Stat 928: Statistical Learning Theory Lecture: 6

Hoeffding, Chernoff, Bennet, and Bernstein Bounds

Instructor: Sham Kakade

1 Hoeffding’s Bound

We say X is a sub-Gaussian random variable if it has quadratically bounded logarithmic moment generating func-
tion,e.g.
)\2
In EeANX—1) < ?b.
For a sub-Gaussian random variable, we have
P(Xn >u+e) < e~ /2b,

Similarly,
P(X,<p—e¢) < e~ e /2,

2 Chernoff Bound

For a binary random variable, recall the Kullback-Leibler divergence is

KL(pllg) = pln(p/q) + (1 = p) In((1 — p)/(1 — q)).

Theorem 2.1. (Relative Entropy Chernoff Bound) Assume that X € [0,1] and EX = u. We have the following
inequality
P(X'n >p+e) < e~ L(ptellp)

and
p(Xn <p—e) < e*ﬂKL(M*EH#)’
First, let us understand the worst case MGF for X .
Lemma 2.2. Assume that X € [0,1] and EX = p. We have the following inequality
Ee < (1 — p)e® + pe?

This shows that the maximum logarithmic moment generating function is achieved with a {0, 1} valued random vari-

able, i.e. ,
Ee}\X S EX/NM[GAX ]

where X' is a {0, 1} valued random variable which takes the value 1 with probability p.
Proof. Let Mx()\) = Ee*™ and Mx/(\) = (1 — p)e® + pe*. Then Mx (0) = Mx/(0). Moreover,
My (\) = EXeM < EXeM = e = My, (N)

which completes the proof. O



Now we are ready to provide the proof.

Proof. By the previous lemma, we only need to prove the result for binary X € {0, 1}, with mean 1. Recall from
Lemma 1.4 in the previous lecture that,
I(:u + 6) = KL(ID;H-EHP)

where P, was the “variational” distribution Py where X was is set such that Ex.p, [X] = p + €.

Since X is binary, it must be that P, is just distribution which is 1 with probability ; + €. Hence K L(P,1||P) is
just the KL between two binary distributions with means p 4 € and p, which completes the proof. O

2.1 Useful Forms of the Chernoff Bound

Note that by Hoeffding’s lemma (as X is sub-Gaussian), we have (from Lecture 5) that

~KL(p+ €||p) = inf [-A(p + €) + In((1 — p)e + pet)] < 262

inf
A>0

Define V ar,, be the variance of a X which is 1 with probability p and 0 with probability 1 — p. It is straightforward to
show that the second derivative with respect to ¢ is:

KL"(p+9||lp) = 1/Vars
Define

MaxVar[y, p + €] = max Var
PE[p,pte]

which provides a lower bound on the second derivative for § between 0 and e.

Hence, we have that: )
KL+ ellu) 2 5 /MaxVarlps, i+ ]

which leads to a nicer version of the Chernoff bound.

Theorem 2.3. (Nicer Form of the Chernoff Bound) Assume that X € [0,1] and EX = p. Fix e. Define:

MaxVar[y, p + €] = max Var
PE[p,pte]

as before (i.e. it is the maximal variance (of {0, 1} variable) between p and p + €).

We have the following inequality

2

P(X, > p+€) < e "INVt

and

62

P(X,, > p—¢) < e "MmVali—enul

The following corollary (while always true) is much sharper bound than Hoeffding’s bound when p ~ 0.
Corollary 2.4. We have the following bound:
P(X, > p+e€) < exp[—ne?/2(u + €)]

and thus -
P(X,, < p—€) < exp[—ne?/2u].



This implies a multiplicative form of the Chernoff bound since:

2
P> (14 0)) < expl -y

(1+5)}

and -
P(X, < (1=0)p) < exp[-nud®/2]

Similar results for Bernstein and Bennet inequalities are available.

3 Bennet Inequality

In Bennet inequality, we assume that the variable is upper bounded, and want to estimate its moment generating
function using variance information.

Lemma3.1. If X — EX <1, thenV\ > 0:
In BAX 1) < (ed — X = 1)Var(X).
where u = EX

Proof. It suffices to prove the lemma when p = 0. Using In z < 2z — 1, we have

In Ee*X = In Ee*X

gEe)‘X -1
AX
e A -1
BRI
Aoa—1
SAQEBT(X)Q,

where the second inequality follows from the fact that the function (e* — z — 1) /22 is non-decreasing and AX < \. [J

Lemma 3.2. We have

2

E A+ (A =X = )Var(X)] = ~Var(X)o(e/Var(X)) < ~gms.

where ¢(z) = (14 2)In(1+ z) — 2.

Proof. Take derivative with respect to A\, we obtain
—e+ (e* = 1)Var(X) =0.
Therefore A = In(1 4 ¢/Var(X)). Plug in, we obtain the equality.

It is easy to verify using Taylor expansion of the exponential function that for A € (0, 3):

N A2 i A2
et —A—-1< — A3 = .
2 2(1— \/3)
Now by picking A = ¢/(Var(X) + ¢/3), we have
—de+ 2 —e2/[2Var(X) + 2¢/3]
2(1-2/3) '



This proves the desired bound. [

The above bound implies the following bound: If X — FX < b, for some b > 0, then
P[X > EX + €] < exp[—ne?/(2Var(X) + 2¢b/3)].

This is similar to the Gaussian result, except for the term 2eb/3. Behaves similar to Gaussian tail bound when eb <
Var(X).

4 Bernstein Inequality

In Bernstein inequality, we obtain a result similar to the simplified Bennet bound but with a moment condition. There
are different forms. We consider one form.

Lemma 4.1. If X satisfies the moment condition with b > 0 for integers m > 2:
EX™ < mlb™2V/2,

then when X € (0,1/b):
In Eer < AEX +0.5\2V (1 — \b) 71,

and thus -
P[X,, > EX + €| < exp[—ne?/(2V + 2¢b)].

Proof. We have the following estimation of logarithmic moment generating function:

n BN < BerX — 1 < AEX +0.5VA% Y 0™ A" 2 = AEX 4 0.53°V(1 — A\b) .
m=2

The last inequality is similar to the proof of Bennet inequality. Exercise: finish the proof. [

S Independent but non-iid random variables

If X1,..., X, are independent but not iid. Let X, = n~*>""" | X;, u = EX,, then we have

n
P(X, > < inf [~ ‘ In Ee*i).
(Xn > pte) < inf| AN(/VL+6)+; n Ee ]
In particular, we have the following results:
Lemma 5.1. If X; are sub-Gaussians with EerXi < NEX; + 0.502V;, then
n?e? }

23 Vi

An example is Radamecher average: let 0; = {£1} be independent random Bernoulli variables, and a; be fixed
numbers, then

P(X, > p+¢€) <exp {—

n 2
ne
P(n~! E ia; > <e - .
( i=1 it = 6) = |: 2n_1 Z?:l a’L2:|

Similarly one can derive bounds for Bennet and Bernstein inequalities.
Lemma 5.2. If X; — EX; < b foralli, then

2.2
P(anwre)éexp[ = }

230 Var(X;) + 2nbe/3

4



6 Alternative Expression

Tail inequality: P(deviation > €) < §(e). Equivalent expression: with probability 1 — d: deviation < €(§), where
€(0) is the inverse function of §(e).

For example the Chernoff bound -
P(X,, — p > €) < exp(—2ne?) = 4,

means with probability 1 — 6: X,, — EX < /In(1/8)/(2n).

For Bennet inequality, -
P[X,, > EX + €] < exp[—ne?/(2Var(X) + 2¢b/3)],

we set
J) = exp[—’n62/(2va7’(X) + 26b/3)]7

and thus using \/z + y < /2 + /¥

2b1n(1/90)

) < V/2Var(X)In(1/6)/n + ™

€ =/2Var(X)In(1/8)/n + b2In(1/6)2/(9n2) + 1)1113%

That is, with probability at least 1 — §, we have

X, — EX <\/2Var(X)In(1/8)/n + %&1/5).




