
Stat 928: Statistical Learning Theory Lecture: 6

Hoeffding, Chernoff, Bennet, and Bernstein Bounds

Instructor: Sham Kakade

1 Hoeffding’s Bound

We say X is a sub-Gaussian random variable if it has quadratically bounded logarithmic moment generating func-
tion,e.g.

lnEeλ(X−µ) ≤ λ2

2
b.

For a sub-Gaussian random variable, we have

P (X̄n ≥ µ+ ε) ≤ e−nε
2/2b.

Similarly,
P (X̄n ≤ µ− ε) ≤ e−nε

2/2b.

2 Chernoff Bound

For a binary random variable, recall the Kullback–Leibler divergence is

KL(p||q) = p ln(p/q) + (1− p) ln((1− p)/(1− q)).

Theorem 2.1. (Relative Entropy Chernoff Bound) Assume that X ∈ [0, 1] and EX = µ. We have the following
inequality

P (X̄n ≥ µ+ ε) ≤ e−nKL(µ+ε||µ)

and
P (X̄n ≤ µ− ε) ≤ e−nKL(µ−ε||µ),

First, let us understand the worst case MGF for X .

Lemma 2.2. Assume that X ∈ [0, 1] and EX = µ. We have the following inequality

EeλX ≤ (1− µ)e0 + µeλ

This shows that the maximum logarithmic moment generating function is achieved with a {0, 1} valued random vari-
able, i.e.

EeλX ≤ EX′∼µ[eλX
′
]

where X ′ is a {0, 1} valued random variable which takes the value 1 with probability µ.

Proof. Let MX(λ) = EeλX and MX′(λ) = (1− µ)e0 + µeλ. Then MX(0) = MX′(0). Moreover,

M ′X(λ) = EXeλX ≤ EXeλ∗1 = µeλ = M ′X′(λ)

which completes the proof.
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Now we are ready to provide the proof.

Proof. By the previous lemma, we only need to prove the result for binary X ∈ {0, 1}, with mean 1. Recall from
Lemma 1.4 in the previous lecture that,

I(µ+ ε) = KL(Pµ+ε||P )

where Pµ+ε was the “variational” distribution Pλ where λ was is set such that EX∼Pλ [X] = µ+ ε.

Since X is binary, it must be that Pµ+ε is just distribution which is 1 with probability µ+ ε. Hence KL(Pµ+ε||P ) is
just the KL between two binary distributions with means µ+ ε and µ, which completes the proof.

2.1 Useful Forms of the Chernoff Bound

Note that by Hoeffding’s lemma (as X is sub-Gaussian), we have (from Lecture 5) that

−KL(µ+ ε||µ) = inf
λ>0

[−λ(µ+ ε) + ln((1− µ)e0 + µeλ)] ≤ 2ε2

Define V arp be the variance of a X which is 1 with probability p and 0 with probability 1− p. It is straightforward to
show that the second derivative with respect to δ is:

KL′′(µ+ δ||µ) = 1/V arδ

Define
MaxVar[µ, µ+ ε] = max

p∈[µ,µ+ε]
V arp

which provides a lower bound on the second derivative for δ between 0 and ε.

Hence, we have that:

KL(µ+ ε||µ) ≥ 1

2
ε2/MaxVar[µ, µ+ ε]

which leads to a nicer version of the Chernoff bound.

Theorem 2.3. (Nicer Form of the Chernoff Bound) Assume that X ∈ [0, 1] and EX = µ. Fix ε. Define:

MaxVar[µ, µ+ ε] = max
p∈[µ,µ+ε]

V arp

as before (i.e. it is the maximal variance (of {0, 1} variable) between µ and µ+ ε).

We have the following inequality

P (X̄n ≥ µ+ ε) ≤ e−n
ε2

2 MaxVar[µ,µ+ε]

and
P (X̄n ≥ µ− ε) ≤ e−n

ε2

2 MaxVar[µ−ε,µ]

The following corollary (while always true) is much sharper bound than Hoeffding’s bound when µ ≈ 0.

Corollary 2.4. We have the following bound:

P (X̄n ≥ µ+ ε) ≤ exp[−nε2/2(µ+ ε)]

and thus
P (X̄n ≤ µ− ε) ≤ exp[−nε2/2µ].
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This implies a multiplicative form of the Chernoff bound since:

P (X̄n ≥ (1 + δ)µ) ≤ exp[−nµ δ2

2(1 + δ)
]

and
P (X̄n ≤ (1− δ)µ) ≤ exp[−nµδ2/2]

Similar results for Bernstein and Bennet inequalities are available.

3 Bennet Inequality

In Bennet inequality, we assume that the variable is upper bounded, and want to estimate its moment generating
function using variance information.

Lemma 3.1. If X − EX ≤ 1, then ∀λ ≥ 0:

lnEeλ(X−µ) ≤ (eλ − λ− 1)V ar(X).

where µ = EX

Proof. It suffices to prove the lemma when µ = 0. Using ln z ≤ z − 1, we have

lnEeλX = lnEeλX

≤ EeλX − 1

= λ2E
eλX − λX − 1

(λX)2
(X)2

≤ λ2Ee
λ − λ− 1

λ2
(X)2,

where the second inequality follows from the fact that the function (ez − z− 1)/z2 is non-decreasing and λX ≤ λ. �

Lemma 3.2. We have

inf
λ>0

[−λε+ (eλ − λ− 1)V ar(X)] = −V ar(X)φ(ε/V ar(X)) ≤ − ε2

2(V ar(X) + ε/3)
.

where φ(z) = (1 + z) ln(1 + z)− z.

Proof. Take derivative with respect to λ, we obtain

−ε+ (eλ − 1)V ar(X) = 0.

Therefore λ = ln(1 + ε/V ar(X)). Plug in, we obtain the equality.

It is easy to verify using Taylor expansion of the exponential function that for λ ∈ (0, 3):

eλ − λ− 1 ≤ λ2

2

∞∑
m=0

(λ/3)m =
λ2

2(1− λ/3)
.

Now by picking λ = ε/(V ar(X) + ε/3), we have

−λε+
λ2

2(1− λ/3)
= −ε2/[2V ar(X) + 2ε/3].
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This proves the desired bound. �

The above bound implies the following bound: If X − EX ≤ b, for some b > 0, then

P [X ≥ EX + ε] ≤ exp[−nε2/(2V ar(X) + 2εb/3)].

This is similar to the Gaussian result, except for the term 2εb/3. Behaves similar to Gaussian tail bound when εb �
V ar(X).

4 Bernstein Inequality

In Bernstein inequality, we obtain a result similar to the simplified Bennet bound but with a moment condition. There
are different forms. We consider one form.

Lemma 4.1. If X satisfies the moment condition with b > 0 for integers m ≥ 2:

EXm ≤ m!bm−2V/2,

then when λ ∈ (0, 1/b):
lnEeλX ≤ λEX + 0.5λ2V (1− λb)−1,

and thus
P [X̄n ≥ EX + ε] ≤ exp[−nε2/(2V + 2εb)].

Proof. We have the following estimation of logarithmic moment generating function:

lnEeλX ≤ EeλX − 1 ≤ λEX + 0.5V λ2
∑
m=2

bm−2λm−2 = λEX + 0.5λ2V (1− λb)−1.

The last inequality is similar to the proof of Bennet inequality. Exercise: finish the proof. �

5 Independent but non-iid random variables

If X1, . . . , Xn are independent but not iid. Let X̄n = n−1
∑n
i=1Xi, µ = EX̄n, then we have

P (X̄n ≥ µ+ ε) ≤ inf
λ>0

[−λn(µ+ ε) +

n∑
i=1

lnEeλXi ].

In particular, we have the following results:

Lemma 5.1. If Xi are sub-Gaussians with EeλXi ≤ λEXi + 0.5λ2Vi, then

P (X̄n ≥ µ+ ε) ≤ exp

[
− n2ε2

2
∑n
i=1 Vi

]
.

An example is Radamecher average: let σi = {±1} be independent random Bernoulli variables, and ai be fixed
numbers, then

P (n−1
n∑
i=1

σiai ≥ ε) ≤ exp

[
− nε2

2n−1
∑n
i=1 a

2
i

]
.

Similarly one can derive bounds for Bennet and Bernstein inequalities.

Lemma 5.2. If Xi − EXi ≤ b for all i, then

P (X̄n ≥ µ+ ε) ≤ exp

[
− n2ε2

2
∑n
i=1 V ar(Xi) + 2nbε/3

]
.
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6 Alternative Expression

Tail inequality: P (deviation ≥ ε) ≤ δ(ε). Equivalent expression: with probability 1 − δ: deviation ≤ ε(δ), where
ε(δ) is the inverse function of δ(ε).

For example the Chernoff bound
P (X̄n − µ ≥ ε) ≤ exp(−2nε2) = δ,

means with probability 1− δ: X̄n − EX ≤
√

ln(1/δ)/(2n).

For Bennet inequality,
P [X̄n ≥ EX + ε] ≤ exp[−nε2/(2V ar(X) + 2εb/3)],

we set
δ = exp[−nε2/(2V ar(X) + 2εb/3)],

and thus using
√
x+ y ≤

√
x+
√
y:

ε =
√

2V ar(X) ln(1/δ)/n+ b2 ln(1/δ)2/(9n2) +
b ln(1/δ)

3n
≤
√

2V ar(X) ln(1/δ)/n+
2b ln(1/δ)

3n

That is, with probability at least 1− δ, we have

X̄n − EX ≤
√

2V ar(X) ln(1/δ)/n+
2b ln(1/δ)

3n
.
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