
Stat 928: Statistical Learning Theory Lecture: 8

Feature Selection in the Non-Orthogonal Case

Instructor: Sham Kakade

1 Feature Selection

Our goal now is to understand how to select the best q features out of p possible features. Throughout this analysis, let
us assume that:

Y = Xβ + η,

where Y ∈ Rn and X ∈ Rn×p. We assume that the support of β is q.

1.1 Empirical Risk Minimization

Recall that:
L(w) =

1

n
E‖Xw − Y ‖2 =

1

n
‖Xw − E[Y ]‖2 + σ2

Define our “empirical loss” as:

L̂(w) =
1

n
‖Xw − Y ‖2

which has no expectation over Y . Note that for a fixed w

E[L̂(w)] = L(w)

e.g. the empirical loss is an unbiased estimate of the true loss.

Suppose we knew the support size q. One algorithm is to simply find the estimator which minimizes the empirical loss
and has support only on q coordinates.

In particular,
β̂q = inf

support(w)≤q
L̂(w)

where the inf is over vectors with support size q.

We are interested in, with probability,
L(β̂q)− L(β) ≤??

Recall the risk is:
EY [L(β̂q)]− L(β) ≤??

where the expectation is over Y .
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2 How accurate are the true and empirical losses?

Let’s ignore the feature selection issue for a moment and just return to linear regression, and consider the case where it
may be that E[Y ] 6= βX , e.g. let’s not assume that model is correct. This will be relevant since we consider subspaces
which may not be the best subspace.

Lemma 2.1. Let β be the best linear predictor (i.e. it may be that E[Y ] 6= βX , but β is still the best linear predictor.)
Let β̂ be the least squares estimate. We have that:

L(β̂)− L(β) =
1

n
‖Πη‖2

We also have that:
L̂(β)− L̂(β̂) =

1

n
‖Πη‖2

Proof. Let Ŷ be our prediction of E[Y ], i.e.:
Ŷ = ΠY = Xβ̂

Note that:
L(β̂)− L(β) =

1

n
‖ΠE[Y ]−ΠY ‖2 =

1

n
‖Πη‖2

(we also saw this in Lecture 2, lemma 3.2).

Now note that for all w,

L̂(w) = ‖Xw − Y ‖2 = ‖Xw −ΠY + (Y −ΠY )‖2 = L̂(β̂) + ‖Xw −ΠY ‖2

where the cross term is 0 due to that β̂ is the best linear predictor.

Hence, using w = β,

L̂(β)− L̂(β̂) =
1

n
‖ΠE[Y ]−ΠY ‖2 =

1

n
‖Πη‖2

which completes the proof.

2.1 Comment: Accuracy of the empirical loss

But what about:
L(β̂)− L̂(β̂) =??

and
L(β)− L̂(β) =??

It turns out that (with high probability) these are not all that small (they are O(
√

1/n) (ignoring dimension dependen-
cies).

Assume that η has variance σ2 in each coordinate. For this case, note that the empirical loss is just sum of η2i , since
Y = Xβ + η

Note that we can write:
L(β)− L̂(β) =

1

n

∑
i

(σ2 − η2i )

By the central limit theorem, we know that for large n

1

n

∑
i

(σ2 − η2i ) ≈ 1/
√
n
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Hence:
L(β)− L̂(β) ≈ 1/

√
n

Hence, we expected B (in the empirical process) to be 1/
√
n.

3 Understanding Feature Selection

A key question is how does the loss of any least squares estimate on S related to the loss of β?

Lemma 3.1. For any S,

L(βS)− L(β) = L̂(βS)− L̂(β)− 1

n
(XβS −Xβ) · η

where β̂S is the least squares estimate on S and β is the best linear predictor.

Proof. Observe

L̂(βS) =
1

n
‖XβS − Y ‖2

=
1

n
‖XβS − (Xβ + η)‖2

= L(βS)− L(β) +
1

n
(XβS −Xβ) · η +

1

n
‖η‖2

= L(βS)− L(β) +
1

n
(XβS −Xβ) · η + L̂(β)

which completes the proof.

3.1 Feature Selection Analysis

Lemma 3.2. Let the ERM subspace Ŝ be such that have:

L̂(β̂Ŝ)− L̂(β) ≤ 0

We ahve
L(βŜ)− L(β) ≤ − 1

n
(XβŜ −Xβ) · η +

1

n
‖ΠŜη‖

2

where βŜ is best linear predictor on this subspace.

Proof. Use that L̂(β̂Ŝ) is close to L̂(βŜ) by 1
n‖ΠŜη‖

2.

Hence we must bound the last two terms for the ERM subspace. Instead, we will consider bounding the following for
all S (as this implies a bound on the ERM subspace)

1

n
(XβS −Xβ) · η ≤??

and
1

n
‖ΠSη‖2 ≤??
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Lemma 3.3. We have that:
V ar(

1

n
(XβS −Xβ) · η) =

1

n
(L(βS)− L(β))

For the first term, we have that:

1

n
(XβS −Xβ) ∼ N(0,

1

n
(L(βS)− L(β)))

Hence for any given S, we have that:

| 1
n

(XβS −Xβ)| ≤
√

2(L(βS)− L(β)) log(2/δ)

n
≤ 1

2
(L(βS)− L(β)) +O(

log(1/δ)

n
)

using 2ab ≤ a2 + b2, which implies (with an a =
√

(L(βS)− L(β))/2).

Now using the χ2 tail bound, we have that:

‖ΠSη‖2 ≤ q + 2
√
q ln(1/δ) + 2q ln(1/δ) ≤ O(q + ln(1/δ))

Hence we have that:

Theorem 3.4. We have that with probability greater than 1−δ, for the ERM β̂q (constrained to only choose q features):

L(β̂q)− L(β) ≤ O

(
q + log(

(
q
p

)
/δ)

n

)

4 χ2 Tail Bound

Let Xi ∼ N(0, 1) be independent Gaussians, then the distribution of Z =
∑n
i=1X

2
i is χ2 with n degrees of freedom.

This variable is important for analyzing least squares regression.

Theorem 4.1. Let Xi ∼ N(0, 1) be independent Gaussians, then the distribution of Z =
∑n
i=1X

2
i is χ2. We have

that (for the upper tail):
P (Z/n ≥ 1 + ε) ≤ exp

[
−n

2
(ε− log(1 + ε))

]
One useful upper bound (for obtaining sharp constants) is:

exp
[
−n

2
(ε− log(1 + ε))

]
≤ exp

[
−n

2
(1 + ε−

√
1 + 2ε)

]
A bound that is more comparable to the Bennet-style bound is:

exp
[
−n

2
(ε− log(1 + ε))

]
≤ exp[−nε2/(4 + 4ε)].

(note the difference between the upper and lower tail).

For the lower tail:
P (Z/n ≤ 1− ε) ≤ exp[−nε2/4].

Hence, with probability 1− δ:

Z/n ≤ 1 + 2
√

ln(1/δ)/n+ 2
ln(1/δ)

n
and with probability 1− δ:

Z/n ≥ 1− 2
√

ln(1/δ)/n.
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The logarithmic moment generating function of X2
i for λ < 0.5 is

Γ(λ) = lnEeλX
2
i = −0.5 ln(1− 2λ),

and EX2
i = 1.

Proof. We only prove the upper tail. The lower tail is simpler to prove in that we can use the bound log(1 + x) >
1 + x− x2/2 for x > 0.

From the moment method, we must constrain λ < −.5, or, equivalently, set Γ(λ) =∞ for λ ≥ 0.5. Hence,

I(1 + ε) = inf
0.5>λ>0

[−λ(1 + ε)− 0.5 ln(1− 2λ)] = −1

2
(ε− log(1 + ε))

where the inf is achieved at 1 + ε = 1
1−2λ or equivalently λ = ε

2(1+ε) .

The first claim is completed by noting that log(1 + ε) ≤
√

1 + 2ε − 1, for ε > 0. To see this, first note equality at
ε = 0. Also, note that derivative on the left hand side is:

1

1 + ε
=≤ 1√

1 + 2ε

where the right hand side is the derivative of
√

1 + 2ε.

For the second claim, the proof is completed by noting that the function f(x) = (x− log(1 + x)) ∗ (1 + x). Note that
f ′(x) = 2x− log(1 + x), f ′′(x) = (1 + 2x)/(1 + x), and f ′′′(x) = 1/(1 + x)2 >= 0. So f(x) >= x2/2.

The rest of the proof is straight forward.
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