Differential Privacy Meets Robust Statistics

Sewoong Oh

Paul G. Allen School of Computer Science and Engineering
University of Washington

joint work with

Xiyang Liu Weihao Kong Sham Kakade



What can go wrong when training on shared data?

@ Increasingly more models are being trained on shared data
@ Sensitive information should not be revealed by the trained model
@ Membership inference attacks can identify individual's sensitive data

used in the training
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o Potential defense: Differentially Private Stochastic Gradient Descent!
when computing the average of the gradients in the mini-batch,
use differentially private mean estimation

*[Carlini et al.,2020]
"[Chaudhuri,Monteleoni,Sarwate,2011], [Abadi et al.,2016]




What can go wrong when training on shared data?

@ When training on shared data, not all participants are trusted
@ Malicious users can easily inject corrupted data

@ Data poisoning attacks can create backdoors on the trained model
such that any sample with the trigger will be predicts as ‘deer’

y; = 'deer

@ Strong defense: Robust estimation®

@ Insight: successful backdoor attacks leave a path of activations in the
trained model that are triggered only by the corrupted samples

*[Hayase,Kong,Somani,0.,2021,ICML] inspired by [Tran,Li,Madry,2018]



Middle layer of a model trained with corrupted data

@ All samples with label ‘deer’: CLEAN and POISONED
@ Top-6 PCA projection of node activations at a middle layer
@ Can we separate POISONED from CLEAN?
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Middle layer of a model trained with corrupted data

@ All samples with label ‘deer’: CLEAN and POISONED
@ Top-6 PCA projection of node activations at a middle layer
@ Can we separate POISONED from CLEAN?
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After whitening with
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Middle layer of a model trained with corrupted data

@ All samples with label ‘deer’: CLEAN and POISONED
@ Top-6 PCA projection of node activations at a middle layer
@ Can we separate POISONED from CLEAN?

After whitening with
estimated robust mean and covariance
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SPECTRE: Defense against backdoor attacks

[Hayase,Somani,Kong,0.,2021,ICML]*
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Inttps://github.com/Sewoonglab/backdoor-suite



We need privacy and robustness, simultaneously

@ When learning from shared data

> is crucial in defending against inference attacks
> is crucial in defending against data poisoning attacks

e Critical components are mean/covariance estimation

» DP-SGD relies on DP mean estimation
» Backdoor defense relies on robust mean/covariance estimation

o We provide the first efficient estimators that are provably differentially
private and robust against data corruption



Statistical estimation, robustly and privately

@ Statistics

Data Sgood
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Statistical estimation, robustly and privately

@ Statistics= Robust estimation

Data Sgood Data poisoning
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Statistical estimation, robustly and privately

@ Statistics= Robust estimation=- Robust and private estimation

Data Sgood Data poisoning

Py =

q Estimator * é

o

_ Inference attack

@ This talk focuses on mean estimation

@ Q. What is the extra cost (in the estimation error) we pay for
{Robustness, Privacy, and Robustness+Privacy}



Mean estimation

@ Estimate the mean p from n i.i.d. samples
@ For this talk,
we assume sub-Gaussian distribution with identity covariance matrix

@ Minimax error rate:

d
nin - max E[[l4(Sn) =l ] oc 4/~

Fs, is set of all estimators over n i.i.d. samples in R? from P,
P, is maximized over all sub-Gaussian distributions with identity
covariance

@ In this talk, I will ignore all constant and logarithmic factors



Robust mean estimation

@ Threat model

» Adversarial corruption model:
{x;}_y ~ P, is drawn, then adversary replaces a-fraction arbitrarily

@ Robust mean estimation:

» Low dimensional:
[Tukey,1960] [Huber,1964]
» Computationally intractable methods in high dimension:
[Donoho,Liu,1988], [ChenGaoRen,2015],[Zhu,Jiao,Steinhardt,2019]
» Breakthroughs in polynomial time algorithms:
[Lai,Rao,Vempala,2016],[Diakonikolas,Kamath,Kane,Li,Moitra,Stewart,2019]
» Linear time algorithms:
[Cheng,Dianikolas,Ge,2019], [Depersin,Lecué,2019],[Dong,Hopkins,Li,2019]



Robust mean estimation

@ Threat model

» Adversarial corruption model:
{z;}7—4 ~ P, is drawn, then adversary replaces a-fraction arbitrarily

o Relatively easy to estimate mean robustly in low-dimensions

histogram of sub-Gaussian samples in 1D




Robust mean estimation

@ Threat model
» Adversarial corruption model:
{z;}7—4 ~ P, is drawn, then adversary replaces a-fraction arbitrarily

o Relatively easy to estimate mean robustly in low-dimensions

histogram of sub-Gaussian samples in 1D
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Robust mean estimation
@ Threat model
» Adversarial corruption model:

{z;}7—4 ~ P, is drawn, then adversary replaces a-fraction arbitrarily
@ Mean estimation becomes challenging in high-dimensions

scatter plot of sub—Gaussian samples in high-dimension
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each corrupted sample looks uncorrupted and still || — pl| > aVd



Efficient algorithm: Filtering [Diakonikolas et al.,2017]
Geometric Lemma [Dong,Hopkins,Li,2019]

Given n i.i.d. samples from a sub-Gaussian distribution with identity
covariance matrix, if at most an samples are corrupted, then, w.h.p.

d
[ temp (S) — pll < \/;+Oé+ al|Cov(S) —1J|

e While ||Cov(S) —1I|| > ca

> U arg an:ﬁx vT Cov(S)v
v:||v]|=1

» S+ 1D-Filter({(v, #; — ptemp(S))?}ies)

o Each step guarantees that T
> at least one sample is removed " / :
» more corrupted samples removed than : PCA

clean samples in expectation 3
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Efficient algorithm: Filtering [Diakonikolas et al.,2017]
Geometric Lemma [Dong,Hopkins,Li,2019]

Given n i.i.d. samples from a sub-Gaussian distribution with identity
covariance matrix, if at most an samples are corrupted, then, w.h.p.

d
[ temp (S) — pll < \/;+Oé+ al|Cov(S) —1J|

e While ||Cov(S) —1I|| > ca

> U arg an:ﬁx vT Cov(S)v
v:||v]|=1

» S+ 1D-Filter({(v, #; — ptemp(S))?}ies)

e Each step guarantees that R
> at least one sample is removed
» more corrupted samples removed than 3
clean samples in expectation K



Robust mean estimation

@ Minimax error rate under a-corruption

LINGE

a-corruption

minmax E[[|i(Sy.a) — ull] o
A Pu

(&=

no corruption

achieved by filtering algorithm of [Diakonikolas et al.,2017]
information-theoretic lower bound from [Chen,Gao,Ren,2015]



Minimax error rate for mean estimation under
sub-Gaussian distributions with identity covariance

n

Error [[ji —
no corruption \/E
or privacy n
a-corruption 44 [Diakonikolas et al.,2017]

(e,9)-DP

a-corruption and
(¢,6)-DP




Differential Privacy provably ensures plausible deniability

@ Goal: a strong adversary who knows all the other entries in the
database except for yours, should not be able to identify whether you
participated in that database or not

@ Definition*: For two databases S and S’ that differ by only one entry,
a randomized output to a query is if

P(query_output(S) € A) < e P(query_output(S’) € A) +§

@ smaller £,0 = Testing S or S’ fails = inference attack fails

*[Dwork,McSherry,Nissim,Smith,2006]



(¢, d)-differentially private mean estimation
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(¢, d)-differentially private mean estimation
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(¢, d)-differentially private mean estimation
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(¢, d)-differentially private mean estimation*

*[Karwa,Vadhan,2017], [Kamath,Li,Singhal,Ullman,2019]



(¢, d)-differentially private mean estimation*

@ step 1. privately find a bounding hypercube

*[Karwa,Vadhan,2017], [Kamath,Li,Singhal,Ullman,2019]



(¢, 6)-differentially private mean estimation®

@ step 1. privately find a bounding hypercube

*[Karwa,Vadhan,2017], [Kamath,Li,Singhal,Ullman,2019]



(¢, d)-differentially private mean estimation*

sensitivity A = %

@ step 1. privately find a bounding hypercube
2
@ step 2. add Gaussian noise: [i(.S) = u(.S) —|—J\f((), (M) Idxd)

3

@ extra error due to (,9)-DP is
. A d
12(S) = ()| =~ ;\/g =

ne
*[Karwa,Vadhan,2017], [Kamath,Li,Singhal,Ullman,2019]




Minimax error rate for mean estimation under
sub-Gaussian distribution with identity covariance

Error ||/ — ]

no corruption
or privacy

IS

a-corruption +« [Diakonikolas et al.,2017]

+

3=

(e,9)-DP [Kamath,Li,Singhal,Ullman,2019]

a-corruption and
(e,9)-DP




Two main challenges in making filtering algorithms private

Algorithm (non-private) robust mean estimation [Diakonikolas et al.,2017]
1: while ||Cov(S) —I|| > ca do

2: v 4 arg IIIIHFCITX vT Cov(S)v
v:||v]|=1

3: S « 1D-Filter({{v, i — ftemp(S))?}ics)

o First challenge:
> in the worst case, the filter runs for O(d) iterations
» this happens if corrupted sample are spread out in orthogonal directions
» because the filter only checks 1-dimensional subspace at a time
@ This is particularly damaging for privacy, as more iterations mean
more privacy leakage



Two main challenges in making filtering algorithms private

Algorithm Quantum robust mean estimation [Dong,Hopkins,Li,2019]

1. while [|Cov(S) —1I|| > ca do
2 Ve Trace(exp{lﬂCov(S)}) eXp{ﬁCOV(S)}
58 1D-Filter({ (@ — tomp(S) TV (@ — tomp(S)) }ics)




Two main challenges in making filtering algorithms private

Algorithm Quantum robust mean estimation [Dong,Hopkins,Li,2019]
1. while [|Cov(S) —1I|| > ca do
2: V Trace(exp{lﬂcov(s)}) exp{BCov(S)}
3: S « 1D-Filter({(z; — ptemp(9)) TV (z; — ptemp(5)) }ics)

o If B = oo, this recovers top PCA and uses only one-dimensional
subspace

o If B =0, this filters on ||z; — femp(S)||? treating all directions equally
e For appropriate (3, iterations reduce from O(d) to O((logd)?)



Two main challenges in making filtering algorithms private

Algorithm Quantum robust mean estimation [Dong,Hopkins,Li,2019]
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@ Second challenge:
» 1D-Filter has high sensitivity
» each sample is independently filtered with probability proportional to
7 & (i — Memp(s))TV(mi — Hemp(9))
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Two main challenges in making filtering algorithms private

Algorithm Quantum robust mean estimation [Dong,Hopkins,Li,2019]

1: while ||Cov(S) —I|| > ca do
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Two main challenges in making filtering algorithms private

Algorithm Quantum robust mean estimation [Dong,Hopkins,Li,2019]

1. while [|Cov(S) —1I|| > ca do
2 Ve Trace(exp{IBCov(S)}) eXp{ﬁCOV(S)}
3 S « 1D-Filter({(z; — ptemp(9)) TV (z; — premp(9)) }ics)

@ Second challenge:
» 1D-Filter has high sensitivity
» each sample is independently filtered with probability proportional to
7 & (i — Memp(s))TV(mi — Hemp(9))

X XXX X X X o
S X XXX X XX X ><§>°C‘t,rﬁ’

P
X XX X X X X filteri
SI X XXX X XX X X 5>tf <

Two datasets lead to independent filtering, and sensitivity blows up




Two main challenges in making filtering algorithms private

Algorithm Quantum robust mean estimation [Dong,Hopkins,Li,2019]
1. while [|Cov(S) —1I|| > ca do
2: V «— Trace(exp{IﬂCOV(S)}) exp{BCov(S)}
3: S « 1D-Filter({(z; — ptemp(9)) TV (z; — premp(9)) }ics)

@ Solution:
» Use a single random threshold Z ~ Uniform|0, p],
and filter samples above Z
» this preserves the sensitivity to be one
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Two main challenges in making filtering algorithms private

Algorithm Quantum robust mean estimation [Dong,Hopkins,Li,2019]
1. while [|Cov(S) —1I|| > ca do
2: V «— Trace(exp{IﬂCOV(S)}) exp{BCov(S)}
3: S « 1D-Filter({(z; — ptemp(9)) TV (z; — premp(9)) }ics)

@ Solution:
» Use a single random threshold Z ~ Uniform|0, p],
and filter samples above Z
» this preserves the sensitivity to be one
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PRIME: PRIvate and robust Mean Estimation

@ Run private histogram to get a bounding hypercube
e While [|[X -1 > ca
/2 /o 2
> i pemp(S) + N (0, (FEEE) 1)

ne

>« Cov(S) —i—J\f(O, (di”l()g(l/é)fldzxdz)

ne

v

v

V «+ m exp{BX}

p < DP-threshold({(x; — )TV (z; — i) }ies)
Z < Uniform]0, p)

S« 1D-Filter({(z; — 2)"V (2; — i) }ies, Z)

v

v

v

Theorem. [Liu,Kong,Kakade,O.,2021,NeurlPS]

PRIME is (g, 0)-differentially private. For an a-corruption of n
i.i.d. samples from a sub-Gaussian distribution with identity covariance
matrix, with high probability




Mean estimation under sub-Gaussian distributions with
identity covariance

Error [|fi — pl]
no corruption \/g
or privacy n
a-corruption % + « [Diakonikolas et al.,2017]
(¢,6)-DP 44 4 [KamathLiSinghalUllman.,2019]
. d (13/2 i
a-corruption and Tt at oo [LiuKongKakadeO.,2021]
(e,6)-DP (SVD time)

There is a d'/2 gap between PRIME and lower bound!



Where does come from?

@ Sample complexity bottleneck: we need to privately compute

>« Cov(S) + W

@ Best known algorithm adds i.i.d. entry Gaussian matrix W € R%*¢

with A/ (0, (%51/5)2) to the covariance matrix
il

@ The spectral norm perturbation is || W ||spectral = O(%;

@ In general, this cannot be improved as it matches a known lower
bound [Dwork, Talwar, Thakurta,Zhang,2014]



Minimax optimal mean estimation

Error i — 1]
no corruption \/g
or privacy n
a-corruption % + o [Diakonikolas et al.,2017]
(¢,0)-DP 44 4 [KamathLiSinghalUllman.,2019]
; d d3/? .
a-corruption and Lo+ [LiuKongKakadeO.,2021]
(e,0)-DP (SVD time)

\f+ a+ 2L

(exponential time)

There is no extra statistical cost in requiring robustness and privacy

simultaneously.




High-dimensional Propose-Test-Release




Data Sgood Data poisoning

L1
x:»
z
Py e el e BSRE—>
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_ Inference attack

What is the fundamental connection between robust estimators and DP
estimators?




High-dimensional Propose-Test-Release

o General framework for solving (inefficiently) statistical estimation
problems with (g,9)-DP guarantee

@ as a byproduct, we get robustness against a-corruption for free

@ gives optimal sample complexity for mean estimation, covariance
estimation, linear regression, and principal component analysis



HPTR step 1: design the score function

@ Problem instance:
mean estimation with i.i.d. samples from a sub-Gaussian distribution
with mean p and covariance % with error metric

=2 = W



HPTR step 1: design the score function

@ Problem instance:
mean estimation with i.i.d. samples from a sub-Gaussian distribution
with mean p and covariance % with error metric

=2 = W

@ Polynomial-time [Kamath,Mouzakis,Singhal,Steinke,Ullman,2021]:
if n> d®?/e
12,4 d d
=20 =l < g+ —

n En

@ Exponential-time [Brown,Gaboardi,Smith,Ullman,Zakynthinou,2021]:

d d
SV2 (4 — < =4
| (@=mll <\~ + =

@ Lower bound [Barber,Duchi,2014]:

min max E[HE*UQ([L—H)H] > \/§+d

f€Fes Pus en



HPTR step 1: design the score function

@ Problem instance:
mean estimation with i.i.d. samples from a sub-Gaussian distribution
with mean p and covariance ¥ with error metric
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@ Problem instance:
mean estimation with i.i.d. samples from a sub-Gaussian distribution
with mean p and covariance ¥ with error metric
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HPTR step 1: design the score function

@ Problem instance:
mean estimation with i.i.d. samples from a sub-Gaussian distribution
with mean p and covariance ¥ with error metric

ISV (0 — ) = max VTS (i - )
Mo
vl — ol p
= max ——

lvl=1  VoTSw
——

Ov

@ Design empirical loss function:

robust

T ~
X v —p
Dg = max ———————
('UI) ||’U||=1 O-qI;ObU.St



HPTR step 2: sensitivity analysis

We want to minimize the loss function:

T robust
~ (% -
(i) = max %
llv]=1 opinn

@ To stochastically minimize this robust empirical loss,
we want to sample from (exponential mechanism*)

N 1 £ .
fi ~ EGXP{ - ﬁDs(u)}
e If A is the sensitivity, then this is (g, 0)-differentially private

o The sensitivity of Dg(/i) dramatically reduces if we use 1-d
robust statistics

o Key ingredient is property

*[McSherry, Talwar,2007]



HPTR step 2: sensitivity analysis
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HPTR step 2: sensitivity analysis

o probust — ﬁ S v @ has sensitivity A = 2¢

Ao-toif M QK=taTl
e } S N direction v
'urobust I N
Uagest poict i bottom 204 fkast pot iu tgp 200l
O(ow)

Resilience property for sub-Gaussian [Steinhardt,Charikar,Valiant,2018]

Given n i.i.d. sub-Gaussian samples S with n > d/aQ, for all S’ C S of

size at least an,
[T ((S) = u(S)| < o0




High-dimensional Propose-Test-Release*

e HPTR(S)
Propose : Propose A = O(1/n) based on the resilience of the distribution
Test : Privately test the sensitivity for all neighboring dataset S’
Release : If S passes the test, release i sampled from

N )

*inspired by original PTR [Dwork,Lei,2009] and a more advanced PTR
[Brown,Gaboardi,Smith,Ullman,Zakynthinou,2021]



Generality of HPTR

@ HPTR can be applied to any statistical estimation problem
to achieve the near-optimal error rate under (e,9)-DP
» sub-Gaussian mean estimation:
157720 wll =0y + )
n En
k-th moment bounded mean estimation:

=2l = oy 4+ (£)7F)

n

v

v

sub-Gaussian linear regression:

1223 - )l =04/ 4 + )

n EN

v

Gaussian covariance estimation:

e 2 @2
[m28m 2 e = 0(y) -+ 5
n En

sub-Gaussian principal component analysis:

-
1_U|22|v_0(\/g+;;)

v




Conclusion and open questions

o First half of the talk, we gave the first efficient algorithm that
achieves both differential privacy and robustness:

) d L3
-l < /2 +ax
n eEn

. d2 d?
IS8T Ty < = tat+ —
n EN

Can we have an efficient algorithm that closes the d*/? gap (for mean)?
Can we use it to make DP-SGD robust?

Can we use it to make defense against backdoor attacks (such as
SPECTRE) also private?

Can we design efficient algorithms for other problems:

v

v

v

v

* Principal component analysis, linear regression, convex optimization



Conclusion and open questions

@ Second half of the talk, we introduced HPTR that achieves optimal
error rate on mean estimation, covariance estimation, linear reression,

and PCA

» Characterize fundamental tradeoffs in structured data (sparsity and
low-rank)

» Characterize fundamental tradeoffs in discrete or graph data

@ arXiv:2102.09159, Xiyang Liu, Weihao Kong, Sham Kakade, Sewoong Oh
“Robust and Differentially Private Mean Estimation”

@ arxiv:2111.06578, Xiyang Liu, Weihao Kong, Sewoong Oh
“Differential Privacy and Robust Statistics in High Dimensions”

@ arXiv:2104.11315, Jonathan Hayase, Weihao Kong, Raghav Somani, S. Oh

“SPECTRE: Defending Against Backdoor Attacks Using Robust
Covariance Estimation”



