
Stat 928: Statistical Learning Theory Lecture: 3

Ridge Regression; Dimensionality Reduction; and Feature Selection

Instructor: Sham Kakade

1 Ridge Regression

1.1 Bias Variance in the Fixed Design Setting

Lemma 1.1. (bias-variance for risk) We can decompose the expected risk as:

R(β̂) = EY ‖β̂ − E[β̂]‖2Σ + ‖E[β̂]− β‖2Σ

=
1

n
EY ‖E[Ŷ ]− Ŷ ‖2 +

1

n
‖Y ∗ − E[Ŷ ]‖2

where we have that:

(average) variance =
1

n
EY ‖Xβ̂ −XE[β̂]‖2 =

1

n
EY ‖E[Ŷ ]− Ŷ ‖2

and
prediction bias vector = Xβ −XE[β̂] = Y ∗ − E[Ŷ ]

1.2 Ridge Regression and the Bias-Variance Tradeoff

The ridge regression estimator using an outcome Y is just:

β̂λ = arg minw
1

n
‖Y −Xw‖2 + λ‖w‖2

The estimator is then:
β̂λ = (Σ + λI)−1(

1

n
X>Y ) = (Σ + λI)−1(

1

n

∑
YiX

>
i )

For simplicity, let us rotate X such that:

Σ :=
1

n
X>X = diag(λ1, λ2, . . . λd)

(note this rotation does not alter the predictions of rotationally invariant algorithms). With this choice, we have that:

[β̂λ]j =
1
n

∑n
i=1 Yi[Xi]j

λj + λ

It is straightforward to see that:
β = E[β̂0]

and it follows that:
[E[β̂]λ]j := E[β̂λ]j =

λj
λj + λ

βj

by just taking expectations.
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Lemma 1.2. (Risk Bound) If Var(Yi) = σ2, we have that:

R(β̂λ) =
σ2

n

∑
j

(
λj

λj + λ
)2 +

∑
j

β2
j

λj
(1 + λj/λ)2

The above is an equality if Var(Yi) ≤ σ2.

Proof. Note that in our coordinate system we have X = UD> (from the thin SVD), since X>X is diagonal. Here,
the diagonal entries are

√
nλj . Letting η be the noise:

Y = E[Y ] + η

and
Σλ = Σ + λI ,

so that β̂λ = 1
nΣλX

>Y . We have that:

EY ‖β̂λ − E[β̂]λ‖2Σ =
1

n2
Eη[η>XΣλΣΣλXη]

=
1

n2
Eη[η>UDiag(. . . ,

nλ2
j

(λj + λ)2
, . . .)U>η]

=
1

n

∑
j

λ2
j

(λj + λ)2
Eη[U>η]2j

=
σ2

n

∑
j

λ2
j

(λj + λ)2

This holds with equality if Var(Yi) = 1. For the bias term,

‖βλ − β‖2Σ =
∑
j

λj([βλ]j − [β]j)
2

=
∑
j

β2
jλj(

λj
λj + λ

− 1)2

=
∑
j

β2
jλj(

λ

λj + λ
)2

and the result follows from algebraic manipulations.

1.3 Margin Based Bound

There following bound characterizes the risk for two natural settings for λ.

Theorem 1.3. Assume Var(Yi) ≤ 1

• (Finite Dims) For λ = 0,

R(β̂λ) ≤ d

n

And if V ar(Yi) = 1, then R(β̂λ) = d
n .
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• (Infinite Dims) For λ =

√
‖Σ‖trace

‖β‖
√
n

, then:

R(β̂λ) ≤
‖β‖

√
‖Σ‖trace

2
√
n

≤ ‖β‖‖X‖
2
√
n

where the trace norm is the sum of the singular values and ‖X‖ = maxi ||Xi||. Furthermore, for all n there
exists a distribution Pr[Y ] and an X such that the infλR(β̂λ) is Ω∗(‖β‖‖X‖√

n
) (so the above bound is tight up to

log factors in n).

Conceptually, the second bound is ‘dimension free’, i.e. it does not depend explicitly on d, which could be infinite.
And we are effectively doing regression in a large (potentially) infinite dimensional space.

Proof. The λ = 0 case follows directly from the previous lemma. Using that (a + b)2 ≥ 2ab, we can bound the
variance term for general λ as follows:

1

n

∑
j

(
λj

λj + λ
)2 ≤ 1

n

∑
j

λ2
j

2λjλ
=

∑
j λj

2nλ

Again, using that (a+ b)2 ≥ 2ab, the bias term is bounded as:∑
j

β2
j

λj
(1 + λj/λ)2

≤
∑
j

β2
j

λj
2λj/λ

=
λ

2
||β||2

So we have that:

R(β̂λ) ≤ ‖Σ‖trace

2nλ
+
λ

2
||β||2

and using the choice of λ completes the proof.

To see the above bound is tight, consider the following problem. Let Xi =
√

n
i and βi =

√
1
i and let Y = Xβ + η

where η is unit variance. Here, we have that λi = 1
i so

∑
j λj ≤ log n and ‖β‖2 ≤ log n, so the upper is logn√

n
. Now

one can write the risk as:

R(β̂λ) =
1

n

∑
j

(
1
i

1
i + λ

)2 +
∑
j

1
i2

(1 + 1
iλ )2

(1)

=
∑
j

1
n + λ2

(1 + iλ)2
(2)

≥
∫ n

1

1
n + λ2

(1 + xλ)2
dx (3)

= (
1

n
+ λ2)(

1

λ(1 + λ)
− 1

λ(1 + nλ)
) (4)

= (
1

nλ
+ λ)(

1

1 + λ
− 1

1 + nλ
) (5)

(6)

and this is Ω(
√
n), for all λ.
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2 PCA Projections and MLEs

Fix some λ. Consider the following ‘keep or kill’ estimator, which uses the MLE estimate if λi ≥ λ and 0 otherwise:

[β̂PCA,λ]j =

{
[β̂0]j if λi ≥ λ
0 else

where β̂0 is the MLE estimator. This estimator is 0 for the small values of λi (those in which we are effectively
regularizing more anyways).

Theorem 2.1. (Risk Inflation of β̂PCA,λ)

Assume Var(Yi) = 1, then
EY [R(β̂PCA,λ)] ≤ 4EY [R(β̂λ)]

Note that the the actual risk (not just an upper bound) of the simple PCA estimate is within a factor of 4 of the ridge
regression risk on a wide class of problems.

Proof. Recall that:

EY [R(β̂λ)] =
1

n

∑
j

(
λj

λj + λ
)2 +

∑
j

β2
j

λj
(1 + λj/λ)2

Since we can write the risk as:
EY [R(β̂)] = EY ‖β̂ − β‖2Σ + ‖β − β‖2Σ

we have that:
EY [R(β̂PCA,λ)] =

1

n

∑
j

I(λj > λ) +
∑

j:λj<λ

λjβ
2
j

where I is the indicator function.

We now show that each term in the risk of β̂PCA,λ is within a factor of 4 for each term in β̂λ. If λj > λ, then the ratio
of the j − th terms is:

1
n

1
n (

λj

λj+λ )2 + β2
j

λj

(1+λj/λ)2

≤
1
n

1
n (

λj

λj+λ )2

=
(λj + λ)2

λ2
j

≤ (1 +
λ

λj
)2

≤ 4

Similarly, if λj ≤ λ, then the ratio of the j-th terms is:

λjβ
2
j

1
n (

λj

λj+λ )2 +
λjβ2

j

(1+λj/λ)2

≤
λjβ

2
j

λjβ2
j

(1+λj/λ)2

= (1 + λj/λ)2

≤ 4

Since each term is within a factor of 4, the proof is completed.
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