = \frac{1}{|\mathcal{M}|} \sum_{\mathcal{M}} v^T x_i$ has sensitivity $\Delta = \frac{\sigma_v \sqrt{\log(1/\alpha)}}{n}$



direction v

HPTR step 2: sensitivity analysis

• $\mu_v^{
m robust} = \frac{1}{|\mathcal{M}|} \sum_{\mathcal{M}} v^T x_i$ has sensitivity $\Delta = \frac{\sigma_v \sqrt{\log(1/\alpha)}}{n}$



Resilience property of sub-Gaussian samples [Steinhardt, Charikar, Valiant, 2018]

Given n i.i.d. sub-Gaussian samples S with $n \geq d/\alpha^2$, for all $S' \subset S$ of size at least αn ,

$$|v^T(\mu(S) - \mu(S'))| \leq \sigma_v \sqrt{\log(1/\alpha)}$$
.

High-dimensional Propose-Test-Release*

HPTR(S)

Propose : Propose $\Delta = O(1/n)$ based on the resilience of the distribution

Test : Privately test the sensitivity for all neighboring dataset S^\prime

Release : If S passes the test, release $\hat{\mu}$ sampled from

$$\hat{\mu} \sim \frac{1}{Z} \exp\left\{-\frac{\varepsilon}{2\Delta} D_S(\hat{\mu})\right\}$$

^{*}inspired by original PTR [Dwork,Lei,2009] and a more advanced PTR [Brown,Gaboardi,Smith,Ullman,Zakynthinou,2021]

Generality of HPTR

- HPTR can be applied to any statistical estimation problem to achieve the optimal sample complexity
 - sub-Gaussian mean estimation
 - ▶ k-th moment bounded mean estimation
 - sub-Gaussian linear regression
 - Gaussian covariance estimation
 - sub-Gaussian principal component analysis
- and other cases achieve the state-of-the-art sample complexity, but no matching lower bounds yet
 - ▶ *k*-th moment bounded linear regression
 - k-th moment bounded PCA

Minimax error rate for mean estimation under sub-Gaussian distributions with identity covariance

	Error $\ \hat{\mu} - \mu\ $	
no corruption	$\sqrt{\frac{d}{n}}$	
or privacy	\sqrt{n}	
lpha-corruption	$\sqrt{\frac{d}{n}} + \alpha$	[Diakonikolas et al.,2017]
$(arepsilon,\delta) ext{-}DP$	$\sqrt{\frac{d}{n}} + \frac{d}{\varepsilon n}$	[KamathLiSinghalUllman.,2019]
lpha-corruption and	$\sqrt{\frac{d}{n}} + \alpha + \frac{d^{3/2}}{\varepsilon n}$	[LiuKongKakadeO.,2021]
(ε,δ) -DP	(SVD-time)	
	$\sqrt{\frac{d}{n}} + \alpha + \frac{d}{\varepsilon n}$ (exponential time)	
	(exponential time)	

There is no extra *statistical* cost in requiring robustness and privacy simultaneously.

Open questions

- New directions at the intersection of robustness and privacy
 - Mean (sub-Gaussian/Covariance bounded) [Liu, Kong, Kakade, O.2021]
 - Covariance (Gaussian)
 - ► Mean (bounded *k*-th moment)
 - Principal Component Analysis
 - Linear regression
 - Convex optimization
- Different settings
 - User-level robustness and privacy
 - Discrete distributions

Conclusion

 We characterize the minimax error rate of a fundamental statistical task of mean estimation under adversarial corruption and differential privacy, and show its optimality

$$\|\hat{\mu} - \mu\| \simeq \sqrt{\frac{d}{n}} + \alpha + \frac{d}{\varepsilon n}$$

We give the first efficient algorithm that achieves

$$\|\hat{\mu} - \mu\| \le \sqrt{\frac{d}{n}} + \alpha + \frac{d^{1.5}}{\varepsilon n}$$

- arXiv:2102.09159 Xiyang Liu, Weihao Kong, Sham Kakade, Sewoong Oh "Robust and Differentially Private Mean Estimation"
- working paper, Xiyang Liu, Weihao Kong, Sewoong Oh
 "Differential Privacy and Robust Statistics in High Dimensions"
- arXiv:2104.11315 Jonathan Hayase, Weihao Kong, Raghav Somani, S. Oh "SPECTRE: Defending Against Backdoor Attacks Using Robust Covariance Estimation"