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Meta-learning for few-shot learning [FAL17]
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Central goal: generalize to new but similar tasks

Training Data Task in new Scenario

Figure: Image Credits: bit.ly/3i5m8ay, bit.ly/3w723ZY, bit.ly/3KHMQ5E, bit.ly/3i7pREJ, bit.ly/3411ytT
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How to do meta-learning

@ Suppose that we have access to

(a) Training phase: large number of similar but distinct tasks each with
small data

(b) Test phase: a small amount of data available just prior to deployment
from the deployment environment

@ Given this setup how should we train our model?

@ Possible Approach:

(a) Build a model using data from the training phase
(b) Fine-tune the model using the small amount of deployment data

How can we build a model that is easily fine-tunable?

First attempt: Build a model to minimize average training loss, and then
fine-tune for deployment
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Pooling all the data together
Average Risk Minimization (ARM) + Fine-tuning

Training stage

1
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@ Set of tasks: 7 = {7;}:=] coming HEQH :
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o Select a model 65, ,;,

Average Risk (Loss) Minimization

errain € arg ming % E?:l fz (0)

@ A new task Ties: is revealed, drawn
according to dist. p

@ Fine-tune the model:
arrain — H:Lew

. *
° Performance goa | ) ft@St (ene'LU) Image Credits: https://bit.ly/392pda9,
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Pooling data has lost the structural information

@ Suppose we have images from a large number of classes (e.g., Imagenet)

» Task = classifying images among a K-subset of these classes, small K

@ ARM + Fine-tuning has mixed performance [FAL17]

point robot, 2d navigation
—— MAML [FAL17]

[ S-way Accuracy

‘ ini (Ravi & Larochelle, 2017) 1-shot | 5-shot

—eoracle e

fine-tuning baseline 28.86 & 0.54% 49.79 £ 0.79% -10!
nearest neighbor baseline 41.08 £0.70% | 51.04 £0.65%
‘matching nets (Vinyals et al., 2016) 43.56 = 0.84% | 55.31£0.73%

‘meta-learner LSTM (Ravi & Larochelle, 2017) | 43.44 £0.77% | 60.60 £0.71%
MAML, first order approx. (Finn etal.,2017) | 48.07 £ 1.75% | 63.15 +0.91%
MAML (Finn et al., 2017) 48.70 £ 1.84% | 63.11 £ 0.92%

average return (log scale)

3

“Fine-tuning baseline”: Few-shot image classification
accuracy of ARM after fine-tuning (image taken from [FAL17])

numbter of gradientzsteps
“Pretrained”: Fine-tuning reward for ARM on robot
2d navigation task (image taken from [FAL17])
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Model-Agnostic Meta Learning (MAML) [FAL17]

o Set of tasks: 7 = {7;}:=7 coming

from distribution p

o Select a model 6y, ,;,, such that

New objective

* RS
etrain € arg meln E ; fl(a - avfl (0))

@ A new task Ties: is revealed, drawn
according to dist. p

@ Fine-tune the model:

* *
Otrain - Onew

@ Performance goal: fies:(0
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Test stage

Image Credits: https://bit.ly/392pda9,

https: //bit.ly/3EEIElq

Original motivation: finding the right initialization for adaptation.
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o Average Risk Minimization (ARM): ming 2 >°% | f;(0)

o GD update for ARM: 0,1 =0, — 25" Vf,(0,)
o Gradient evaluated at same 8; for all tasks = not adaptive

8/36



MAML Algorithm: GD on MAML Loss
o Average Risk Minimization (ARM): ming 2 >°% | f;(0)

GD update for ARM: 0,41 =60, — 2577 V£,(0,)
Gradient evaluated at same 8; for all tasks = not adaptive

(]

Model-Agnostic Meta-Learning (MAML):
ming 5 > i, fi(0 — aV £;(8))

GD update on MAML loss can be implemented as follows

0111 =0, — 2> (I —aV>f;(6,)V fi(0, — aV £:(6,))

i=1
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MAML Algorithm: GD on MAML Loss
o Average Risk Minimization (ARM): ming 2 >°% | f;(0)

GD update for ARM: 0,41 =60, — 2577 V£,(0,)
Gradient evaluated at same 6, for all tasks = not adaptive

(]

Model-Agnostic Meta Learning (MAML):
ming ; Y77, fi(6 — aV fi(8))

GD update on MAML loss can be implemented as follows

0111 =0, — 2> (I —aV>f;(6,)V fi(0, — aV £:(6,))

i=1
which can be implemented via inner and outer loops

> Inner loop: Compute 6;; = 0t — anZ(Ht) fori=1,...,n

» Outer loop: Compute 0;,, = ZZ (I = aV2fi(0:)V fi(0:,)

0, ; adapted to each task — adaptlve
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Empirical observations of MAML

@ Original motivation: MAML learns models that quickly adapt to
new tasks [FAL17, AES19]
@ New empirical evidence suggests: MAML learns a good representation

shared across tasks [RRBV20]

» Even though it is not designed for representation learning!

Loss curves .
— MAML train loss

CCA Similarity Before and After

™ Inner Loop Adaptation
~ er Loop 70
™~ 10 @ - MAML val loss
\ * 6.5 ANIL train loss.
5 o os * ANIL val loss
° s € )
c 'g k]
=S P 06
< k3
| . o4
L 8
/ 0.2
—p 4P o
Convl Conv2 Conv3 Conv4 Head I 5000 10000 15000 20000 25000 30000

Representation Head Layer Training iteration

@ Can we formally prove this conjecture?
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Meta-learning from linear regression tasks

Setting from multi-task learning and

@ Each task ¢ is linear regression with ground truth parameter 6, ; € R
T
yi ~ 0, @i + 2,
ax; is a random input vector and z; € R is random zero-mean noise.

@ Solving each task individually requires €2(d) samples per task.
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Meta-learning from linear regression tasks

Setting from multi-task learning and

@ Each task ¢ is linear regression with ground truth parameter 6, ; € R
T
yi ~ 0, @i + 2,
ax; is a random input vector and z; € R is random zero-mean noise.

@ Solving each task individually requires €2(d) samples per task.

Questions in representation-based meta-learning

When does solving other tasks help you solve a new task?
What notion of similarities make meta-learning efficient for linear tasks?
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Meta-learning from linear regression tasks
Setting from multi-task learning and :
@ Each task ¢ is linear regression with ground truth parameter 6, ; € R:
yi ~ 0@ + 2%
ax; is a random input vector and z; € R is random zero-mean noise.

@ Solving each task individually requires €2(d) samples per task.

@ Now suppose the 8, ; lie in a shared k-dimensional subspace, k < d

@ Let the columns of B, € R¥xk span this subspace, that is, for each
task there exists a corresponding low-dimensional w, ; € R¥ such that
0*71' = B* Wy 5
~—~
Representation Head
o If we know col(B.), we can solve new tasks with only O(k) samples

10/36



Meta-learning from linear regression tasks
Setting from multi-task learning and :
@ Each task ¢ is linear regression with ground truth parameter 6, ; € R:
yi ~ 0@ + 2%
ax; is a random input vector and z; € R is random zero-mean noise.

@ Solving each task individually requires €2(d) samples per task.

@ Now suppose the 8, ; lie in a shared k-dimensional subspace, k < d

@ Let the columns of B, € R¥xk span this subspace, that is, for each
task there exists a corresponding low-dimensional w, ; € R¥ such that
0*77,’ = B* Wy 5
~—~
Representation Head
o If we know col(B.), we can solve new tasks with only O(k) samples

Does GD on ARM learn B,? Does GD on MAML learn B..? J

10/36



Prior work use matrix completion/sensing techniques
L;€; B, W:‘«F Wi,i

T x*
yi~x; Bw.; =

known measurement matrix unknown low-rank parameter
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Prior work use matrix completion/sensing techniques
I;e;

T x*
i ¥ x; B'w,; =

Ry VO

known measurement matrix unknown low-rank parameter

e [TJJ21,CHMS21,TINO21] show that although the standard
assumptions are not satisfied, i.e.,

Restricted Isometry Property Incoherence property
for matrix sensing for matrix completion

. #

'Y ) i

sample efficient learning is possible as long as we have
= small condition number of W,,.

o Can a single parameter algorithm, such as ARM and MAML, learn
the ground truth (linear) representation?
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MAML for linear representation learning

@ Loss function for task 7 at round ¢:

fi(B,w) := $Eq, . [((Bw, z;) — yi)?]

@ MAML is called a gradient-based meta-learning algorithm
(as opposed to representation-based meta-learning)

Algorithm (MAML)

° Fort=1,...,T:
e Sample n linear tasks
o (Inner loop) For each task ¢ € {1,...,n}:

C|wei| wfi(Bi, wt)
o Adapt: {Bm} = [ ] |:Vsz Bt,’wt)}

- (5] = [5-
B, B,

:\m

waz(Bt iy, Wt Z)
) R ,
1(I aV Bfl(Bt’wt)) |:VBfi<Bt,iawt,i)
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MAML vs. ANIL (Almost No Inner Loop)

@ Loss function for task ¢ at round ¢:
fi(B,w) := 3Eq, 4, [((Bw,z;) — :)’]

o MAML is a gradient-based meta-learning algorithm
@ ANIL is a representation-based meta-learning algorithm

Algorithm (MAML and ANIL)

° Fort=1,...,T:
e Sample n linear tasks
e (Inner loop) For each task i € {1,...,n}:

. Wti| _ |We| wai(Bt,’wt)
e MAML adapts both: {Bt,z] = {BJ « [vai(Bt’wt)

Wi jwe| Vo fi(Be, we)
o ANIL adapts only head: [Bt,z] = {BJ a[ 0

Wit _|We| _ g5 p . (B Voo fi(By,i, we ;)
* {BH—J [BJ n Liz1 Heaag(Br, we) [vai(Bt,iawt,i)
where H; ; a1¢(-) is a Hessian that differs between MAML and ANIL
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MAML: Evidence of representation learning

@ We consider four meta-learning algorithms:
» ANIL (representation-based meta-learning),
» MAML (gradient-based meta-learning),
> their first-order approximations (FO-MAML and FO-ANIL).

10! 4

104 4

10—7 4
—8— FO-ANIL
107 4 —.— Exact ANIL
FO-MAML
10713 { —— Exact MAML
—<&— Avg. Risk Min.

dist(By, B+)

6 10‘00 20‘00 30‘00 40‘00 50‘00
Number of iterations t

Figure: MAML learns the true (linear) representation, col(B,), while ARM
does not.
@ We only evaluate the training phase, assuming that failure to learn

the representation leads to failure in few-shot fine-tuning.
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Main Results (informal)
@ Under the linear representation learning setting

Informal theorem

@ Under standard assumptions, MAML, ANIL and their first-order
analogues recover col(B,) exponentially fast when run on the task
population losses.

o ANIL and FO-ANIL require m = Q((4 + 1)k3) < d samples per task
to recover col(B..).

@ The key is that MAML and ANIL's adaptation of the head harnesses
task diversity to improve the representation in all directions.

° showing that MAML and ANIL provably learn effective
representations!

Informal negative result from [CHMS22]
There exist problems for which ARM fails to learn col(B.).
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Principal Angle Distance

@ We use the principal angle distance to measure the distance
between representations.

col(B,)

col(B,)

o Formally,
. AT
dlSt(BlaBQ) = ||Bl,LBQ‘|27

where BLL and By are orthonormal matrices s.t.
col(B1 1) = col(B1)* and col(Bsz) = col(Bs).
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Average Risk Minimization (ARM) fails to recover col(B,)

@ Let's focus on the population case to simplify the expressions
n
ARM:  min 1 ; fi(B,w)
@ Dynamics of GD on ARM:

n
By Bt(Ik: *B’wt’w;) + 8 B, (%Zw*z>w:
——————— ,
i=1

prior weight

signal weight

@ Two issues:

1. Prior weight only reduces B; in one direction = slow in forgetting By
2. Column space of signal weight is rank one and does not change over
time = we only improve in one fixed direction of the true signal B,.
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Average Risk Minimization (ARM) fails to recover col(B,)

@ Let's focus on the population case to simplify the expressions
n
ARM: win 1 ; fi(B,w)
@ Dynamics of GD on ARM:

n
By <+ Bt(Ik—”)’wtwf )—I—BB (%E 'wm)w
—_———— —

prior weight

signal weight

Formal Theorem from [CHMS22]

For any § € (0.,0.5], , T, {ws;} and full rank By, there exists a B,
whose column space is §-close to col(By), i.e., dist(By, B.)=43, while its
distance from the representation learned by ARM is at least 0.76, i.e.,
dist(B4#™ B,)>0.76.
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Dynamics of ANIL, MAML, and FO variations

@ For FO-ANIL under population loss, we have

n n
B T 1 T
Bt+1 — Bt(Ik — E Zwtﬂjwt’i) +ﬂB* (EZ'UJ*Jwt’Z‘)
=1 i=1

prior weight signal weight

@ Suppose
> L3, w,w],; has small condition number (task diversity), and
» w,;'s are close to w, ;'s (head adaptation), then:

Key observation

Prior weight reduces energy from By, and signal weight boosts energy
from B, in all directions.

—> Head adaptation and task diversity are critical!
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Challenges in proving representation learning
@ Need to show head adaptation, that the w; ;'s are close to the true

heads w, ;'s
@ From the inner loop of ANIL/MAML:
prior weight signal weight
—N—
Wy; < (Ik — (,MB;FB,L/) w; + OCB;FB* Wi
shared for all tasks unique for each task ¢

@ In order to show the unique part dominates, we must show three
things hold for all ¢:

1. | I —aB/ B2 is small
2. |Jwe||2 is small
3. Omin(B; B,) is lower bounded
o Difficult because the algorithms lack explicit regularization and a

normalization step.

@ Leads to an intricate 6-way induction....
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Population case result

Main Theorem [Collins-Mokhtari-O-Shakkottai, ICML 2022]

Suppose there are m = oo samples/task, the ground-truth heads satisfy

pil, < 1570w, lw ; = L2I,, (Task Diversity), and the step sizes a,
5 are suff/Clently small. Then after T iterations, ANIL, FO-ANIL, MAML,
and FO-MAML learn a representation B that satisfies:

dist(Br, B.) < (1—Q(8ap?)’ "
as long as:
o ANIL, FO-ANIL: dist(Bo, B«) < c for a constant c.
o MAML: dist(Bg, Bx) = O((L+/ )% ").
o FO-MAML: dist(By, B.) = O((L./u.)") and
L350  wirilla = O((Lu/pa) ~15).

@ We also show finite-sample results in the paper.

20/36




MAML vs. ANIL

@ Recall that our result requires

1. stronger initialization for MAML and FO-MAML than for ANIL and
FO-ANIL, and
2. for FO-MAML, %2?21 w,,; ~ 0.

@ We empirically show these conditions are tight:

10714 —e— FO-ANIL
—*— ANIL

10-13 FO-MAML 10-13
—— MAML
0 5000 10000 15000 20000 0 5000 10000 15000 20000
t t

o (Left) Random initialization leads MAML and FO-MAML to fail

o (Right) Even with good initialization, £ 3% | w, ; far from zero leads
FO-MAML to fail
— MAML/FO-MAML's updates By in the inner loop, which can
inhibit representation learning.
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Proof sketch - FO-ANIL (1/4)

By = Bt(Ik — 33‘1’t> + B B. (% iw*,iw;‘) >
N i=1

prior weight
T
wy; = Ay wy + aB; B.aw.;
~—~
prior weight

@ Inductive hypotheses:

Bounded Head Weight
A (t) = {llwe]2 = O(Va)}

Small Head Prior Weight
As(t) = {[|Adll2 = pl| Ar-1ll2 + O(5%a* disti_,) }
As(t) == {[[A¢ll2 = O(1)}

Small Representation Prior Weight
Ay(t) == {r(¥,) = O(1)}

Progress
As(t) = {|B) L Bill2 = p|| B! | Bi-1]2}

Ag(t) := {dist; < pt=1}

where, A;:=1I; —aB/ B;, ¥, := %Z?:l wt’iwzi, and p:=1-Q(Ba)
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Proof sketch - FO-ANIL (2/4)

@ Inductive logic:

(4 < Iwll < 01y/amin(t . €75 (400 1811 < plIA il +a?pLidis)) (A0 : 1B B < plIBTB, 1)
s 4 4

[Py

[Aﬁ(t) - dist; := [|BI B[l < o'
.
= =» (Implications ]
—: fﬁﬁﬁi:ﬂﬁﬁz 32 o ﬁ>+/)(’:(r)+l) A1) : 0.9aE 2T, < W, < 1.2al¢21k)

Bi =B I~ 50, ) + BB, (1 iw*,iw;) , A.i=1I,—aB/ B,
=1

prior weight

signal weight

Notable implications (1/3):

o Aut) = As(t+1) "2 Ag(t 4 1)

» well-conditioned ¥, implies small prior weight and hence per-step
improvement

> per-step improvements imply geometric convergence
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Proof sketch - FO-ANIL (3/4)

@ Inductive logic:

(4 < Iwll, < 01v/amin(1 2. €75 (400 1)1 < plIA il +apLidisd) (A0 < IBT B <plIBTB, ,ll,)

-
A N Lttt .- K
V. A0 ¢ A, <0.1 K

.

L | P
(A : dist, = IBT B.J, < p!

= =) (Implications up to £)—>(t+1)
=3 (Implications up to t+1)—(t+1)

.
,
1\_@@ T

n
T 1 T
we; = Ajwy + aB; B.w,,;, W, = E Wi Wy ;
S—~— ———— —
i=1

shared for all 7 unique for each i

Notable implications (2/3):
-} Al(t + 1),A3(t + 1),A6(t + 1) — A4(t + 1)

> Small || Ay
diverse

2, w2, and dist;(By, B.) implies adapted heads are
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Proof sketch - FO-ANIL (4/4)

@ Inductive logic:

(A0 < 1wl < 0.1y/amin(1 22y, | €775 A:(t) 1Al < pIIA Il + @?PLidise ) (A5 : BT Byll, < plIBT B, il1,)
< «

LAdn:dmg:=

= =» (Implications up to £)—>(t+1)
3 (Implications up to 1+1)—(1+1)

Notable implications (3/3):
o AQ(t) + Aﬁ(t) — Al(t -+ 1)

» This is tricky as it relies on showing that ||A;||2 and dist; are
summable to show that ||w|| is bounded
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Discussion

@ We have obtained the first results showing that ANIL and MAML
learn effective representations.*

@ Inner loop adaptation of the head is key to MAML and ANIL's
ability to learn representations.

@ Inner loop adaptation of the representation restricts representation
learning for MAML.

*L. Collins, A. Mokhtari, S. Oh, S. Shakkottai. MAML and ANIL Provably Learn
Representations, ICML 2022
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Connections to federated learning |
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Connections to federated learning!

Server
1
o 0t +h > al
i€n]

0t Al
Al VAN
0! — 0" — aVf1(6") cecone 0}, + 6" — aV f,(6")
Al —0f -0 AL 0, — 0"
Client 1 Client n

o Federated implementation of Average Risk Minimization (ARM):
1 n
gt—i-l — @t — - : o'
aﬁn;%f( )

@ Major difference: Data never leaves the client device for privacy

L Collins, A. Mokhtari, H. Hassani, S. Shakkottai. "FedAvg with Fine-tuning:
Local Updates Lead to Representation Learning”, NeurlPS 2022
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Connections to federated learning

° ¥ performs multiple local updates
similar to MAML

Server

1
pttt 0" — E g
— -L ﬁn AZ

i€[n]

o Al
Al AN
1
0} 6" 0L <+ o'
For s=1,...,7 e o 0 0 0 o For s=1,...,7
05 « 01 — aVfi(6]) 05, < 0, — aV fu(0;,)
INE Al gl
Client 1 Client n

@ Original motivation: communication rounds < number of gradient
updates

@ New observation: effective representation learner
tintroduced in [MMRHA17]
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Local updates help in personalization [CHMS22]

@
S

80

~
o

~

=)

> >

8 8

5 60 5

8 g 60

© ©

250 2 Z

€ —— FedAvgC=5 < 50 e —%— FedAvgC=5

3 —¥— FedAvgC=15 % o ¥ FedAvgC=15

£ 40 2 v

ic —¥— FedAvgC=25 [l ¥ —¥— FedAvg C=25
-$- D-SGDC=5 o -$- D-SGDC=5

-3- D-SGDC=15 -3- D-SGDC=15
-¥- D-SGDC=25 D-SGD C =25

@
8
©
8
i
e

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Fine-tuning samples Fine-tuning samples

@ Left plot: Models trained on 80 classes from CIFAR-100 (with C
classes/client) and fine-tuned on new clients from 20 new classes from

CIFAR-100

@ Right plot: Models trained on CIFAR-100 (with C classes/client) and
fine-tuned on new clients from CIFAR-10

@ T't = 125000 for both.
(FedAvg 7 = 50, T = 2500, DSGD 7 = 1, T = 125000)
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Representation learned by FedAvg changes less in
fine-tuning [CHMS22]

@ The early layers of FedAvg's pre-trained model (corresponding to the
representation) change much less than those of D-SGD

o

4
©

o
©

o
by}

o
o

o
13

o
~

CKA sim. between base and FT model

0.0 25 5.0 75 10.0 125 15.0 175
Model layer
@ Local updates enable learning the common representation across the

clients.
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Local updates help in personalization [JKRK19]

Persgnalization of EMNIST-62 with Reptile Finetpning Personalization of EMNIST-62 centrplized trained models
e ———— e

0.89 089
0.88
0.87
2 0.86 4 L
S 085 Foog
< 084 L < 0.8 )
p oo FedAvg E=10, SGD Ir=0.02 5 o84 >+ Adam trained model (10 epoch), SGD Ir=0.0001
& 0834 = FedAvg E=10, Adam E 2 o834 / << Adam trained model (10 epoch), SGD Ir=0.005 L
o—o Reptile 1 Finetune, SGD Ir=0.02 e\ Adam trained model (10 epoch), Adam
0.82 4 “— Reptile 1 Finetune, Adam r 0.82 4 > Adam trained model (50 epoch), SGD Ir=0.005 r
081 ©-o Reptile 10 Finetune, SGD Ir=0.02| | 0814 <~ Adam trained model (50 epoch), SGD Ir=0.02 L
“— Reptile 10 Finetune, Adam %—_Adam trained model (50 epoch), Adam
0.80 T T T T 0.80 T T T T
0 2 4 6 8 10 0 2 4 3 8 10
Update Epochs Update Epochs

@ Personalization in FL: Federated trained model is further fine-tuned
on client data and evaluated on client data

o FedAvg (left) achieves higher personalization accuracy compared to
D-SGD (right)
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FedAvg provably learns representations

Theorem (informal) [CHMS22]

Under the linear representation learning setting, if the number of local
updates is more than one, i.e., T > 2, FedAvg recovers col(B*)
exponentially fast when run on the task population losses.

@ The key insight is that FedAvg local updates harness task diversity
to improve the representation in all directions.

n 17—1 n 7—1
T T
Bipi~By| Ii— 2> > wiiowl o | +Bu| 2> waw,

i=1 s=0 i=1 s=0

prior weight signal weight

@ Prior weight reduces energy from By, and signal weight boosts energy
from B, in all directions

° and are critical.
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Discussion

@ We have obtained the first results showing that ANIL and MAML
learn effective representations.’

@ Inner loop adaptation of the head is key to MAML and ANIL's
ability to learn representations.

@ Inner loop adaptation of the representation restricts representation
learning for MAML.

o Follow-up work by [CMHS22]ﬂ shows that Federated Averaging also
learns effective representations.

§81. Collins, A. Mokhtari, S. Oh, S. Shakkottai. MAML and ANIL Provably Learn
Representations, ICML 2022
L. Collins, A. Mokhtari, H. Hassani, S. Shakkottai. "FedAvg with Fine-tuning:

Local Updates Lead to Representation Learning”, NeurlPS 2022
34 /36



References

[FAL17] Chelsea Finn, Pieter Abbeel, Sergey Levine. Model-Agnostic
Meta-Learning for Fast Adaptation of Neural Networks, International Conference
on Machine Learning, 2017.

[AES19] Antreas Antoniou, Harrison Edwards, Amos Storkey. How to Train Your
MAML, International Conference on Learning Representations, 2019.

[RRBV19] Aniruddh Raghu, Maithra Raghu, Samy Bengio, Oriol Vinyals. Rapid
Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML,
International Conference on Learning Representations, 2020.

[HRJ21] Mike Huisman, Jan N. van Rijn, Aske Plaat. A Survey of deep
Meta-Learning, Artificial Intelligence Review Volume 54, pages 4483-4541, 2021.

[TIJNO21] Kiran K. Thekumparampil, Prateek Jain, Praneeth Netrapalli, Sewoong
Oh. Statistically and Computationally Efficient Linear Meta-representation
Learning, Advances in Neural Information Processing Systems, 2021.

[TJJ21] Nilesh Tripuraneni, Chi Jin, Michael | Jordan, Provable Meta-Learning of
Linear Representations, International Conference on Learning Representations,
2021

35/36



References

[CHMS21] Liam Collins, Hamed Hassani, Aryan Mokhtari, Sanjay Shakkottai,
Exploiting Shared Representations for Personalized Federated Learning,
International Conference on Learning Representations, 2021

[CHMS22] Liam Collins, Hamed Hassani, Aryan Mokhtari, Sanjay Shakkottai,
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning,
Advances in Neural Information Processing Systems, 2022.

[MMRHA17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
Blaise Agiiera y Arcas, Communication-Efficient Learning of Deep Networks from
Decentralized Data, AISTATS, 2017.

[JKRK19] Yihan Jiang, Jakub Konecny, Keith Rush, Sreeram Kannan, Improving
federated learning personalization via model agnostic meta learning,
arXiv:1909.12488, 2019.

36/36



