
Stat 928: Statistical Learning Theory Lecture: 7

Feature Selection, Empirical Risk Minimization, and The Orthogonal Case

Instructor: Sham Kakade

1 A Few Relevant Features

Our goal now is to understand how to select the best q features our of p possible features. Throughout this analysis,
let us assume that:

Y = Xβ + η,

where Y ∈ Rn and X ∈ Rn×p. We assume that the support of β is q.

1.1 Empirical Risk Minimization

Recall that:
L(w) =

1

n
E‖Xw − Y ‖2 =

1

n
E‖Xw − E[Y ]‖2 + σ2

Define our “empirical loss” as:

L̂(w) =
1

n
‖Xw − Y ‖2

which has no expectation over Y . Note that for a fixed w

E[L̂(w)] = L(w)

e.g. the empirical loss is an unbiased estimate of the true loss.

Suppose we knew the support size q. One algorithm is to simply find the estimator which minimizes the empirical loss
and has support only on q coordinates.

In particular,
β̂q = inf

support(w)≤q
L̂(w)

where the inf is over vectors with support size q.

We are interested in, with probability,
L(β̂q)− L(β) ≤??

Recall the risk is:
EY [L(β̂q)]− L(β) ≤??

where the expectation is over Y .
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1.2 Coordinate dependence?

Clearly, the coordinates system is important here, as the “support” is defined with respect to this coordinate system.
However, note that the ’scale’ in each coordinate is irrelevant here. In particular, note the empirical risk minimization
does not depend on the scale of each coordinate.

1.3 Subset Estimation

Let S denote a subset of [q] (here [q] denotes the set of features {1, 2, . . . q}). Let us specify the estimator on the subset
S (e.g. the subspace due to the coordinates S).

Denote the restriction of X to the subset S to be XS ∈ Rn×q . We have that:

βS =
1

n
X†SY

where † denotes the pseudo inverse.

βq = arg minS‖XSβS − Y ‖2

1.4 Computational Issues?

Note there are
(
p
q

)
subsets of size q. Naively, this optimization would involve searching these subsets. What are cases

under which this optimization can be done efficiently?

More generally, are there special cases where can find an estimator which has low risk in this setting?

{SK: example}

2 The Orthogonal Case

Note that the MLE over all coordinates is:

β̂ =
1

n
(X>X)−1X>Y =

1

n
X†Y

by assumption.

Let us suppose that our design matrix is orthogonal. In particular, suppose that:

Σ =
1

n
X>X = diagonal

Under the diagonal assumption, without loss of generality, we can assume without loss of generality that:

Σ = I

(by rescaling each coordinate).

Here we have that j-th coordinate of the (global) MLE βj is just correlation between j-th dimension and Y .

β̂j =
1

n
(X>Y )j =

1

n
Xj · Y =

1

n

∑
i

Xi,jYi := Ê[xjy]
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where Xj is the j-th column of X .

Also, by the identity assumption, we have that j-th coordinate of the MLE on S is just the restriction of

[β̂S ]j = β̂j =
1

n

∑
i

Xi,jYi

Hence, estimation β̂S for all S is easy in this case.

2.1 Regret in the Orthogonal Case

Let S? be the optimal support set (e.g. the support set of the true β).

We can write the regret as:

L(β̂S)− L(β) =
1

n
‖Xβ̂S − E[Y ]‖2 =

1

n
‖Xβ̂S −Xβ‖2 = ‖β̂S − β‖2 =

∑
j /∈S

β2
j +

∑
j∈S

(βj − [β̂S ]j)
2

2.2 High Probability Bounds on the Regret

Suppose that η is sub-Gaussian with constant σ.

Hence, with probability greater than 1− δ, that:

β̂j ≤ βj +

√
2σ2 log(1/δ)

n
(1)

and also that:

β̂j ≥ βj −
√

2σ2 log(1/δ)

n

(using our sub-Gaussian tail bound, from the previous lecture).

Note that union bounds states that (for events E1 to Ek) that:

Pr(E1 or E2 . . . or Ek) ≤
∑
j

Pr(Ej)

(question: when is this sharp?).

Now consider the following 2p events: one of the above 2 equations fail for some coordinate j. Note that if use δ/2p
in the above the cumulative failure probability is less than:

Pr( any failure ) ≤
∑
j

Pr( one-sided failure for j) ≤ 2p(δ/2p) = δ

Hence, we have that, with probability greater than 1− δ, that:

max
j
|β̂j − βj | ≤

√
2σ2 log(2p/δ)

n

so that δ is a failure probability with respect to any event.

The following theorem is immediate for the empirical risk minimization:
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Lemma 2.1. (Regret Bound) Let β̂S be the empirical risk minimizer over all subsets of size no more than q. We have
that with probability greater than 1− δ:

L(β̂S)− L(β) ≤ 4qσ2 log(2p/δ)

n

Proof. For those features j ∈ S?, we have that:∑
j∈S?

(β̂j − βj)2 ≤ 2qσ2 log(2p/δ)

n

Also, by construction, there are on q features j /∈ S? which are non-zero. Hence,∑
j /∈S?

(β̂j − βj)2 ≤ 2qσ2 log(2p/δ)

n

which completes the proof.

2.3 A Better Constant with Variable Selection

Note that since:

max
j
|β̂j − βj | ≤

√
2σ2 log(2p/δ)

n

we are confident that βj is non-zero if

|β̂j | ≥
√

2σ2 log(2p/δ)

n
(2)

So a different algorithm is to use only those β̂j for which the above condition holds — else we just set β̂j = 0. Note
this algorithm doesn’t need to know q.

Lemma 2.2. If we use the estimator defined above (e.g. use only those j for which Equation 2 holds), then, with
probability greater than 1− δ

L(β̂)− L(β) ≤ 2σ2 log(2p/δ)

n

Proof. Note that with probability greater than 1 − δ we do not include an incorrect coordinate. For the j ∈ S?, the
error contribution for each coordinate is:

|β̂j − βj |2 ≤
2σ2 log(2p/δ)

n

The proof is completed by summing over these q errors.

2.4 What about the risk?

The above provides high probability bounds. What can we say about the risk? In other words, what is:

E[‖β̂ − β‖2Σ = E[L(β̂)]− L(β) =??

where the expectation is with respect to sample Y .
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Note that for the ERM algorithm, it only include q features (at most). Also note that:

L(β̂)]− L(β) =
∑
j /∈S

β2
j +

∑
j∈S

(βj − [β̂S ]j)
2 ≤ 2qmax

j
|β̂j − βj |

Hence:
E[‖β̂ − β‖2Σ ≤ 2qE[max

j
|β̂j − βj |]

We will return to this next lecture.

3 The Non-Orthogonal Case

Note now there is no reason that an estimate the ERM can be computed easily (and there are hardness results to
this effect). However, for now, let us ignore this issue and examine the performance of the “subset selection” ERM
algorithm.

Let ŶS be our prediction of E[Y ] using our estimate on S, i.e.

ŶS = XβS = ΠSY

Also, note the best linear predictor using only those features in S, is:

ΠSE[Y ]

where ΠS is the projection of Y onto the subspace spanned by Xj for j ∈ S.

3.1 Naively, an empirical process theory approach

Let’s attempt a simple (and too loose) attempt at a proof.

Let B be the maximal deviation:
B = max

S
|L̂(β̂S)− L(β̂S)|

for some constant B. Later we will see that B is an “empirical process”.

For the ERM βq , say which uses S, this would imply that;

L(β̂S) ≤ L̂(β̂S) +B ≤ L̂(β̂S?) +BL(β̂S?) + 2B

Furthermore, at least in expectation, we have previously shown that:

E[L(β̂S?)− L(βS?)] =
qσ2

n

Thus we have that:

E[L(β̂S)− L(β̂)] ≤ qσ2

n
+ 2E[B]

where βS? = β.

The issue then is that:
E[B] ≤??

It turns out that this approach does not lead to sharp analysis (as B ≈ 1/
√
n).
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4 How accurate are the empirical losses?

Let’s ignore the feature selection issue for a moment and just return to linear regression, and consider the case where it
may be that E[Y ] 6= βX , e.g. let’s not assume that model is correct. This will be relevant since we consider subspaces
which may not be the best subspace.

Lemma 4.1. Let β be the best linear predictor (i.e. it may be that E[Y ] 6= βX , but β is still the best linear predictor.)
Let β̂ be the least squares estimate. We have that:

L(β̂)− L̂(β̂) = L(β)− L̂(β) +
2

n
‖Πη‖2

Alternatively, we have that the difference in losses is:

L(β̂)− L̂(β̂)− (L(β)− L̂(β)) =
2

n
‖Πη‖2

and, in expectation, this difference is well behaved, i.e.

E[L(β̂)− L̂(β̂)− (L(β)− L̂(β))] =
2pσ2

n

where p is the dimension of column space of X .

Proof. Let Ŷ be our prediction of E[Y ], i.e.:
Ŷ = ΠY = Xβ̂

Note that:
L(β̂)− L(β) =

1

n
‖ΠE[Y ]−ΠY ‖2 =

1

n
‖Πη‖2

(we also saw this in Lecture 2, lemma 3.2).

Now note that for all w,

L̂(w) = ‖Xw − Y ‖2 = ‖Xw −ΠY + (Y −ΠY )‖2 = L̂(β̂) + ‖Xw −ΠY ‖2

where the cross term is 0 due to that β̂ is the best linear predictor.

Hence, using w = β,

L̂(β)− L̂(β̂) =
1

n
‖ΠE[Y ]−ΠY ‖2 =

1

n
‖Πη‖2

which completes the proof.

4.1 Comment: Accuracy of the empirical loss

Let’s consider the simplest case where S = S?, e.g. the best subset. So we are using the true β.

Clearly,
L(β)− L̂(β) = 0

Assume that η has variance σ2 in each coordinate. For this case, note that the empirical loss is just sum of η2
i , since

Y = Xβ + η

Note that we can write:
L(β)− L̂(β) =

1

n

∑
i

(σ2 − η2
i )
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By the central limit theorem, we know that for large n

1

n

∑
i

(σ2 − η2
i ) ≈ 1/

√
n

Hence:
L(β)− L̂(β) ≈ 1/

√
n

Hence, we expected B (in the empirical process) to be 1/
√
n.

4.2 The quadratic form

The key quantity of interest is:
1

n
‖ΠSη‖2

If η is a Gaussian, then note that ΠSη is also a Gaussian vector of length q, i.e.

ΠSη ∼ N(0, Iq×q)

Hence, in distribution,
1

n
‖ΠSη

σ2

n
‖2 in distribution

=

∑
i

x2
i

where xi are standard normal distributions.

Note that the variance of the right hand side is kσ2/n, we expect that:

1

n
‖ΠSη

σ2

n
‖2 ≈ qσ2

n
+

√
qσ2

n
+??

Let us make this precise.

Comment: Here we have utilized a crucial property of the Gaussian noise. That a Gaussian is spherically symmetric
(so a rotation preserve independence). The proof for sub-Gaussian η is much trickier.
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