Stat 928: Statistical Learning Theory

Lecture: 6

Hoeffding, Chernoff, Bennet, and Bernstein Bounds

Instructor: Sham Kakade

1 Hoeffding's Bound

We say X is a sub-Gaussian random variable if it has quadratically bounded logarithmic moment generating function, e.g.

$$\ln E e^{\lambda(X-\mu)} \le \frac{\lambda^2}{2} b.$$

For a sub-Gaussian random variable, we have

$$P(\bar{X}_n \ge \mu + \epsilon) \le e^{-n\epsilon^2/2b}$$
.

Similarly,

$$P(\bar{X}_n \le \mu - \epsilon) \le e^{-n\epsilon^2/2b}$$
.

2 Chernoff Bound

For a binary random variable, recall the Kullback-Leibler divergence is

$$KL(p||q) = p \ln(p/q) + (1-p) \ln((1-p)/(1-q)).$$

Theorem 2.1. (Relative Entropy Chernoff Bound) Assume that $X \in [0,1]$ and $EX = \mu$. We have the following inequality

$$P(\bar{X}_n > \mu + \epsilon) < e^{-nKL(\mu + \epsilon||\mu)}$$

and

$$P(\bar{X}_n \le \mu - \epsilon) \le e^{-nKL(\mu - \epsilon||\mu)},$$

First, let us understand the worst case MGF for X.

Lemma 2.2. Assume that $X \in [0,1]$ and $EX = \mu$. We have the following inequality

$$\mathbb{E}e^{\lambda X} \le (1-\mu)e^0 + \mu e^{\lambda}$$

This shows that the maximum logarithmic moment generating function is achieved with a $\{0,1\}$ valued random variable, i.e.

$$\mathbb{E}e^{\lambda X} \le \mathbb{E}_{X' \sim \mu}[e^{\lambda X'}]$$

where X' is a $\{0,1\}$ valued random variable which takes the value 1 with probability μ .

Proof. Let $M_X(\lambda) = Ee^{\lambda X}$ and $M_{X'}(\lambda) = (1-\mu)e^0 + \mu e^{\lambda}$. Then $M_X(0) = M_{X'}(0)$. Moreover,

$$M_X'(\lambda) = EXe^{\lambda X} \leq EXe^{\lambda*1} = \mu e^{\lambda} = M_{X'}'(\lambda)$$

which completes the proof.

Now we are ready to provide the proof.

Proof. By the previous lemma, we only need to prove the result for binary $X \in \{0, 1\}$, with mean 1. Recall from Lemma 1.4 in the previous lecture that,

$$I(\mu + \epsilon) = KL(P_{\mu + \epsilon}||P)$$

where $P_{\mu+\epsilon}$ was the "variational" distribution P_{λ} where λ was is set such that $\mathbb{E}_{X \sim P_{\lambda}}[X] = \mu + \epsilon$.

Since X is binary, it must be that $P_{\mu+\epsilon}$ is just distribution which is 1 with probability $\mu+\epsilon$. Hence $KL(P_{\mu+\epsilon}||P)$ is just the KL between two binary distributions with means $\mu+\epsilon$ and μ , which completes the proof.

2.1 Useful Forms of the Chernoff Bound

Note that by Hoeffding's lemma (as X is sub-Gaussian), we have (from Lecture 5) that

$$-KL(\mu + \epsilon || \mu) = \inf_{\lambda > 0} \left[-\lambda(\mu + \epsilon) + \ln((1 - \mu)e^{0} + \mu e^{\lambda}) \right] \le 2\epsilon^{2}$$

Define Var_p be the variance of a X which is 1 with probability p and 0 with probability 1-p. It is straightforward to show that the second derivative with respect to δ is:

$$KL''(\mu + \delta || \mu) = 1/Var_{\delta}$$

Define

$$\operatorname{MaxVar}[\mu, \mu + \epsilon] = \max_{p \in [\mu, \mu + \epsilon]} Var_p$$

which provides a lower bound on the second derivative for δ between 0 and ϵ .

Hence, we have that:

$$KL(\mu+\epsilon||\mu) \geq \frac{1}{2}\epsilon^2/\mathrm{MaxVar}[\mu,\mu+\epsilon]$$

which leads to a nicer version of the Chernoff bound.

Theorem 2.3. (Nicer Form of the Chernoff Bound) Assume that $X \in [0, 1]$ and $EX = \mu$. Fix ϵ . Define:

$$\operatorname{MaxVar}[\mu, \mu + \epsilon] = \max_{p \in [\mu, \mu + \epsilon]} Var_p$$

as before (i.e. it is the maximal variance (of $\{0,1\}$ variable) between μ and $\mu + \epsilon$).

We have the following inequality

$$P(\bar{X}_n \ge \mu + \epsilon) \le e^{-n\frac{\epsilon^2}{2\operatorname{MaxVar}[\mu, \mu + \epsilon]}}$$

and

$$P(\bar{X}_n \ge \mu - \epsilon) \le e^{-n\frac{\epsilon^2}{2 \operatorname{MaxVar}[\mu - \epsilon, \mu]}}$$

The following corollary (while always true) is much sharper bound than Hoeffding's bound when $\mu \approx 0$.

Corollary 2.4. We have the following bound:

$$P(\bar{X}_n \ge \mu + \epsilon) \le \exp[-n\epsilon^2/2(\mu + \epsilon)]$$

and thus

$$P(\bar{X}_n \le \mu - \epsilon) \le \exp[-n\epsilon^2/2\mu].$$

This implies a multiplicative form of the Chernoff bound since:

$$P(\bar{X}_n \ge (1+\delta)\mu) \le \exp[-n\mu \frac{\delta^2}{2(1+\delta)}]$$

and

$$P(\bar{X}_n \le (1 - \delta)\mu) \le \exp[-n\mu\delta^2/2]$$

Similar results for Bernstein and Bennet inequalities are available.

3 Bennet Inequality

In Bennet inequality, we assume that the variable is upper bounded, and want to estimate its moment generating function using variance information.

Lemma 3.1. If X - EX < 1, then $\forall \lambda > 0$:

$$\ln E e^{\lambda(X-\mu)} \le (e^{\lambda} - \lambda - 1) Var(X).$$

where $\mu = EX$

Proof. It suffices to prove the lemma when $\mu = 0$. Using $\ln z \le z - 1$, we have

$$\begin{split} \ln E e^{\lambda X} &= \ln E e^{\lambda X} \\ &\leq E e^{\lambda X} - 1 \\ &= \lambda^2 E \frac{e^{\lambda X} - \lambda X - 1}{(\lambda X)^2} (X)^2 \\ &\leq \lambda^2 E \frac{e^{\lambda} - \lambda - 1}{\lambda^2} (X)^2, \end{split}$$

where the second inequality follows from the fact that the function $(e^z-z-1)/z^2$ is non-decreasing and $\lambda X \leq \lambda$. \Box

Lemma 3.2. We have

$$\inf_{\lambda>0}[-\lambda\epsilon+(e^{\lambda}-\lambda-1)Var(X)]=-Var(X)\phi(\epsilon/Var(X))\leq -\frac{\epsilon^2}{2(Var(X)+\epsilon/3)}.$$

where $\phi(z) = (1+z)\ln(1+z) - z$.

Proof. Take derivative with respect to λ , we obtain

$$-\epsilon + (e^{\lambda} - 1)Var(X) = 0.$$

Therefore $\lambda = \ln(1 + \epsilon/Var(X))$. Plug in, we obtain the equality.

It is easy to verify using Taylor expansion of the exponential function that for $\lambda \in (0,3)$:

$$e^{\lambda} - \lambda - 1 \le \frac{\lambda^2}{2} \sum_{m=0}^{\infty} (\lambda/3)^m = \frac{\lambda^2}{2(1-\lambda/3)}.$$

Now by picking $\lambda = \epsilon/(Var(X) + \epsilon/3)$, we have

$$-\lambda \epsilon + \frac{\lambda^2}{2(1 - \lambda/3)} = -\epsilon^2 / [2Var(X) + 2\epsilon/3].$$

This proves the desired bound. \Box

The above bound implies the following bound: If $X - EX \le b$, for some b > 0, then

$$P[X \ge EX + \epsilon] \le \exp[-n\epsilon^2/(2Var(X) + 2\epsilon b/3)].$$

This is similar to the Gaussian result, except for the term $2\epsilon b/3$. Behaves similar to Gaussian tail bound when $\epsilon b \ll Var(X)$.

4 Bernstein Inequality

In Bernstein inequality, we obtain a result similar to the simplified Bennet bound but with a moment condition. There are different forms. We consider one form.

Lemma 4.1. If X satisfies the moment condition with b > 0 for integers $m \ge 2$:

$$EX^m < m!b^{m-2}V/2.$$

then when $\lambda \in (0, 1/b)$:

$$\ln E e^{\lambda X} \le \lambda E X + 0.5 \lambda^2 V (1 - \lambda b)^{-1}.$$

and thus

$$P[\bar{X}_n \ge EX + \epsilon] \le \exp[-n\epsilon^2/(2V + 2\epsilon b)].$$

Proof. We have the following estimation of logarithmic moment generating function:

$$\ln E e^{\lambda X} \le E e^{\lambda X} - 1 \le \lambda E X + 0.5 V \lambda^2 \sum_{m=2} b^{m-2} \lambda^{m-2} = \lambda E X + 0.5 \lambda^2 V (1 - \lambda b)^{-1}.$$

The last inequality is similar to the proof of Bennet inequality. Exercise: finish the proof. \Box

5 Independent but non-iid random variables

If X_1, \ldots, X_n are independent but not iid. Let $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$, $\mu = E\bar{X}_n$, then we have

$$P(\bar{X}_n \ge \mu + \epsilon) \le \inf_{\lambda > 0} [-\lambda n(\mu + \epsilon) + \sum_{i=1}^n \ln E e^{\lambda X_i}].$$

In particular, we have the following results:

Lemma 5.1. If X_i are sub-Gaussians with $Ee^{\lambda X_i} \leq \lambda EX_i + 0.5\lambda^2 V_i$, then

$$P(\bar{X}_n \ge \mu + \epsilon) \le \exp\left[-\frac{n^2 \epsilon^2}{2\sum_{i=1}^n V_i}\right].$$

An example is Radamecher average: let $\sigma_i = \{\pm 1\}$ be independent random Bernoulli variables, and a_i be fixed numbers, then

$$P(n^{-1}\sum_{i=1}^{n}\sigma_{i}a_{i} \geq \epsilon) \leq \exp\left[-\frac{n\epsilon^{2}}{2n^{-1}\sum_{i=1}^{n}a_{i}^{2}}\right].$$

Similarly one can derive bounds for Bennet and Bernstein inequalities.

Lemma 5.2. If $X_i - EX_i \le b$ for all i, then

$$P(\bar{X}_n \ge \mu + \epsilon) \le \exp\left[-\frac{n^2 \epsilon^2}{2\sum_{i=1}^n Var(X_i) + 2nb\epsilon/3}\right].$$

6 Alternative Expression

Tail inequality: $P(deviation \ge \epsilon) \le \delta(\epsilon)$. Equivalent expression: with probability $1 - \delta$: $deviation \le \epsilon(\delta)$, where $\epsilon(\delta)$ is the inverse function of $\delta(\epsilon)$.

For example the Chernoff bound

$$P(\bar{X}_n - \mu \ge \epsilon) \le \exp(-2n\epsilon^2) = \delta,$$

means with probability $1 - \delta$: $\bar{X}_n - EX \leq \sqrt{\ln(1/\delta)/(2n)}$.

For Bennet inequality,

$$P[\bar{X}_n \ge EX + \epsilon] \le \exp[-n\epsilon^2/(2Var(X) + 2\epsilon b/3)],$$

we set

$$\delta = \exp[-n\epsilon^2/(2Var(X) + 2\epsilon b/3)],$$

and thus using $\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$:

$$\epsilon = \sqrt{2Var(X)\ln(1/\delta)/n + b^2\ln(1/\delta)^2/(9n^2)} + \frac{b\ln(1/\delta)}{3n} \le \sqrt{2Var(X)\ln(1/\delta)/n} + \frac{2b\ln(1/\delta)}{3n}$$

That is, with probability at least $1 - \delta$, we have

$$\bar{X}_n - EX \le \sqrt{2Var(X)\ln(1/\delta)/n} + \frac{2b\ln(1/\delta)}{3n}.$$